First Add Some R Packages to the Workspace.
Caution: warning messages are suppressed to reduce clutter in the output.
tidyverse: Importing data, cleaning data, data manipulation, & data visualization
kableExtra: Build HTML tables
DataExplorer: Exploratory Data Analysis & Feature Engineering
tableone: Standardized mean differences for before and after matching
survey: Matched data with match weights
Matching: Propensity score matching
cobalt: Covariate balance
reshape2: Covariate balance plot
rbounds: Rosenbaum Sensitivity test
library(tidyverse)
library(kableExtra)
library(DataExplorer)
library(tableone)
library(survey)
library(Matching)
library(cobalt)
library(reshape2)
library(rbounds)
select <- dplyr::select # Resolves package conflicts with select
options(width = 120) # Format print width
General functions used throughout the analysis.
# Update palN for Chem 24 Spring 2019 ------------------------------------------
update.chem24s19 <- function(chem.dat) {
PAL.course.data <- read_rds("palCourseData.rds")
chem24.S19 <- PAL.course.data %>%
filter(term == "Spring 2019", course == "CHEM 24")
# Add a palN indicator for Chem 24 Spring 2019
chem24.S19 <- chem24.S19 %>%
mutate(palN.chem24.S19 = case_when(
pal.grade == "CR" ~ 2,
is.na(pal.grade) ~ 0,
TRUE ~ 1
)) %>%
select(emplid, palN.chem24.S19)
# Check how many student are non-PAL, incomplete PAL, and PAL
table(chem24.S19$palN.chem24.S19)
# 0 1 2
# 51 10 52
chem.dat <- left_join(chem.dat, chem24.S19, by= "emplid" )
chem.dat <- chem.dat %>%
mutate(palN = case_when(
course == "CHEM 24" & term == "Spring 2019" ~ palN.chem24.S19,
TRUE ~ palN
)) %>%
select(-palN.chem24.S19)
return(chem.dat)
}
# Get raw table of mean gpa for PAL and non-PAL -------------------------------
get.raw.tab <- function(classes, df)
{
raw.table = data.frame(class=character(),
nonPALavg=numeric(),
PALavg=numeric(),
Diff=numeric(),
NonPAL_Num= integer(),
PAL_Num=integer(),
CompletePAL=numeric(),
TermPALStart=integer(),
row.names=NULL,
stringsAsFactors = FALSE)
for (i in 1:length(classes))
{
curr.class = classes[i]
temp = subset(df, course==curr.class & course.seq==0)
pal.start=min(unique(temp$term.code[temp$palN==2]))
# only include terms after PAL start term
temp = subset(temp, term.code>= pal.start)
x=tapply(temp$grd.pt.unt,temp$palN,
mean, na.rm=T) %>%
as.numeric %>%
round(2)
y=table(temp$palN) %>% as.numeric
raw.table[i, 'class' ] = curr.class
raw.table[i, c(2:4,7)]=c(x[1], x[3],x[3]-x[1],
round(y[3]/sum(y),2))
raw.table[i, c(5,6,8)]= c(y[1], y[3], pal.start)
}
# formatted table
raw.table <- kable(raw.table, caption = "Raw Comparison of PAL and non-PAL Grades (No Propensity Adjustment)") %>%
kable_styling(full_width= T, position = "left")
return(raw.table)
}
# Data cleaning ----------------------------------------------------------------
clean.data <- function(df)
{
# Replaced coh.term with coh.term.course
yr.course.taken = as.numeric(gsub(".*([0-9]{4})","\\1",df$coh.term.course))
df$delay.from.hs = ifelse(!is.na(yr.course.taken) & !is.na(df$hs.grad.yr),
yr.course.taken-df$hs.grad.yr, NA)
sum(is.na(df$delay.from.hs))
# remove students who did not complete PAL
df=subset(df, palN!=1)
#recode palN to factor with 0/1 levels
df$palN = ifelse(df$palN==2, 1, 0)
#clean up category names in m.rmd and e.rmd
df$m.rmd[df$m.rmd=="Not Remedial\nin Math"]="Not Remedial in Math"
df$m.rmd[df$m.rmd=="Remedial\nin Math"]="Remedial in Math"
df$e.rmd[df$e.rmd=="Not Remedial\nin English"]="Not Remedial in English"
df$e.rmd[df$e.rmd=="Remedial\nin English"]="Remedial in English"
df <- df %>% mutate(m.rmd = factor(m.rmd), e.rmd = factor(e.rmd))
# table(df$e.rmd)
# Create feature, proportion of cumulative units taken that were passes
# To distinguish the students who have taken 0 units from the students who
# have passed 0 units they have taken, students who have taken 0 units are
# labeled as -1. Then the -1 is replaced by the mean of cum.percent.units.passed
df <- df %>%
mutate(cum.percent.units.passed = ifelse(tot.taken.prgrss.start == 0, -1,
tot.passd.prgrss.start / tot.taken.prgrss.start)) %>%
mutate(cum.percent.units.passed = ifelse(cum.percent.units.passed == -1, mean(cum.percent.units.passed, na.rm =TRUE),
cum.percent.units.passed ))
# code instructor as alphabetic letter for anonymity
df$Instructor_01=droplevels(factor(df$Instructor_01))
instructor.vec = sort(unique(df$Instructor_01))
num.instr = length(instructor.vec)
df$Instructor_01 = factor(
df$Instructor_01, levels = instructor.vec, labels=as.character(1:num.instr)
)
key.instr.code = cbind(as.character(instructor.vec), 1:num.instr)
# Add "cMaj", census majors without concentrations/specializations/tracks/etc.
major_lookup <- read.csv("Census Major Lookup.csv", header = TRUE,
stringsAsFactors = FALSE)
df <- merge(df, major_lookup %>% select(censusMajor, cMaj),
by = "censusMajor", all.x = TRUE)
# Recode mother's education and father's education variables.
non.hs.grad= c("No High School","Some High School")
hs.grad= c("High School Graduate","Some College","2-Year College Graduate")
coll.grad= c("4-Year College Graduate","Postgraduate")
parent.ed.levels= c(
"Non-HS Graduate","HS Graduate", "College Graduate", "Unknown"
)
df <- df %>%
mutate(
mother.ed = ifelse(mother.ed %in% non.hs.grad, "Non-HS Graduate",
ifelse(mother.ed %in% hs.grad, "HS Graduate",
ifelse(mother.ed %in% coll.grad, "College Graduate", "Unknown"))),
mother.ed= factor(mother.ed, levels= parent.ed.levels),
father.ed = ifelse(father.ed %in% non.hs.grad,"Non-HS Graduate",
ifelse(father.ed %in% hs.grad, "HS Graduate",
ifelse(father.ed %in% coll.grad, "College Graduate", "Unknown"))),
father.ed= factor(father.ed, levels= parent.ed.levels))
