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Abstract 

Prior research has shown that supplemental peer support programs in chemistry enhance 
student success in the parent course.  But the literature lacks studies on whether participation 
in multiple peer-led supplemental instruction courses is more effective than just one.  Here we 
find a statistically significant dosing effect for Peer Assisted Learning (PAL) support in organic 
chemistry: students who took two sequential organic chemistry PAL courses outperformed 
those who only took one.   

PAL is a peer-led supplemental instruction model where program enrollment is voluntary, but 
attendance is mandatory for enrolled students. Due to the optional nature of the program, we 
use propensity score weighting to mitigate academic and demographic variations between the 
two groups of students studied. Our dataset consisted of 77 Organic Chemistry II students who 
enrolled in the PAL support course between Fall 2020 and Fall 2024.  Within this group, we 
compared those who also enrolled in the PAL support course for the prerequisite Organic 
Chemistry I class with those who did not.  We found that students who took both PAL courses 
outperformed those who only took the second by 0.58 grade points (P=0.028, 95% CI 0.07-1.10) 
in their Organic Chemistry II course grade.   
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Introduction 
Organic chemistry is traditionally what Arendale1 would describe as a “high-risk course,” and it 
will surprise no readers that there is a rich literature focused on student success interventions 
for this content. Most relevant to our contribution is the body of research analyzing peer 
instruction: any of the various models of instruction using peers or near-peers interacting with 
students to support their success in undergraduate chemistry courses, including the organic 
chemistry sequence.2-13  In addition to traditional support structures like tutoring centers, 
popular examples include supplemental instruction programs like Peer-Led Team Learning,14 
Learning Assistants,15 and the University of Missouri-Kansas City model of Supplemental 
Instruction.16 A large number of closely related models can be found in Arendale’s extensive 
bibliography.17  

 

Peer Assisted Learning at Sacramento State 

California State University, Sacramento, also known as Sacramento State, is one of 23 campuses 
in the California State University (CSU) system.  Sacramento State is a large, public, urban 
campus enrolling over 31,000 undergraduate students.  It is a primarily undergraduate 
institution offering many Master’s degrees and some doctorates but no PhDs.  The student 
body mostly hails from the greater Sacramento region, and the institution reflects the diversity 
of the metropolitan area: Sacramento State is a Hispanic Serving Institution, Black Serving 
Institution, and Asian American Native American Pacific Islander Serving Institution.  It also 
serves a large number of first-generation and non-traditional students. 

The Peer Assisted Learning (PAL) program was established in 2011 with a National Science 
Foundation grant and ran its first sections in 2012 to support a beginning Chemical Calculations 
course.  A combination of partial institutionalization and a series of large federal grants has 
helped the program expand to serving 17 courses in biology, chemistry, mathematics, and 
physics with low pass rates.  In particular, the program currently serves introductory Chemical 
Calculations, General Chemistry I and II, and Organic Chemistry I and II.         

The program is modeled on the Peer-Led Team Learning (PLTL) pedagogical structure18 with 
adaptations to local needs and culture.  Students in the supported parent course can opt to 
enroll in a 1-unit PAL section, graded Credit/No Credit, with the grade determined solely by 
participation and attendance (three or fewer absences required to earn credit).  Students are 
recruited by an advertising campaign early in the semester (classroom announcements, flyers, 
faculty promotion) and carefully marketed to all students, not just those who may be struggling 
or members of certain groups.  In general, PAL students reflect the composition of the parent 
course, but accurate assessment does require controlling for differences arising from the 
selection process, which is the main goal of propensity score analysis (see below). 

The PAL section itself is run as a problem-solving workshop where students work in small 
groups (3-4 students) on supplementary worksheets written by course faculty. The workshop is 
led by an undergraduate instructional student assistant, called a “Peer Leader” in the PLTL 
literature but a “Facilitator” at Sacramento State, whose primary responsibility is ensuring that 
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all students are working collaboratively and productively.  While the Facilitator must have been 
successful in the course (B grade or higher) and regularly attends lecture to keep up with the 
content, they do not teach, tutor, or even confirm answers.  When needed, they do ask 
scaffolding questions to lead students in the right direction, but the value of productive struggle 
and building confidence being “mostly sure” are core tenets of the model.   

During the PAL section itself students do not work on homework assignments or study for 
exams, but Facilitators hold regular office hours and review sessions (open to all students, not 
just those enrolled in the workshop) to support these activities.  In all contexts, Facilitators 
share best practices and study strategies as well as campus resources with their students, who 
often are still learning how to be a successful college student and navigate the university 
structure.  