# Recoded adm.area with these counties as local: 'El Dorado', 'Nevada',
# 'Placer', 'Sacramento', 'San Joaquin', 'Solano', 'Yolo'.
counties.rad <- read_csv(
"countiesRadius120mi.csv",
col_types = cols(
state = col_skip(), city = col_skip(), distance.km = col_skip()
)
)
df <- left_join(df, counties.rad, by = "zip")
local.adm.counties <- c(
'El Dorado', 'Nevada', 'Placer', 'Sacramento', 'San Joaquin', 'Solano',
'Yolo'
)
# County will be NA if the zip code is not within 120 mile radius of
# CSUS zip code(95819)
df <- df %>%
mutate(
adm.area =
if_else(!(county %in% local.adm.counties) | is.na(county),
"nonlocal", "local")
) %>%
mutate(sac.county.flg =
if_else(!(county == "Sacramento") | is.na(county), 0, 1)
) %>%
mutate(sac.county.flg = factor(sac.county.flg))
return(df)
}
# Extract prerequisite course grade ---------------------------------------------
get.prereq.grades <- function(course.df, df, prereq) {
# Get student's recent Chem 1B grade
course.stu <- course.df$emplid
prereq.df <- df %>%
select(emplid, course, course.seq, grd.pt.unt, grade) %>%
filter(emplid %in% course.stu, course== prereq) %>%
group_by(emplid) %>%
filter(course.seq == max(course.seq)) %>%
rename(
prereq.course.seq = course.seq, prereq.grd.pt.unt = grd.pt.unt,
prereq.grade = grade
) %>%
select(-course)
dim(prereq.df) # [1] 275 6
prereq.stu <- prereq.df$emplid
course.df <- course.df %>%
filter(emplid %in% prereq.stu)
course.df <- left_join(course.df, prereq.df, by = "emplid")
return(course.df)
}
# Get only the variables that have missing values ---------------------------------------------
get.missing.only <- function(course.df) {
get.missing.only <- course.df %>%
summarise(across(everything(), ~ sum(is.na(.x)))) %>%
gather() %>%
filter(value != 0)
get.missing.only <- course.df %>%
dplyr::select(all_of(get.missing.only$key))
return(get.missing.only)
}
# Get imbalanced variables with SMD > 0.1------------------------------------
get.imbal.vars <- function(tab)
{
get.imbal.vars <- as.data.frame(ExtractSmd(tab))
get.imbal.vars <- get.imbal.vars %>%
rownames_to_column(var = "Variable") %>%
rename(`Before Matching SMD` = `1 vs 2`) %>%
filter(`Before Matching SMD` > 0.1) %>%
arrange(desc(`Before Matching SMD`))
get.imbal.vars <- kable(
get.imbal.vars, caption = "Variables with SMD > 0.1"
) %>%
kable_styling(full_width= F)
return(get.imbal.vars)
}
# Unadjusted means -------------------------------------------------------------
get.unadj.means <- function(df.final)
{
get.unadj.means <- df.final %>%
group_by(palN) %>% summarise(unadj.means = mean(grd.pt.unt)) %>%
pivot_wider(names_from = "palN", values_from = "unadj.means") %>%
rename(`Non-PAL`= `0`, `PAL`= `1`) %>%
mutate(Diff. = `PAL`-`Non-PAL`)
get.unadj.means<- kable(
get.unadj.means, caption = "Unadjusted Mean Grades"
) %>%
kable_styling(full_width= F)
return(get.unadj.means)
}
# Adjusted means --------------------------------------------------------------
adj.means <- function(match.list, matched.dat) {
get.adj.means <- matched.dat %>%
group_by(palN) %>%
summarise(adj.means = weighted.mean(grd.pt.unt, match.list$weights)) %>%
pivot_wider(names_from = "palN", values_from = "adj.means") %>%
rename(`Non-PAL`= `0`, `PAL`= `1`) %>%
mutate(Diff. = `PAL`-`Non-PAL`)
# formatted table
get.adj.means<- kable(get.adj.means, caption = "Adjusted Mean Grades") %>%
kable_styling(full_width= F)
return(get.adj.means)
}
# Match Table ------------------------------------------------------------------
create.match.tab <- function(matched.dat) {
matched.dat <- matched.dat %>%
mutate(pal = if_else(palN == 0, "Non-PAL", "PAL"))
pal.flg <- c('Non-PAL', 'PAL')
for (i in seq_along(pal.flg)) {
multiple.matches <- matched.dat %>%
filter(pal ==pal.flg[i]) %>%
count(id) %>%
filter(n> 1) %>%
summarise(n())
single.matches <- matched.dat %>%
filter(pal == pal.flg[i]) %>%
count(id) %>%
filter(n==1) %>%
summarise(n())
if(pal.flg[i] == 'Non-PAL') {
match.tab <- bind_rows(single.matches, multiple.matches)
match.tab <- match.tab %>%
rename('Non-PAL'= 'n()')
}
pal.matches <- bind_rows(single.matches, multiple.matches)
match.tab$PAL <- pal.matches$`n()`
row.names(match.tab) <- c("Single Matches", "Multiple Matches")
}
match.tab <-rbind(
match.tab, "Total Students" = c(sum(match.tab$`Non-PAL`), sum(match.tab$`PAL`))
)
match.tab <- kable(match.tab, caption = "PAL and Non-PAL Matches") %>%
kable_styling(full_width= F)
return(match.tab)
}
# ATT plot ---------------------------------------------------------------------
# https://livefreeordichotomize.com/2019/01/17/understanding-propensity-score-weighting/
# https://www.csus.edu/brand/colors.html
get.att.plot <- function(df.final, match.list)
{
df.final$p.score <- p.score
df.final <- df.final %>%
select(-id) %>%
rownames_to_column(var = "id")
ps.dat <- df.final %>%
select(id, palN, p.score) %>%
pivot_wider(
names_from = "palN", values_from = "p.score", names_prefix = "b.pal."
)
before.match <- ps.dat %>%
select(b.pal.0, b.pal.1)
matched.dat <- df.final[unlist(match.list[c("index.treated", "index.control")]), ]
matched.dat$match.weights<- c(match.list$weights, match.list$weights)
after.match <-matched.dat %>%
select(-id) %>%
rownames_to_column(var = "id")
after.match <- after.match %>%
pivot_wider(names_from = "palN", values_from = "p.score", names_prefix = "pal.")
after.match <- after.match %>%
select(pal.0, pal.1, match.weights)
get.att.plot <- ggplot() +
geom_histogram(data = before.match, bins = 50, aes(b.pal.1), alpha = 0.5) +
geom_histogram(data = after.match,bins = 50, aes(pal.1, weight = match.weights),
fill = "#043927", alpha = 0.5) +
geom_histogram(data = before.match, bins = 50, alpha = 0.5,
aes(x = b.pal.0, y = -..count..)) +
geom_histogram(data = after.match, bins = 50,
aes(x = pal.0, weight = match.weights, y = -..count..),
fill = "#c4b581", alpha = 0.5) +
ylab("Count") + xlab("Propensity Scores") +
geom_hline(yintercept = 0, lwd = 0.5) +
scale_y_continuous(label = abs)
return(get.att.plot)
}
# Variable Percent Improvement -------------------------------------------------
get.var.perc.tab <- function(list.bal) {
get.var.perc.tab <- list.bal %>%
pluck("Balance") %>%
rownames_to_column("Variable") %>%
dplyr::select("Variable", "Type", "Diff.Un","Diff.Adj") %>%
mutate(`% Improvement` = if_else(Diff.Un == 0, 0, round(((abs(Diff.Un) - abs(Diff.Adj))/ abs(Diff.Un)) * 100 , 0))) %>%
arrange(desc(`% Improvement`))
get.var.perc.tab <- get.var.perc.tab %>% dplyr::select("Variable", "Diff.Un", "Diff.Adj", `% Improvement`)
return(get.var.perc.tab)
}
# Covariate Balance Plots -------------------------------------------------------
# https://cran.r-project.org/web/packages/tableone/vignettes/smd.html
# https://www.csus.edu/brand/colors.html
get.bal.plot <- function(unmatched.tab, matched.tab) {
## Construct a data frame containing variable name and SMD from all methods
dataPlot <- data.frame(variable = rownames(ExtractSmd(unmatched.tab)),
Unmatched = as.numeric(ExtractSmd(unmatched.tab)),
Matched = as.numeric(ExtractSmd(matched.tab)) )
## Create long-format data for ggplot2
dataPlotMelt <- melt(data = dataPlot,
id.vars = c("variable"),
variable.name = "Method",
value.name = "SMD")
## Order variable names by magnitude of SMD
varNames <- as.character(dataPlot$variable)[order(dataPlot$Unmatched)]
## Order factor levels in the same order
dataPlotMelt$variable <- factor(dataPlotMelt$variable,
levels = varNames)
## Plot using ggplot2
# Sac State colors and dashed line
get.bal.plot <-ggplot(
data = dataPlotMelt, mapping =
aes(x = variable, y = SMD, group = Method, color= Method)) +
scale_color_manual(values = c("#043927", "#c4b581")) +
geom_line(aes(linetype = Method)) +
geom_point() +
scale_linetype_manual(values= c("dashed", "solid")) +
geom_hline(yintercept = 0.1, color = "black", size = 0.1) +
coord_flip() +
theme_bw() + theme(legend.key = element_blank())
return(get.bal.plot)
}
# PAL Effect -------------------------------------------------------------------
get.pal.effect <- function(match.list, matched.dat, course) {
get.gamma <- psens(match.list, Gamma=2.0, GammaInc = 0.1)[["bounds"]] %>%
filter(`Lower bound` < 0.05 & 0.05 < `Upper bound`) %>%
slice_min(Gamma) %>%
select(Gamma)
get.pal.effect <- matched.dat %>%
group_by(palN) %>%
summarise(adj.means = weighted.mean(grd.pt.unt, match.list$weights)) %>%
pivot_wider(names_from = "palN", values_from = "adj.means") %>%
rename(`Non-PAL`= `0`, `PAL`= `1`) %>%
mutate(Course= course, .before= "Non-PAL") %>%
mutate(Diff. = `PAL`-`Non-PAL`) %>%
mutate(`Std. error`= match.list$se, .after= "Diff.") %>%
mutate(
`p-val`= formatC( 1-pnorm(Diff./`Std. error`), format = "e", digits = 2),
Sensitivity= get.gamma$Gamma,
`N(non-PAL)`= length(unique(match.list$index.control)),
`N(PAL)`= match.list$wnobs
)
return(get.pal.effect)
}
Specialized functions for each course.