As Facilitators are asked to serve in many roles, such as peer mentor and academic coach as 
well as providing course content support, they undergo rigorous and continuous training.  
There is a mandatory 8-hour training before each semester, as well as optional additional 
trainings for new Facilitators and those holding leadership positions within the program.  But 
since the Facilitator role demands constant growth and reflection, all Facilitators take a 2-unit 
upper-division letter-graded course, Honors Seminar in Peer Learning, which meets for two 
hours once a week.  In this course Facilitators develop socio-emotional skills like leadership, 
professionalism, assertive communication, and cultural competency. Moreover, while success 
in the parent course is a necessary requirement for the position, Facilitators are hired primarily 
based on their demonstration of empathy and a desire to help their fellow students succeed, 
traits which are assessed in the interview process by program faculty as well as experienced 
current peer Facilitators. Interview questions are primarily open-ended hypothetical scenarios, 
for example: “Javier tells you he has to miss class every now and then to take care of his little 
sister.  How do you respond?". 

Further details on the pedagogical, logistic, and cultural structures of this program can be found 
in the works of Akhavan et al.,19 Lundmark et al.,20 and Shanbrom et al.11. 

 

Organic chemistry at Sacramento State 

The organic chemistry sequence at Sacramento State is largely similar in curriculum and 
pedagogy to comparable institutions in the United States.  With an emphasis on properties of 
molecules, Organic I builds the foundation for the applications in Organic II.  In both courses 
students are assessed by a mix of exams, quizzes, and problem sets (both in-class and as 
homework). Organic II uses as its final exam the American Chemical Society national 
standardized exam; no other exams in the sequence are completely multiple choice. 
Attendance and participation are not assessed, but regular in-class quizzes and assignments 
keep attendance levels high.   

Pedagogically, instructors practice active learning with interactive problems and lectures.  A 
particular focus is placed on problem solving and analysis: every exam (except the Organic II 
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final) requires students to problem solve and show their work step by step. Sample syllabi and 
exams for both Organic I and Organic II appear in our Supporting Information.  The PAL 
worksheets, publicly available on the PAL website,21 were written by course instructors and 
reinforce the problem-solving, analysis, and mechanism emphases.  All 42 PAL worksheets for 
organic chemistry can also be found in our Supporting Information.  We hope these materials 
provide the reader with curricular context in which to interpret our results. 

However, Sacramento State’s organic chemistry sequence does face certain challenges which 
may be, if not unique, exacerbated by local factors.  As a regional Masters-granting university 
(Carnegie R2 classification), there are no discussion or recitation sections led by graduate 
student teaching assistants as might be found in a research institution.  Moreover, class sizes 
are larger than many small private institutions, with both Organic I and II lectures capped at 75 
students.  As each course typically offers two lecture sections per semester, and with an 
additional 80 students taking these courses over summer, well over 300 non-unique students 
take these courses each year.  In addition to the well-known challenges to student success in 
organic chemistry1, Sacramento State students often work full- or part-time, or have 
considerable caregiving responsibilities.   

Furthermore, the lab course (Chem 25) is not a part of either lecture course: Organic I is a 
prerequisite, while Organic II may be taken concurrently.  That is, students in Organic I and II do 
no lab work.  As the lab component is usually associated with higher grades – the DFW rate 
(percentage of students who did not pass the course with a C- or better) for the lab is 
consistently under 5%, compared to 20-40% for both lectures – disassociating the lab from the 
lecture effectively lowers the lecture grades compared to courses with embedded labs.  All of 
these reasons make the organic chemistry sequence at Sacramento State even more 
challenging than is perhaps normal nationwide, and this situation was indeed the main impetus 
for implementing PAL in these courses in the first place. Large amounts of extra practice with 
course material is beneficial in many classes, and PAL providing dedicated, consistent, 
structured time to do so may be particularly helpful for students splitting their time between 
academic, work, and familial responsibilities.  In general, PAL serves the science and math 
courses with the highest DFW rates at Sacramento State.  In addition to Organic I and II, this 
includes Chemical Calculations and General Chemistry I and II.   

 

Background 
Evaluating peer support structures 

Peer-led supplemental instruction has been found effective in promoting student success in the 
supported organic chemistry course.3, 6-7, 9-13, 17 Guyot et al.6 attribute at least some of this 
success to increased student motivation. Our results are particularly interesting in light of Rath 
et al.,9 who found that supplemental instruction was more effective in Organic Chemistry I than 
Organic Chemistry II at an institution very similar to the one we studied.   
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An often-overlooked challenge when evaluating the efficacy of such programs is their voluntary 
nature: students choose whether or not to participate.  While some peer-led supplemental 
instruction programs are compulsory, the voluntary programs suffer from the complication that 
the students who choose to participate may differ in important ways from those who do not.  
Thus, one cannot simply compare students who opt in with those who opt out.  Other authors 
have recognized that voluntary PLTL programs may have stronger students opt in;4-5 in such 
situations it may be the case that students who participate would have been more successful 
with or without the intervention. 

There are a variety of statistical methods for dealing with scenarios where the control group 
and the treatment group are not equally likely to receive the treatment.  Here, we employ 
propensity score weighting, which attempts to control for the likelihood of receiving the 
treatment. In our context, we assign to each student an inverse probability weight based on 
their propensity score, the likelihood of their opting into a particular peer-led supplemental 
instruction program (the treatment). Analyses are then completed using weighted least squares 
techniques. This approach mitigates the bias caused by students self-selecting into the 
treatment group. Note that the term propensity score analysis refers to a family of related 
techniques, all of which use propensity score modeling to assign subjects a propensity score.  
Various methods can then be used to account for this propensity score, including propensity 
score matching (used in Shanbrom et al.11) and propensity score weighting (used here).  

More information on propensity score analysis can be found in works by Austin,22 Bowman et 
al.,3 Brookhart et al.,23 Leite,24 Shadish and Steiner,25 and Zhang et al.26 Propensity score 
analyses have been used to evaluate PLTL programs at the college level11 and at the high school 
level,27 as well as non-peer-led academic interventions.28-30 

Here we use propensity score weighting to compare organic chemistry students at Sacramento 
State, focusing on the effect of the PAL program on two courses: lower-division Organic 
Chemistry I (Chem 24) and upper-division Organic Chemistry II (Chem 124).   

The analysis of Shanbrom et al.11 demonstrated the effectiveness of the PAL program in 11 
STEM courses with low pass rates.  This study included Organic I but not Organic II.  Not only did 
we see that PAL was effective in Organic I, in fact the effect was stronger in this course than in 
any of the 10 other courses studied (see Table 2 of Shanbrom et al.11).  Students opting into the 
Organic I PAL course earned a 2.10 average course GPA in Organic I, compared with an average 
course GPA of 1.39 for those who did not take the PAL support course (on a traditional 4-point 
scale).  This is a massive grade increase of .71 grade points, from an average D+ to an average C. 
The propensity score matching controls for academic and demographic variations in the two 
populations, suggesting that the increase is indeed due to PAL participation; the codebase and 
more data is posted publicly online.31 

 

Dosing effects 

Since PAL was clearly very effective in supporting the parent course of Organic I, in the present 
contribution we sought to determine whether there was a dosing effect: whether additional 
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PAL exposure led to increased benefits. Explicitly, our research question was: Among Organic 
Chemistry II students taking the PAL support course, do those who also took the Organic 
Chemistry I PAL support course outperform those who didn’t?  

This research question effectively defines what we mean by the phrase “dosing effect” in this 
paper.  We are asking whether two doses of the PAL treatment are more effective than a single 
dose.    

Mitchell et al.8.examine a similar dosing effect for a PLTL program in the general chemistry 
sequence with pass rates as the outcome of interest.  See our Discussion below for a 
comparison of their results with ours.  The meta-analytic review of Rohrbeck et al.32 considers 
the “total dosage” of Peer Assisted Learning received, but their study concerns elementary 
school students which is obviously a dramatically different population than university organic 
chemistry students, and they are also interested in a different set of outcomes.  They ultimately 
found no dosing effect in their work, and they describe mixed results in the older literature.33-35 
Three of the four authors of the review of Rohrbeck et al.32 also published a similar meta-
analytic review36 but with a focus on psychological outcomes, and again found no dosing effect. 
However, all of these authors measure dosage in terms of the amount of time students 
received the treatment, which could vary in the programs studied.  This is a vastly different 
measure from ours, stemming from a different programmatic structure (PAL students at 
Sacramento State all receive the same number of treatment hours).   

Other loosely related research includes works by Wonder-McDowell,37 who considered 
supplemental instruction as a “second dose” of instruction (after the primary direct instruction) 
for improving second grade reading levels, and Ogden et al.,38 who studied long-term effects of 
Supplemental Instruction in college-level political science students. 