## BIO 22 ====================================================================
## Filter to relevant variables
bio22.step.vars <- function(course.df) {
vars.to.keep <- c(
'acad.stand', 'adm.area', 'bot.level','cMaj', 'coh', 'course.age', 'course.count',
'csus.gpa.start', 'cum.percent.units.passed', 'delay.from.hs', 'e.rmd',
'eth.erss', 'father.ed', 'fys.flg','gender', 'hous.coh.term.flg', 'hs.gpa',
'Instructor_01', 'median.income','m.rmd', 'mother.ed', 'pct.female.head',
'pell.coh.term.flg', 'prevPAL', 'prevPASS', 'reason', 'sac.county.flg',
'term.units.attemptedCensus', 'palN', 'grd.pt.unt', 'sat.math.score',
'sat.math.flg', 'sat.verbal.score', 'sat.verbal.flg', 'AP_BIOL', 'AP_CALAB',
'AP_CALBC', 'AP_CHEM','AP_BIOL.flg', 'AP_CALAB.flg', 'AP_CALBC.flg',
'AP_CHEM.flg', 'pct.female.head.flg', 'med.inc.flg'
)
new.vars <- intersect(vars.to.keep, names(bio22.dat))
bio22.final <- bio22.dat[ ,new.vars]
return(bio22.final)
}
## Build a Logistic Regression Model for Propensity Score
## Fit Propensity Score model (linear terms only)
bio22.step <- function(final.df) {
# AP_CALAB
min.model <- glm(
palN ~ cum.percent.units.passed + eth.erss + gender + sat.math.score +
sat.verbal.score + sat.math.flg + AP_CALAB + AP_CALAB.flg,
data= bio22.final, family=binomial
)
summary(min.model)
biggest <- formula(glm(palN ~. - grd.pt.unt, data=bio22.final, family=binomial))
bio22.step.first.order <- step(
min.model, direction="forward", scope = biggest, trace=FALSE, k=2)
summary(bio22.step.first.order)
bio22.step.first.order$anova
model.first.order <- formula(bio22.step.first.order)
bio22.first.order.prop.model <- glm(
model.first.order, data=bio22.final, family=binomial
)
return(bio22.first.order.prop.model)
}
## CHEM 1A ====================================================================
## Filter to relevant variables
chem1a.step.vars <- function(course.df) {
vars.to.keep <- c(
'acad.stand', 'adm.area', 'bot.level','cMaj', 'coh', 'course.age',
'csus.gpa.start', 'cum.percent.units.passed', 'delay.from.hs', 'e.rmd',
'eth.erss', 'father.ed','fys.flg','gender', 'hous.coh.term.flg', 'hs.gpa',
'Instructor_01', 'median.income','m.rmd', 'mother.ed', 'pct.female.head',
'pell.coh.term.flg', 'prevPAL', 'prevPASS', 'reason', 'sac.county.flg',
'term.units.attemptedCensus','palN', 'grd.pt.unt', 'sat.math.score',
'sat.math.flg', 'sat.verbal.score', 'sat.verbal.flg', 'AP_BIOL', 'AP_CALAB',
'AP_CALBC', 'AP_CHEM','AP_BIOL.flg', 'AP_CALAB.flg', 'AP_CALBC.flg',
'AP_CHEM.flg', 'pct.female.head.flg', 'med.inc.flg'
)
new.vars <- intersect(vars.to.keep, names(chem1a.dat))
chem1a.final <- chem1a.dat[ ,new.vars]
return(chem1a.final)
}
## Build a Logistic Regression Model for Propensity Score
## Fit Propensity Score model (linear terms only)
chem1a.step <- function(final.df) {
# Stepwise selection selected AP_CALAB.flg, AP_BIOL.flg, AP_CHEM, and
# AP_CHEM.flg
min.model <- glm(
palN ~ cum.percent.units.passed + eth.erss + gender + sat.math.score +
sat.verbal.score + sat.math.flg + AP_CALAB + AP_CALAB.flg + AP_BIOL +
AP_BIOL.flg + AP_CHEM + AP_CHEM.flg, data= chem1a.final, family=binomial
)
summary(min.model)
biggest <- formula(
glm(palN ~. - grd.pt.unt, data=chem1a.final, family=binomial)
)
chem1a.step.first.order <- step(
min.model, direction="forward", scope = biggest, trace=FALSE, k=2
)
summary(chem1a.step.first.order)
chem1a.step.first.order$anova
model.first.order <- formula(chem1a.step.first.order)
chem1a.first.order.prop.model <- glm(
model.first.order, data=chem1a.final, family=binomial
)
return(chem1a.first.order.prop.model)
}
## CHEM 1B ====================================================================
## Filter to relevant variables
chem1b.step.vars <- function(course.df) {
vars.to.keep <- c(
'acad.stand', 'adm.area', 'bot.level','cMaj', 'coh', 'course.age',
'csus.gpa.start', 'cum.percent.units.passed', 'delay.from.hs', 'e.rmd',
'eth.erss', 'father.ed', 'fys.flg','gender', 'hous.coh.term.flg', 'hs.gpa',
'Instructor_01','median.income','m.rmd', 'mother.ed', 'pct.female.head',
'pell.coh.term.flg', 'prevPAL', 'prevPASS', 'reason', 'sac.county.flg',
'term.units.attemptedCensus', 'palN', 'grd.pt.unt', 'chem1a.grd.pt.unt',
'AP_BIOL', 'AP_CALAB', 'AP_CALBC', 'AP_CHEM','AP_BIOL.flg', 'AP_CALAB.flg',
'AP_CALBC.flg', 'AP_CHEM.flg', 'pct.female.head.flg', 'med.inc.flg'
)
new.vars <- intersect(vars.to.keep, names(chem1b.dat))
chem1b.final <- chem1b.dat[ ,new.vars]
return(chem1b.final)
}
## Build a Logistic Regression Model for Propensity Score
## Fit Propensity Score model (linear terms only)
chem1b.step <- function(final.df) {
# Stepwise selection selected AP_BIOL.flg and AP_CHEM.flg
# Removed AP_BIOL.flg. Then stepwise selection selected AP_CALAB.flg.
# Removed AP_CALAB.flg and pct.female.head.flg
min.model <- glm(
palN ~ chem1a.grd.pt.unt + cum.percent.units.passed + eth.erss + gender +
AP_CHEM + AP_CHEM.flg, data= chem1b.final, family=binomial
)
summary(min.model)
biggest <- formula(
glm(palN ~. - grd.pt.unt - AP_BIOL.flg - AP_CALAB.flg - pct.female.head.flg,
data=chem1b.final, family=binomial)
)
chem1b.step.first.order <- step(min.model,
direction="forward",scope = biggest,
trace=FALSE, k=2)
summary(chem1b.step.first.order)
chem1b.step.first.order$anova
model.first.order <- formula(chem1b.step.first.order)
chem1b.first.order.prop.model <- glm(model.first.order, data=chem1b.final, family=binomial)
return(chem1b.first.order.prop.model)
}
## CHEM 4 ====================================================================
## Filter to relevant variables
chem4.step.vars <- function(course.df)
{
vars.to.keep <- c(
'acad.stand', 'adm.area', 'bot.level','cMaj', 'coh', 'course.age',
'csus.gpa.start', 'cum.percent.units.passed', 'delay.from.hs', 'e.rmd',
'eth.erss', 'father.ed','fys.flg','gender', 'hous.coh.term.flg', 'hs.gpa',
'Instructor_01','median.income','m.rmd', 'mother.ed', 'pct.female.head',
'pell.coh.term.flg', 'prevPAL', 'prevPASS', 'reason', 'sac.county.flg',
'term.units.attemptedCensus', 'palN', 'grd.pt.unt','sat.math.score',
'sat.math.flg', 'sat.verbal.score', 'sat.verbal.flg', 'AP_BIOL', 'AP_CALAB',
'AP_CALBC', 'AP_CHEM','AP_BIOL.flg', 'AP_CALAB.flg', 'AP_CALBC.flg',
'AP_CHEM.flg', 'pct.female.head.flg', 'med.inc.flg'
)
new.vars <- intersect(vars.to.keep, names(chem4.dat))
chem4.final <- chem4.dat[ ,new.vars]
return(chem4.final)
}
## Build a Logistic Regression Model for Propensity Score
## Fit Propensity Score model (linear terms only)
chem4.step <- function(final.df)
{
# "AP_BIOL"
min.model <- glm(
palN ~ cum.percent.units.passed + eth.erss + gender+ sat.math.score +
sat.verbal.score+sat.math.flg + AP_CALAB+AP_CALAB.flg, data= chem4.final,
family=binomial
)
summary(min.model)
biggest <- formula(
glm(palN ~. - grd.pt.unt - AP_BIOL, data=chem4.final, family=binomial)
)
chem4.step.first.order <- step(
min.model, direction="forward", scope = biggest, trace=FALSE, k=2)
summary(chem4.step.first.order)
chem4.step.first.order$anova
model.first.order <- formula(chem4.step.first.order)
chem4.first.order.prop.model <- glm(
model.first.order, data=chem4.final, family=binomial
)
return(chem4.first.order.prop.model)
}
## CHEM 24 ====================================================================
## Filter to relevant variables
chem24.step.vars <- function(course.df)
{
vars.to.keep <- c(
'acad.stand', 'adm.area', 'bot.level','cMaj', 'coh', 'course.age',
'csus.gpa.start', 'cum.percent.units.passed', 'delay.from.hs', 'e.rmd',
'eth.erss', 'father.ed', 'fys.flg','gender', 'hous.coh.term.flg', 'hs.gpa',
'Instructor_01', 'median.income','m.rmd', 'mother.ed', 'pct.female.head',
'pell.coh.term.flg', 'prevPAL', 'prevPASS', 'reason', 'sac.county.flg',
'term.units.attemptedCensus', 'palN', 'grd.pt.unt', 'chem1b.grd.pt.unt',
'chem1b.term.gpa', 'chem1b.units.attempted', 'AP_BIOL', 'AP_CALAB',
'AP_CALBC', 'AP_CHEM','AP_BIOL.flg', 'AP_CALAB.flg', 'AP_CALBC.flg',
'AP_CHEM.flg', 'pct.female.head.flg', 'med.inc.flg'
)
new.vars <- intersect(vars.to.keep, names(chem24.dat))
chem24.final <- chem24.dat[ ,new.vars]
return(chem24.final)
}
## Build a Logistic Regression Model for Propensity Score
## Fit Propensity Score model (linear terms only)
chem24.step <- function(final.df) {
min.model <- glm(
palN ~ chem1b.grd.pt.unt + cum.percent.units.passed + eth.erss + gender,
data= chem24.final, family=binomial
)
summary(min.model)
biggest <- formula(
glm(palN ~.- grd.pt.unt - acad.stand - reason - pct.female.head.flg,
data=chem24.final, family=binomial)
)
chem24.step.first.order <- step(
min.model, direction="forward", scope = biggest, trace=FALSE, k=2
)
summary(chem24.step.first.order)
chem24.step.first.order$anova
model.first.order <- formula(chem24.step.first.order)
chem24.first.order.prop.model <- glm(
model.first.order, data=chem24.final, family=binomial
)
return(chem24.first.order.prop.model)
}
Make sure the PAL datafile in the same directory as this RMarkdown file.
PALdatafull <- read_rds("paldatafull_csv.rds")
dim(PALdatafull)
## [1] 1099371 174
sum(PALdatafull$grd.pt.unt)
## [1] 2237555
The files which includes data through the Spring 2019 semester has 1099371 rows and 174 columns. The total of the grd.pt.unt column is 2237555.
chem.classes <- paste("CHEM", c(4, '1A', '1B', 24))
chem.dat <- PALdatafull %>%
filter(base.time.course == 1, course %in% chem.classes) %>%
mutate(course = factor(course, levels = chem.classes))
dim(chem.dat) # 18948 174
## [1] 18948 174
num.stu <- dim(chem.dat)[1]
num.vars <- dim(chem.dat)[2]
There are 18948 rows and 174 variables. Each row is a chemistry student. So, there is a total of 18948 chemistry students.
There are 83 first attempt only Chem 24 Spring 2019 students. Some of them are incorrectly labeled as non-PAL and need to be relabeled.
with(chem.dat %>%
filter(base.time.course == 1, pass.term.flg == "PASS Term", course == "CHEM 24", term == "Spring 2019", course.seq == 0),
table(palN))
## palN
## 0
## 83
chem.dat <- update.chem24s19(chem.dat)
with(chem.dat %>%
filter(base.time.course == 1, pass.term.flg == "PASS Term", course == "CHEM 24", term == "Spring 2019", course.seq == 0),
table(palN))
## palN
## 0 1 2
## 28 9 46
# 0 1 2
# 28 9 46
After relabeling, there are 28 non-PAL students, 9 incomplete PAL students, and 46 PAL students for Chem 24 Spring 2019.
The course.seq variable indicate how many times a student has taken a course prior to the current attempt. To filter on the first attempt at a course, we set course.seq to 0.
Note: Excludes incomplete PAL students
get.raw.tab(chem.classes, chem.dat)
class | nonPALavg | PALavg | Diff | NonPAL_Num | PAL_Num | CompletePAL | TermPALStart |
---|---|---|---|---|---|---|---|
CHEM 4 | 2.03 | 2.39 | 0.36 | 1929 | 759 | 0.28 | 2123 |
CHEM 1A | 1.63 | 2.04 | 0.41 | 1717 | 1055 | 0.37 | 2128 |
CHEM 1B | 1.70 | 2.11 | 0.41 | 1090 | 769 | 0.40 | 2138 |
CHEM 24 | 1.63 | 2.06 | 0.43 | 224 | 177 | 0.43 | 2178 |
Create new variables.
delay.from.hs: delay since high school
cum.percent.units.passed: cumulative percent of units passed
cMaj: census majors without concentrations/specializations/tracks/etc.
county: which county did the student live in at the time of application to Sac state
sac.county.flg: did the student live in Sacramento county at the time of application to Sac State
Collapse sparse categories and other miscellaneous clean up of data. Sparse categories can cause complete separation in logistic regression and are only predictive for a few students.
# Check how many students did not complete PAL
sum(chem.dat$palN==1) # 226
## [1] 226
incl.pal.stu <- sum(chem.dat$palN==1)
chem.dat <- clean.data(chem.dat)
dim(chem.dat) # 18722 179
## [1] 18722 179
There were 226 chemistry students who did not complete PAL and were removed from the analysis. There are now 18722 chemistry students instead of 18948.
There were originally 174 variables in the data set, 5 variables were added, so there are now 179 total variables in the data set.
Based on data for 759 PAL students and 1929 non-PAL students, the unadjusted, raw difference in average grade for PAL and non-PAL students was 0.36 on a A=4.0 grade scale. However, since students self-select into supplemental PAL instruction, it is possible that the resulting PAL and non-PAL groups were not balanced with respect to other characteristics which could impact course grade. For example, if students with better study habits tend to enroll in PAL, all else being equal, the PAL mean grade would be higher than non-PAL– even if PAL had no effect on course grade. Consequently, we also performed a propensity score analysis to adjust the estimated effect of PAL on course grade for potential self-selection biases.
After adjusting for self-selection bias, we found that PAL students earned an average grade \(0.44\pm 0.09\) higher than non-PAL students. A sensitivity analysis indicates that this analysis is moderately sensitive to unknown confounders. Although the data give us sufficient evidence to conclude that PAL increases students’ grades in Chem 4, the existence of an unknown confounder similar in magnitude to living in on-campus housing during their first year, ethnicity, or major would nullify that conclusion.
A propensity score analysis was conducted to assess the effect of PAL supplemental instruction on Chem 4 course grade. Propensity score adjustment was necessary since the data are observational and the characteristics of students who voluntarily enroll in PAL may differ in ways that may, independently of PAL, impact course grade compared to students who do not enroll in PAL. In propensity score analysis, variables related to both likelihood of PAL enrollment and course grade (confounders) are used in a logistic regression model to obtain a propensity score, which is a student’s likelihood of enrolling in PAL.
For Chem 4, 13 covariates were found to have a statistically significant relationship to likelihood of enrolling in PAL. Variables related to increased likelihood of enrolling were: female gender, lower SAT scores, lower AP Calculus exam scores, higher term units attempted, academic major, class level, and CSUS GPA at start of term.
Using the propensity score model, all students in the dataset, PAL and non-PAL, are assigned a propensity score. Then, each PAL student is matched to one or more non-PAL students who have similar propensity score(s). After matching, the PAL and matched non-PAL groups are compared to determine if the distribution of each covariate is similar between the two groups. This is called a balance check. If the standardized difference between the non-PAL and PAL means is less than 0.10 then the strong criteria in (Leite 2017, p.10) is met for covariate balance. If the standardized difference is under 0.25, then a more lenient criteria is met. The highest absolute value standardized mean difference in this analysis is 0.0794. Consequently, adequate balance appears to have been achieved.
The difference in the average grade for the matched PAL and non-PAL data is then calculated. The estimated increase in the mean grade of students in PAL over those not in PAL after correcting for self-selection biases is \(0.44\pm 0.09\) or between 0.35 and 0.53 on a 4.0 grade scale. This result is statistically significant with a P-value of \(2.19x10^{-7}\) and is based on 530 PAL students and 680 non-PAL students. For comparison, the non-propensity score adjusted difference in average grade for PAL and non-PAL students was 0.36.
The estimated PAL effect is based on the assumption that the propensity model includes all potential confounders for PAL enrollment and grade in Chem 4. However, it is possible that unknown confounders exist. A sensitivity analysis was conducted to determine how strong an unknown confounder must be to nullify the statistically significant PAL effect that was found in this analysis. The sensitivity analysis (Rosenbaum, 2002) indicated that an unknown confounder which increases the odds of being in PAL by more than 1.7 is enough to change the treatment effect from significant to non-significant. Inspection of the covariates in the estimated propensity model for Chem 4 indicates that if there is an unknown confounder that has an effect on the propensity score similar to the effect of class level, instructor, or cohort (Transfer or Native Freshmen) observed in this analysis, the PAL effect would become non-significant. Thus, this finding is sensitive to unknown confounders. It is possible a variable like the number of hours per week a student works (which is not in our dataset) is an unknown confounder which could reverse the statistical significance of this analysis.
Additionally, a number of variables were removed from this analysis due to large amounts of missingness. Since all students who had missing information on any included covariate were eliminated from the analysis, a balance had to be struck between retaining a sufficiently large pool of PAL and non-PAL students and retaining a sufficient number of important covariates. Variables which were eliminated from this analysis had substantial missing data or were subjectively judged as unlikely to be confounding. The choices about which variables to retain resulted in the original pool of 759 PAL students in Chem 4 being reduced to 530. Also, 680 non-PAL students were selected out of 1929 original non-PAL students.
When a PAL student had more than one suitable match among the non-PAL students, all non-PAL students were taken as matches and weighted appropriately in the final estimated PAL effect. There were 1238 non-PAL matches. Of the 530 PAL students, 206 were matched one-to-one with non-PAL students and 324 were matched one-to-many with non-PAL students.
The non-PAL and PAL groups will include students with only first attempts at CHEM 4. They will also include students with previous PAL participation and/or are currently in a PAL for another course.
# Excludes course repeats
chem4.dat <- chem.dat %>%
filter(course=="CHEM 4", pass.term.flg == "PASS Term", course.seq== 0)
dim(chem4.dat) # 2688 179
## [1] 2688 179
There are 2688 first attempt CHEM 4 students.
Collapse ‘cMaj’ variable separately for each course since the amount of collapsing necessary will vary by course.
# Collapsed cMaj categories to Biology and Other majors at 0.09
with(chem4.dat, table(cMaj, palN))
## palN
## cMaj 0 1
## Anthropology 4 2
## Art 1 0
## Biology 590 324
## Business 14 2
## Chemistry 168 66
## Child Devel/Early Childhood Ed 8 6
## Civil Engineering 220 42
## Communications 5 1
## Computer Engineering 21 8
## Computer Science 17 7
## Construction Management 2 2
## Criminal Justice 16 8
## Deaf Studies 3 0
## Economics 1 0
## Electrical Engineering 86 13
## English 3 3
## Environmental Studies 24 6
## Family & Consumer Sciences 1 0
## Film 1 0
## Finance 3 1
## French 1 0
## Geology 27 8
## Gerontology 2 0
## Graphic Design 3 0
## Health Science 17 6
## History 2 3
## Humanities 0 1
## Interior Design 1 0
## International Business 1 2
## Journalism 1 1
## Kinesiology/Physical Education 202 81
## Liberal Studies 8 0
## Mathematics 7 2
## Mechanical Engineering 212 62
## Music 0 1
## Nursing 29 25
## Nutrition 89 35
## Philosophy 3 1
## Photography 0 1
## Physical Science 1 0
## Physics 13 3
## Political Science 2 0
## Psychology 42 8
## Recreation Administration 0 1
## Social Science 1 1
## Social Work 1 3
## Sociology 1 0
## Spanish 1 2
## Speech Pathology 8 0
## Theatre Arts 1 1
## Undeclared 61 20
chem4.dat <- group_category(data = chem4.dat, feature = "cMaj", threshold = 0.09, update = TRUE)
with(chem4.dat, table(cMaj, palN))
## palN
## cMaj 0 1
## Biology 590 324
## Chemistry 168 66
## Civil Engineering 220 42
## Electrical Engineering 86 13
## Environmental Studies 24 6
## Geology 27 8
## Kinesiology/Physical Education 202 81
## Mechanical Engineering 212 62
## Nursing 29 25
## Nutrition 89 35
## OTHER 179 69
## Psychology 42 8
## Undeclared 61 20
Remove variables having too many missing values in order to retain a larger pool of PAL and non-PAL students.
## [1] 40
## feature num_missing pct_missing
## 19 Instructor_02 2688 1.00000000
## 24 deg.plan3 2688 1.00000000
## 25 deg.plan4 2688 1.00000000
## 26 deg.plan5 2688 1.00000000
## 27 deg.plan6 2688 1.00000000
## 21 withdraw_reason 2671 0.99367560
## 23 deg.plan2 2667 0.99218750
## 13 trf.gpaADM 2330 0.86681548
## 4 pledge.term 2157 0.80245536
## 29 grad.termERS 1738 0.64657738
## 22 deg.plan1 1713 0.63727679
## 28 grad.term 1713 0.63727679
## 30 ttg 1713 0.63727679
## 1 fys.term.code 1579 0.58742560
## 2 fys.grd 1579 0.58742560
## 3 fys.rpt.flg 1579 0.58742560
## 20 treat.section 1367 0.50855655
## 15 ge.critical.thinking.status 813 0.30245536
## 17 ge.math.status 813 0.30245536
## 18 ge.oral.comm.status 813 0.30245536
## 16 ge.english.comp.status 812 0.30208333
## 14 admit.term 790 0.29389881
## 33 plan.college 769 0.28608631
## 34 plan.college.desc 769 0.28608631
## 35 plan.dept 769 0.28608631
## 36 plan.deptAbbr 769 0.28608631
## 37 plan.degree 769 0.28608631
## 38 plan.type 769 0.28608631
## 7 sat.math.score 519 0.19308036
## 8 sat.math.flg 519 0.19308036
## 9 sat.verbal.score 519 0.19308036
## 10 sat.verbal.flg 519 0.19308036
## 11 sat.test.date 519 0.19308036
## 31 tot.passd.prgrss.start 419 0.15587798
## 32 tot.taken.prgrss.start 419 0.15587798
## 39 cum.percent.units.passed 419 0.15587798
## 40 county 406 0.15104167
## 12 hs.gpa 321 0.11941964
## 5 m.rmd.admin 146 0.05431548
## 6 m.rmd.admin.detail 146 0.05431548
## [1] 2688 144
40 variables missing >5%
5 out of 40 variables were important and force included, even though they were missing >5%
So, 35 variables were removed due to missingness and there are now 144 variables instead of 179 variables.
chem4.dat <- chem4.dat[complete.cases(chem4.dat), ]
dim(chem4.dat) # 1723 144
## [1] 1723 144
1723 out of 2688 students are kept
965 students were removed due to missingness of variables
single.vars <- chem4.dat %>%
summarise(across(everything(), ~ n_distinct(.x))) %>%
select_if(. == 1)
# Table of variables with single values
CreateTableOne(vars = names(single.vars), data = chem4.dat)
##
## Overall
## n 1723
## country = USA (%) 1723 (100.0)
## career.course = UGRD (%) 1723 (100.0)
## acad.prog.course = UGD (%) 1723 (100.0)
## course (%)
## CHEM 4 1723 (100.0)
## CHEM 1A 0 ( 0.0)
## CHEM 1B 0 ( 0.0)
## CHEM 24 0 ( 0.0)
## component = LEC (%) 1723 (100.0)
## units (mean (SD)) 3.00 (0.00)
## course.numeric (mean (SD)) 4.00 (0.00)
## div = Lower Division (%) 1723 (100.0)
## course.seq (mean (SD)) 0.00 (0.00)
## rpt.flg = First Attempt (%) 1723 (100.0)
## base.time.course (mean (SD)) 1.00 (0.00)
## years (mean (SD)) 0.50 (0.00)
## enroll.status = Continuing (%) 1723 (100.0)
## withdraw_code = NWD (%) 1723 (100.0)
## enrl.flg = Enrolled (%) 1723 (100.0)
## enrl.flgERS = Enrolled (%) 1723 (100.0)
## rtn.flg = Retained (%) 1723 (100.0)
## rtn.flgERS = Retained (%) 1723 (100.0)
## pass.term.flg = PASS Term (%) 1723 (100.0)
## csus.gpa.start.flg = Not Missing (%) 1723 (100.0)
## higher.ed.gpa.start.flg = Not Missing (%) 1723 (100.0)
sum(single.vars) # 21
## [1] 21
# remove single-valued variables
chem4.dat<- chem4.dat %>%
dplyr::select(-names(single.vars))
dim(chem4.dat) # 1723 123
## [1] 1723 123
123 out of 144 variables are kept
21 variables removed due to single values
# Remove non chem4 instructors
chem4.dat <- chem4.dat %>%
droplevels(chem4.dat$Instructor_01)
# Combine sparse ethnicity categories to Other
chem4.dat <- chem4.dat %>%
mutate(eth.erss = fct_collapse(eth.erss, `N.A/P.I` = c("Pacific Islander", "Native American")))
with(chem4.dat, table(eth.erss, palN))
## palN
## eth.erss 0 1
## African American 70 32
## Asian 361 132
## Foreign 26 9
## Hispanic 404 234
## N.A/P.I 15 11
## Two or More Races 64 31
## Unknown 35 9
## White 217 73
# Collapse sparse categories for acad.stand
# Other: Academic Dismissal, Academic Disqualification
chem4.dat <- chem4.dat %>%
mutate(acad.stand = fct_other(acad.stand, keep = c("Good Standing")))
with(chem4.dat, table(acad.stand, palN))
## palN
## acad.stand 0 1
## Good Standing 1076 498
## Other 116 33
Sujective judgment was used to narrow the pool of variables down to those likely to be confounders. It’s important to include all variables correlated with outcome even if it is uncertain whether they are related to likeihood of enrolling in PAL. This allows for a more precise estimate of the treatment effect.
chem4.final <- chem4.step.vars(chem4.dat)
kable(names(chem4.final))
x |
---|
acad.stand |
adm.area |
bot.level |
cMaj |
coh |
course.age |
csus.gpa.start |
cum.percent.units.passed |
delay.from.hs |
e.rmd |
eth.erss |
father.ed |
fys.flg |
gender |
hous.coh.term.flg |
hs.gpa |
Instructor_01 |
median.income |
m.rmd |
mother.ed |
pct.female.head |
pell.coh.term.flg |
prevPAL |
prevPASS |
reason |
sac.county.flg |
term.units.attemptedCensus |
palN |
grd.pt.unt |
sat.math.score |
sat.math.flg |
sat.verbal.score |
AP_BIOL |
AP_CALAB |
AP_CALBC |
AP_CHEM |
AP_BIOL.flg |
AP_CALAB.flg |
AP_CALBC.flg |
AP_CHEM.flg |
pct.female.head.flg |
med.inc.flg |
Subjectively identified four potential confounders to force the model to retain: cum.percent.units.passed, gender, eth.erss, sat.math.score, sat.verbal.score, and sat.math.flg (same as sat.verbal.flg). Stepwise variable selection will be used to select which of the variables currently in the PAL dataset to include in the propensity model.
chem4.first.order.prop.model <- chem4.step(chem4.final)
summary(chem4.first.order.prop.model)
##
## Call:
## glm(formula = model.first.order, family = binomial, data = chem4.final)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.0928 -0.8582 -0.5962 1.0823 2.5189
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.313546 0.984757 -0.318 0.750182
## cum.percent.units.passed -0.874892 0.563737 -1.552 0.120674
## eth.erssAsian -0.183902 0.257877 -0.713 0.475761
## eth.erssForeign 0.097238 0.470616 0.207 0.836309
## eth.erssHispanic 0.389267 0.249464 1.560 0.118663
## eth.erssN.A/P.I 0.426014 0.492404 0.865 0.386944
## eth.erssTwo or More Races 0.108771 0.329229 0.330 0.741113
## eth.erssUnknown -0.448564 0.460291 -0.975 0.329796
## eth.erssWhite -0.124588 0.276471 -0.451 0.652252
## genderMale -0.363496 0.130878 -2.777 0.005480 **
## sat.math.score -0.002785 0.001077 -2.586 0.009715 **
## sat.verbal.score -0.001747 0.001014 -1.723 0.084824 .
## sat.math.flgold 0.392623 0.243203 1.614 0.106444
## AP_CALAB -0.411235 0.206074 -1.996 0.045981 *
## AP_CALAB.flgNot Missing -0.664814 0.309910 -2.145 0.031938 *
## term.units.attemptedCensus 0.147671 0.027876 5.298 1.17e-07 ***
## Instructor_012 -0.330922 0.600790 -0.551 0.581763
## Instructor_013 -0.720154 0.559506 -1.287 0.198051
## Instructor_016 -0.893954 0.785129 -1.139 0.254867
## Instructor_017 -0.395600 0.747739 -0.529 0.596762
## Instructor_0110 -0.181681 0.617853 -0.294 0.768718
## Instructor_0112 0.293936 0.508475 0.578 0.563214
## Instructor_0120 0.615611 0.549709 1.120 0.262763
## Instructor_0122 -0.816065 0.636632 -1.282 0.199896
## cMajChemistry -0.405909 0.229873 -1.766 0.077429 .
## cMajCivil Engineering -0.870867 0.239665 -3.634 0.000279 ***
## cMajElectrical Engineering -0.787875 0.378779 -2.080 0.037522 *
## cMajEnvironmental Studies 0.232229 0.636605 0.365 0.715266
## cMajGeology -1.415123 0.793576 -1.783 0.074550 .
## cMajKinesiology/Physical Education -0.436497 0.185440 -2.354 0.018580 *
## cMajMechanical Engineering -0.657946 0.229622 -2.865 0.004166 **
## cMajNursing 0.367788 0.367903 1.000 0.317463
## cMajNutrition -0.730409 0.297964 -2.451 0.014233 *
## cMajOTHER -0.444793 0.221100 -2.012 0.044248 *
## cMajPsychology -1.636895 0.571105 -2.866 0.004154 **
## cMajUndeclared -0.518958 0.307354 -1.688 0.091321 .
## bot.levelJunior 0.475672 0.194301 2.448 0.014360 *
## bot.levelSenior 0.636372 0.428091 1.487 0.137138
## bot.levelSophomore 0.515050 0.145909 3.530 0.000416 ***
## csus.gpa.start 0.332728 0.123350 2.697 0.006988 **
## cohTransfers -0.679730 0.456568 -1.489 0.136545
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 2128.4 on 1722 degrees of freedom
## Residual deviance: 1892.6 on 1682 degrees of freedom
## AIC: 1974.6
##
## Number of Fisher Scoring iterations: 4
p.score <- chem4.first.order.prop.model$fitted.values
chem4.covs <- names(chem4.first.order.prop.model %>% pluck("model") %>% dplyr::select(-palN))
# Unadjusted mean grades
get.unadj.means(chem4.final)
Non-PAL | PAL | Diff. |
---|---|---|
2.01552 | 2.343503 | 0.3279827 |
## Stratified by palN
## 0 1 SMD
## n 1192 531
## cum.percent.units.passed (mean (SD)) 0.87 (0.13) 0.85 (0.13) 0.125
## eth.erss (%) 0.251
## African American 70 ( 5.9) 32 ( 6.0)
## Asian 361 (30.3) 132 (24.9)
## Foreign 26 ( 2.2) 9 ( 1.7)
## Hispanic 404 (33.9) 234 (44.1)
## N.A/P.I 15 ( 1.3) 11 ( 2.1)
## Two or More Races 64 ( 5.4) 31 ( 5.8)
## Unknown 35 ( 2.9) 9 ( 1.7)
## White 217 (18.2) 73 (13.7)
## gender = Male (%) 589 (49.4) 185 (34.8) 0.298
## sat.math.score (mean (SD)) 492.77 (71.49) 465.20 (69.12) 0.392
## sat.verbal.score (mean (SD)) 470.15 (73.09) 451.90 (72.72) 0.250
## sat.math.flg = old (%) 1042 (87.4) 495 (93.2) 0.197
## AP_CALAB (mean (SD)) 2.51 (0.49) 2.51 (0.41) 0.003
## AP_CALAB.flg = Not Missing (%) 148 (12.4) 41 ( 7.7) 0.156
## term.units.attemptedCensus (mean (SD)) 13.67 (2.19) 14.16 (2.23) 0.226
## Instructor_01 (%) 0.348
## 1 25 ( 2.1) 6 ( 1.1)
## 2 43 ( 3.6) 11 ( 2.1)
## 3 116 ( 9.7) 22 ( 4.1)
## 6 19 ( 1.6) 4 ( 0.8)
## 7 24 ( 2.0) 4 ( 0.8)
## 10 37 ( 3.1) 12 ( 2.3)
## 12 818 (68.6) 415 (78.2)
## 20 69 ( 5.8) 48 ( 9.0)
## 22 41 ( 3.4) 9 ( 1.7)
## cMaj (%) 0.418
## Biology 361 (30.3) 232 (43.7)
## Chemistry 85 ( 7.1) 36 ( 6.8)
## Civil Engineering 139 (11.7) 31 ( 5.8)
## Electrical Engineering 46 ( 3.9) 11 ( 2.1)
## Environmental Studies 7 ( 0.6) 5 ( 0.9)
## Geology 15 ( 1.3) 2 ( 0.4)
## Kinesiology/Physical Education 142 (11.9) 70 (13.2)
## Mechanical Engineering 150 (12.6) 39 ( 7.3)
## Nursing 18 ( 1.5) 18 ( 3.4)
## Nutrition 52 ( 4.4) 20 ( 3.8)
## OTHER 102 ( 8.6) 45 ( 8.5)
## Psychology 24 ( 2.0) 4 ( 0.8)
## Undeclared 51 ( 4.3) 18 ( 3.4)
## bot.level (%) 0.175
## Freshman 390 (32.7) 134 (25.2)
## Junior 210 (17.6) 98 (18.5)
## Senior 30 ( 2.5) 11 ( 2.1)
## Sophomore 562 (47.1) 288 (54.2)
## csus.gpa.start (mean (SD)) 2.94 (0.57) 3.01 (0.52) 0.129
## coh = Transfers (%) 33 ( 2.8) 7 ( 1.3) 0.103
Check how many variables have SMD > 0.1
addmargins(table(ExtractSmd(unmatched.tab) > 0.1))
##
## FALSE TRUE Sum
## 1 13 14
get.imbal.vars(unmatched.tab)
Variable | Before Matching SMD |
---|---|
cMaj | 0.4176251 |
sat.math.score | 0.3920790 |
Instructor_01 | 0.3483413 |
gender | 0.2984060 |
eth.erss | 0.2508546 |
sat.verbal.score | 0.2503217 |
term.units.attemptedCensus | 0.2255303 |
sat.math.flg | 0.1972337 |
bot.level | 0.1752879 |
AP_CALAB.flg | 0.1564959 |
csus.gpa.start | 0.1288580 |
cum.percent.units.passed | 0.1248668 |
coh | 0.1026375 |
13 variables have SMD >0.1
Implement a propensity score matching method.
match.chem4 <- with(chem4.final, Match(
Y=chem4.final$grd.pt.unt, Tr = chem4.final$palN, X = p.score,
BiasAdjust = F, estimand = "ATT", M=1, caliper=0.25, replace = TRUE, ties = TRUE))
Standardized mean differences for continuous variables and categorical variables.
# Needed for match table
chem4.final <- chem4.final %>%
rownames_to_column(var = "id")
# Matched data
chem4.matched.dat <- chem4.final[unlist(match.chem4[c("index.treated", "index.control")]), ]
chem4.matched.dat$match.weights<- c(match.chem4$weights, match.chem4$weights)
# Add match weights to match data
weighted.dat<-svydesign(id=~1,weights=~match.weights, data = chem4.matched.dat)
# Variable Summary Table for matched data with match weights
matched.tab <-svyCreateTableOne(vars = chem4.covs, strata = "palN", data= weighted.dat, smd = TRUE, test = FALSE)
print(matched.tab, smd = TRUE, noSpaces = TRUE)
## Stratified by palN
## 0 1 SMD
## n 530.00 530.00
## cum.percent.units.passed (mean (SD)) 0.85 (0.13) 0.85 (0.13) 0.019
## eth.erss (%) 0.147
## African American 26.1 (4.9) 32.0 (6.0)
## Asian 125.3 (23.6) 132.0 (24.9)
## Foreign 11.8 (2.2) 9.0 (1.7)
## Hispanic 243.9 (46.0) 233.0 (44.0)
## N.A/P.I 4.4 (0.8) 11.0 (2.1)
## Two or More Races 25.8 (4.9) 31.0 (5.8)
## Unknown 12.7 (2.4) 9.0 (1.7)
## White 80.1 (15.1) 73.0 (13.8)
## gender = Male (%) 191.2 (36.1) 185.0 (34.9) 0.025
## sat.math.score (mean (SD)) 465.40 (70.72) 465.40 (69.00) <0.001
## sat.verbal.score (mean (SD)) 453.36 (69.57) 452.25 (72.31) 0.016
## sat.math.flg = old (%) 489.5 (92.3) 494.0 (93.2) 0.033
## AP_CALAB (mean (SD)) 2.51 (0.40) 2.51 (0.41) 0.004
## AP_CALAB.flg = Not Missing (%) 45.6 (8.6) 41.0 (7.7) 0.032
## term.units.attemptedCensus (mean (SD)) 14.19 (2.18) 14.16 (2.23) 0.014
## Instructor_01 (%) 0.146
## 1 11.7 (2.2) 6.0 (1.1)
## 2 8.5 (1.6) 11.0 (2.1)
## 3 20.7 (3.9) 22.0 (4.2)
## 6 7.0 (1.3) 4.0 (0.8)
## 7 7.1 (1.3) 4.0 (0.8)
## 10 12.5 (2.4) 12.0 (2.3)
## 12 418.0 (78.9) 414.0 (78.1)
## 20 38.9 (7.3) 48.0 (9.1)
## 22 5.6 (1.1) 9.0 (1.7)
## cMaj (%) 0.134
## Biology 238.6 (45.0) 231.0 (43.6)
## Chemistry 33.2 (6.3) 36.0 (6.8)
## Civil Engineering 25.4 (4.8) 31.0 (5.8)
## Electrical Engineering 16.4 (3.1) 11.0 (2.1)
## Environmental Studies 6.6 (1.2) 5.0 (0.9)
## Geology 4.0 (0.7) 2.0 (0.4)
## Kinesiology/Physical Education 64.3 (12.1) 70.0 (13.2)
## Mechanical Engineering 35.3 (6.7) 39.0 (7.4)
## Nursing 18.2 (3.4) 18.0 (3.4)
## Nutrition 16.9 (3.2) 20.0 (3.8)
## OTHER 48.4 (9.1) 45.0 (8.5)
## Psychology 1.7 (0.3) 4.0 (0.8)
## Undeclared 21.0 (4.0) 18.0 (3.4)
## bot.level (%) 0.074
## Freshman 119.0 (22.5) 134.0 (25.3)
## Junior 95.6 (18.0) 98.0 (18.5)
## Senior 12.6 (2.4) 11.0 (2.1)
## Sophomore 302.7 (57.1) 287.0 (54.2)
## csus.gpa.start (mean (SD)) 2.97 (0.50) 3.01 (0.52) 0.081
## coh = Transfers (%) 5.7 (1.1) 7.0 (1.3) 0.023
Continuous variables: Standardized mean differences are computed by using the standard deviation of treated group Binary variables: Raw differences in proportion
All variables are balanced and under the <0.1 mean threshold.
chem4.bal <- bal.tab(match.chem4, formula = f.build("palN", chem4.covs), data = chem4.final,
distance = ~ p.score, thresholds = c(m = .1), un = TRUE, imbalanced.only = TRUE)
chem4.bal
## Balance Measures
## All covariates are balanced.
##
## Balance tally for mean differences
## count
## Balanced, <0.1 45
## Not Balanced, >0.1 0
##
## Variable with the greatest mean difference
## Variable Diff.Adj M.Threshold
## csus.gpa.start 0.0794 Balanced, <0.1
##
## Sample sizes
## Control Treated
## All 1192. 531
## Matched (ESS) 318.44 530
## Matched (Unweighted) 680. 530
## Unmatched 512. 0
## Discarded 0. 1
get.var.perc.tab(chem4.bal)
## Variable Diff.Un Diff.Adj % Improvement
## 1 p.score 0.7912852849 2.660153e-04 100
## 2 sat.math.score -0.3988551284 -9.585924e-05 100
## 3 cMaj_Nursing 0.0187976339 -3.773585e-04 98
## 4 Instructor_01_3 -0.0558841745 2.493261e-03 96
## 5 sat.verbal.score -0.2509643508 -1.536474e-02 94
## 6 term.units.attemptedCensus 0.2235767269 -1.400638e-02 94
## 7 gender_Male -0.1457282701 -1.173405e-02 92
## 8 Instructor_01_12 0.0953026454 -7.520216e-03 92
## 9 cMaj_Biology 0.1340591388 -1.434187e-02 89
## 10 Instructor_01_10 -0.0084413984 -1.013028e-03 88
## 11 cMaj_Mechanical Engineering -0.0523925985 6.889039e-03 87
## 12 cum.percent.units.passed -0.1231213537 1.902176e-02 85
## 13 sat.math.flg_old 0.0580423160 8.580413e-03 85
## 14 coh_Transfers -0.0145018896 2.493261e-03 83
## 15 cMaj_Civil Engineering -0.0582303239 1.052785e-02 82
## 16 AP_CALAB.flg_Not Missing -0.0469482678 -8.728661e-03 81
## 17 eth.erss_Hispanic 0.1017517916 -2.060872e-02 80
## 18 eth.erss_Asian -0.0542647784 1.268643e-02 77
## 19 eth.erss_White -0.0445705204 -1.332210e-02 70
## 20 Instructor_01_2 -0.0153581946 4.683288e-03 70
## 21 cMaj_Psychology -0.0126012715 4.429470e-03 65
## 22 Instructor_01_22 -0.0174468206 6.331986e-03 64
## 23 bot.level_Freshman -0.0748271591 2.823001e-02 62
## 24 cMaj_Geology -0.0088174143 -3.679245e-03 58
## 25 bot.level_Sophomore 0.0708963713 -2.965633e-02 58
## 26 Instructor_01_7 -0.0126012715 -5.864780e-03 53
## 27 Instructor_01_20 0.0325095742 1.725966e-02 47
## 28 bot.level_Junior 0.0083829422 4.451932e-03 47
## 29 eth.erss_Unknown -0.0124132636 -6.951932e-03 44
## 30 cMaj_Electrical Engineering -0.0178749731 -1.019317e-02 43
## 31 csus.gpa.start 0.1357473318 7.943121e-02 41
## 32 cMaj_Undeclared -0.0088869298 -5.754717e-03 35
## 33 Instructor_01_6 -0.0084066406 -5.566038e-03 34
## 34 bot.level_Senior -0.0044521543 -3.025606e-03 32
## 35 cMaj_Environmental Studies 0.0035437126 -2.955975e-03 17
## 36 cMaj_Kinesiology/Physical Education 0.0126992252 1.075921e-02 15
## 37 cMaj_Nutrition -0.0059593776 5.824349e-03 2
## 38 AP_CALAB 0.0034431498 -3.675201e-03 -7
## 39 eth.erss_Foreign -0.0048629280 -5.332435e-03 -10
## 40 Instructor_01_1 -0.0096737193 -1.080413e-02 -12
## 41 cMaj_Chemistry -0.0035121147 5.370620e-03 -53
## 42 eth.erss_N.A/P.I 0.0081317383 1.250000e-02 -54
## 43 eth.erss_Two or More Races 0.0046891391 9.838275e-03 -110
## 44 eth.erss_African American 0.0015388213 1.119048e-02 -627
## 45 cMaj_OTHER -0.0008247071 -6.498203e-03 -688
get.bal.plot(unmatched.tab, matched.tab)
love.plot(chem4.bal,binary = "raw", stars = "std", var.order = "unadjusted",
thresholds = c(m = .1), abs = F)
create.match.tab(chem4.matched.dat)
Non-PAL | PAL | |
---|---|---|
Single Matches | 343 | 206 |
Multiple Matches | 337 | 324 |
Total Students | 680 | 530 |
Out of 531 PAL students, 530 were matched and 1 was unable to be matched. Out of 530 PAL student matches, 206 PAL students were matched to one non-PAL student and 324 PAL students were matched to multiple non-PAL students.
Out of 1238 non-PAL student matches, there were 680 non-PAL students, 343 of the non-PAL students were matched to one PAL student and 337 of the non-PAL students were matched to multiple PAL students.
get.att.plot(chem4.final, match.chem4)
The standardized mean differences of the prognostic scores is 0.0900, which indicates balance. All variables are under the 0.01 mean difference threshold. It is likely that the effect estimate will be relatively unbiased, since the estimated prognostic score is balanced.
##
## Call:
## glm(formula = f.build("grd.pt.unt", chem4.covs), data = ctrl.data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.09610 -0.71453 0.09259 0.72726 2.81319
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3.1551135 0.4687028 -6.732 2.64e-11 ***
## cum.percent.units.passed 0.5280403 0.3058402 1.727 0.08452 .
## eth.erssAsian 0.6156161 0.1398936 4.401 1.18e-05 ***
## eth.erssForeign 0.4445376 0.2444358 1.819 0.06923 .
## eth.erssHispanic 0.4145461 0.1384392 2.994 0.00281 **
## eth.erssN.A/P.I 1.1880648 0.3029530 3.922 9.32e-05 ***
## eth.erssTwo or More Races 0.5392068 0.1848077 2.918 0.00360 **
## eth.erssUnknown 0.6844153 0.2210742 3.096 0.00201 **
## eth.erssWhite 0.4857870 0.1486030 3.269 0.00111 **
## genderMale -0.0452349 0.0698444 -0.648 0.51734
## sat.math.score 0.0034058 0.0005773 5.900 4.78e-09 ***
## sat.verbal.score -0.0008005 0.0005374 -1.490 0.13660
## sat.math.flgold -0.0266766 0.1141820 -0.234 0.81531
## AP_CALAB 0.0838340 0.0740435 1.132 0.25777
## AP_CALAB.flgNot Missing 0.3171721 0.1142736 2.776 0.00560 **
## term.units.attemptedCensus -0.0210416 0.0148051 -1.421 0.15552
## Instructor_012 0.6256332 0.2704276 2.313 0.02087 *
## Instructor_013 -0.0692320 0.2442575 -0.283 0.77689
## Instructor_016 -0.3435549 0.3370825 -1.019 0.30832
## Instructor_017 0.2694129 0.3038283 0.887 0.37541
## Instructor_0110 -0.0389665 0.2877060 -0.135 0.89229
## Instructor_0112 0.1022879 0.2288037 0.447 0.65492
## Instructor_0120 -0.0277218 0.2644355 -0.105 0.91653
## Instructor_0122 0.0430879 0.2833216 0.152 0.87915
## cMajChemistry 0.1952620 0.1279747 1.526 0.12734
## cMajCivil Engineering 0.1616398 0.1126137 1.435 0.15146
## cMajElectrical Engineering 0.0486928 0.1720735 0.283 0.77725
## cMajEnvironmental Studies -0.8540900 0.4077684 -2.095 0.03643 *
## cMajGeology -0.5551327 0.2853390 -1.946 0.05196 .
## cMajKinesiology/Physical Education 0.1843223 0.1093237 1.686 0.09206 .
## cMajMechanical Engineering -0.1065179 0.1122961 -0.949 0.34305
## cMajNursing -0.5533050 0.2563063 -2.159 0.03107 *
## cMajNutrition -0.0422353 0.1648899 -0.256 0.79789
## cMajOTHER 0.0852959 0.1240686 0.687 0.49191
## cMajPsychology 0.0750013 0.2259877 0.332 0.74004
## cMajUndeclared 0.0353021 0.1595944 0.221 0.82498
## bot.levelJunior 0.0487889 0.1048907 0.465 0.64192
## bot.levelSenior 0.0325395 0.2267044 0.144 0.88589
## bot.levelSophomore -0.1937920 0.0758361 -2.555 0.01073 *
## csus.gpa.start 1.0094300 0.0660161 15.291 < 2e-16 ***
## cohTransfers 0.0724838 0.2024442 0.358 0.72038
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for gaussian family taken to be 1.095629)
##
## Null deviance: 1984.6 on 1191 degrees of freedom
## Residual deviance: 1261.1 on 1151 degrees of freedom
## AIC: 3533.9
##
## Number of Fisher Scoring iterations: 2
## Balance Measures
## Type Diff.Adj M.Threshold
## prog.score Distance 0.0900 Balanced, <0.1
## cum.percent.units.passed Contin. 0.0190 Balanced, <0.1
## eth.erss_African American Binary 0.0112 Balanced, <0.1
## eth.erss_Asian Binary 0.0127 Balanced, <0.1
## eth.erss_Foreign Binary -0.0053 Balanced, <0.1
## eth.erss_Hispanic Binary -0.0206 Balanced, <0.1
## eth.erss_N.A/P.I Binary 0.0125 Balanced, <0.1
## eth.erss_Two or More Races Binary 0.0098 Balanced, <0.1
## eth.erss_Unknown Binary -0.0070 Balanced, <0.1
## eth.erss_White Binary -0.0133 Balanced, <0.1
## gender_Male Binary -0.0117 Balanced, <0.1
## sat.math.score Contin. -0.0001 Balanced, <0.1
## sat.verbal.score Contin. -0.0154 Balanced, <0.1
## sat.math.flg_old Binary 0.0086 Balanced, <0.1
## AP_CALAB Contin. -0.0037 Balanced, <0.1
## AP_CALAB.flg_Not Missing Binary -0.0087 Balanced, <0.1
## term.units.attemptedCensus Contin. -0.0140 Balanced, <0.1
## Instructor_01_1 Binary -0.0108 Balanced, <0.1
## Instructor_01_2 Binary 0.0047 Balanced, <0.1
## Instructor_01_3 Binary 0.0025 Balanced, <0.1
## Instructor_01_6 Binary -0.0056 Balanced, <0.1
## Instructor_01_7 Binary -0.0059 Balanced, <0.1
## Instructor_01_10 Binary -0.0010 Balanced, <0.1
## Instructor_01_12 Binary -0.0075 Balanced, <0.1
## Instructor_01_20 Binary 0.0173 Balanced, <0.1
## Instructor_01_22 Binary 0.0063 Balanced, <0.1
## cMaj_Biology Binary -0.0143 Balanced, <0.1
## cMaj_Chemistry Binary 0.0054 Balanced, <0.1
## cMaj_Civil Engineering Binary 0.0105 Balanced, <0.1
## cMaj_Electrical Engineering Binary -0.0102 Balanced, <0.1
## cMaj_Environmental Studies Binary -0.0030 Balanced, <0.1
## cMaj_Geology Binary -0.0037 Balanced, <0.1
## cMaj_Kinesiology/Physical Education Binary 0.0108 Balanced, <0.1
## cMaj_Mechanical Engineering Binary 0.0069 Balanced, <0.1
## cMaj_Nursing Binary -0.0004 Balanced, <0.1
## cMaj_Nutrition Binary 0.0058 Balanced, <0.1
## cMaj_OTHER Binary -0.0065 Balanced, <0.1
## cMaj_Psychology Binary 0.0044 Balanced, <0.1
## cMaj_Undeclared Binary -0.0058 Balanced, <0.1
## bot.level_Freshman Binary 0.0282 Balanced, <0.1
## bot.level_Junior Binary 0.0045 Balanced, <0.1
## bot.level_Senior Binary -0.0030 Balanced, <0.1
## bot.level_Sophomore Binary -0.0297 Balanced, <0.1
## csus.gpa.start Contin. 0.0794 Balanced, <0.1
## coh_Transfers Binary 0.0025 Balanced, <0.1
## p.score Contin. 0.0003 Balanced, <0.1
##
## Balance tally for mean differences
## count
## Balanced, <0.1 46
## Not Balanced, >0.1 0
##
## Variable with the greatest mean difference
## Variable Diff.Adj M.Threshold
## csus.gpa.start 0.0794 Balanced, <0.1
##
## Sample sizes
## Control Treated
## All 1192. 531
## Matched (ESS) 318.44 530
## Matched (Unweighted) 680. 530
## Unmatched 512. 0
## Discarded 0. 1
The estimated increase in the mean grade of students in PAL over those not in PAL after correcting for self-selection biases is 0.44347. This result is statistically significant with a P-value of \(4.3873x10^{-7}\) and is based on 530 PAL students and 1238 non-PAL student matches(680 total non-PAL students). Note this P-value is for a two-tailed test, but it will be corrected to a one-tailed test (halves the P-value) in the final table output summarizing the effect of PAL across chemistry courses.
summary(match.chem4)
##
## Estimate... 0.44347
## AI SE...... 0.087792
## T-stat..... 5.0513
## p.val...... 4.3873e-07
##
## Original number of observations.............. 1723
## Original number of treated obs............... 531
## Matched number of observations............... 530
## Matched number of observations (unweighted). 1238
##
## Caliper (SDs)........................................ 0.25
## Number of obs dropped by 'exact' or 'caliper' 1
psens(match.chem4, Gamma=2.5, GammaInc = 0.1)
##
## Rosenbaum Sensitivity Test for Wilcoxon Signed Rank P-Value
##
## Unconfounded estimate .... 0
##
## Gamma Lower bound Upper bound
## 1.0 0 0.0000
## 1.1 0 0.0000
## 1.2 0 0.0000
## 1.3 0 0.0000
## 1.4 0 0.0001
## 1.5 0 0.0019
## 1.6 0 0.0228
## 1.7 0 0.1219
## 1.8 0 0.3517
## 1.9 0 0.6410
## 2.0 0 0.8566
## 2.1 0 0.9587
## 2.2 0 0.9912
## 2.3 0 0.9986
## 2.4 0 0.9998
## 2.5 0 1.0000
##
## Note: Gamma is Odds of Differential Assignment To
## Treatment Due to Unobserved Factors
##
Note that in the above table \(\Gamma=1.7\) in the first column is the first row where 0.05 is between the Lower and Upper bounds. This means that an unknown confounder which increases the odds of being in PAL by more than 1.7 is enough to change the treatment effect from significant to non-significant. The next code block generates the effect on the odds ratio of each variable in the propensity score. Thus, if there is an unknown confounder that has an effect on the propensity score similar to “cMaj” or “coh” the PAL effect would become non-significant. Thus, this finding is sensitive to unknown confounders. It is possible a variable like the number of hours per week a student works which is not in our dataset is a confounder which could reverse the statistical significance of this analysis.
kable(sort(exp(abs(chem4.first.order.prop.model$coefficients))))
x | |
---|---|
sat.verbal.score | 1.001748 |
sat.math.score | 1.002788 |
eth.erssForeign | 1.102122 |
eth.erssTwo or More Races | 1.114907 |
eth.erssWhite | 1.132682 |
term.units.attemptedCensus | 1.159132 |
Instructor_0110 | 1.199232 |
eth.erssAsian | 1.201897 |
cMajEnvironmental Studies | 1.261409 |
Instructor_0112 | 1.341698 |
(Intercept) | 1.368269 |
Instructor_012 | 1.392251 |
csus.gpa.start | 1.394769 |
genderMale | 1.438349 |
cMajNursing | 1.444535 |
eth.erssHispanic | 1.475899 |
sat.math.flgold | 1.480860 |
Instructor_017 | 1.485276 |
cMajChemistry | 1.500667 |
AP_CALAB | 1.508679 |
eth.erssN.A/P.I | 1.531142 |
cMajKinesiology/Physical Education | 1.547277 |
cMajOTHER | 1.560167 |
eth.erssUnknown | 1.566062 |
bot.levelJunior | 1.609096 |
bot.levelSophomore | 1.673723 |
cMajUndeclared | 1.680276 |
Instructor_0120 | 1.850787 |
bot.levelSenior | 1.889612 |
cMajMechanical Engineering | 1.930822 |
AP_CALAB.flgNot Missing | 1.944130 |
cohTransfers | 1.973346 |
Instructor_013 | 2.054749 |
cMajNutrition | 2.075929 |
cMajElectrical Engineering | 2.198720 |
Instructor_0122 | 2.261584 |
cMajCivil Engineering | 2.388982 |
cum.percent.units.passed | 2.398617 |
Instructor_016 | 2.444778 |
cMajGeology | 4.116994 |
cMajPsychology | 5.139186 |
Course | Non-PAL | PAL | Diff. | Std. error | p-val | Sensitivity | N(non-PAL) | N(PAL) |
---|---|---|---|---|---|---|---|---|
CHEM 4 | 1.9 | 2.35 | 0.44 | 0.09 | 2.19e-07 | 1.7 | 680 | 530 |
Greifer, Noah. 2020. Cobalt: Covariate Balance Tables and Plots. https://CRAN.R-project.org/package=cobalt.
Leite, W. L. 2017. Practical Propensity Score Methods Using R. Thousand Oaks, CA: Sage Publishing. https://osf.io/nygb5/.
Sekhon, Jasjeet S. 2011. “Multivariate and Propensity Score Matching Software with Automated Balance Optimization: The Matching Package for R.” Journal of Statistical Software 42 (7): 1–52. http://www.jstatsoft.org/v42/i07/.
Yoshida, Kazuki, and Alexander Bartel. 2020. Tableone: Create ’Table 1’ to Describe Baseline Characteristics with or Without Propensity Score Weights. https://CRAN.R-project.org/package=tableone.
Zhang, Z., H. J. Kim, G. Lonjon, Y. Zhu, and written on behalf of AME Big-Data Clinical Trial Collaborative Group. 2019. “Balance Diagnostics After Propensity Score Matching.” Annals of Translational Medicine 7 (1): 16. https://doi.org/10.21037/atm.2018.12.10.