 

Methods and Results 
A propensity score analysis was conducted in R software39 using packages WeightIt and 
Cobalt40, 41 to assess the dosing effect of PAL courses in organic chemistry. This project was 
approved by the Research Integrity and Compliance Officer in the Offices of Research, 
Innovation, and Economic Development at Sacramento State under the Human Subjects 
Research Institutional Review Board 15-16-143. 

As discussed in Shanbrom et al.,11 propensity score adjustment is necessary for these data since 
they are observational, and because students self-select into PAL courses. A propensity score 
model uses confounders – variables which are related to both PAL enrollment and course grade 
– to model the probability of enrolling in PAL. These probabilities, or propensity scores, can 
then be used to mitigate self-selection bias. To avoid losing any information from these data, 
we performed a propensity score-weighted analysis. 

We performed a propensity score weighted analysis using data from the Sacramento State 
institutional database for every student enrolled in NSM 12S, the PAL support course for 
Organic II, who had also taken Organic I at Sacramento State. The institutional database 



 7 

contains 95 variables on a variety of academic and demographic characteristics. The data on 
Organic I students spans the terms from Fall 2017 through Fall 2024, and on Organic II the 
terms from Spring 2020 through Fall 2024. For this analysis, we assume the impact of COVID-19 
was similar across both groups. During this time, 719 students took both Organic I and Organic 
II.  The DFW rates during this period were 26% in Organic I (n=1406) and 21% in Organic II 
(n=966); note that these n-values are larger than the 719 students who took both classes at 
Sacramento State as many students either took Organic I at a community college or did not 
progress into Organic II.  

To create propensity score models, this set of variables was reduced in the following ways. 
First, missingness was examined and any variables with a large proportion missing were 
removed. Next, variables that were redundant or irrelevant to the outcome were removed (for 
example, race-specific indicators were removed in favor of a single variable describing 
ethnicity). Note that any term-specific variables correspond to the term in which the student 
took Organic I, since this is the term of interest for the propensity score model. 

Significant subsetting was also necessary to examine a dosing effect. First, all students needed 
to have taken both courses at Sacramento State, so any students who took the lower-division 
organic chemistry course at another institution were removed from the data. Second, we 
limited our analysis to examining student grades for the first time a student took a course, so 
any course repeats were removed. After the variable selection was performed (and so variables 
with high missingness removed), students who were missing data from any of the remaining 
variables were also removed from the dataset. Finally, we were only interested in those 
students who attended and participated in the Organic II PAL. Because of the participation-
based nature of PAL courses, we defined PAL participation in Organic II PAL as students who 
had both enrolled in and passed that PAL course.  As attendance and participation are the only 
criteria for passing the PAL course, with no more than three absences allowed and Facilitators 
ensuring that the whiteboard marker is consistently rotating amongst group members, we 
assume that all the students in this group received roughly equal treatment.  

After the variable selection and subsetting, all remaining variables were entered into a 
propensity score model using logistic regression. This model was refined first by examining 
variables causing complete separation in the logistic regression, meaning those variables had 
categories which perfectly predicted the outcome, making the model unstable. These variables 
were modified to collapse sparse categories into “other” in order to ensure enough data in each 
category. Further, input variables which are highly correlated with each other can cause 
problems in examining statistical significance in the model, so the model was then refined by 
sequentially removing variables with perfect multicollinearity or high variance inflation factors, 
stopping when all variance inflation factors were less than 5 – a commonly accepted threshold 
for acceptable levels of correlation.  This resulted in the removal of several other variables. The 
final propensity score model includes the 15 covariates displayed in Table 1, where “term” 
always refers to the semester in which the student took Organic I. 

We also analyzed which of these 15 covariates were most predictive of course grade in Organic 
II, but found that none were strongly correlated.  Each predictor was used individually to 
construct a linear model predicting the Organic II grade, but the only two with an R2 value over 



 8 

0.1 were the student’s grade in Organic I (R2 =0.10, P<0.001) and the student’s cumulative GPA 
(R2=0.13, P<0.001), neither of which are particularly surprising. However, standard practice in 
propensity score methodology recommends including all variables that are associated with the 
outcome, regardless of their statistical significance for treatment assignment, to reduce the risk 
of omitted variable bias22,23. Consistent with recommendations in the literature, we used a 
liberal threshold of P<0.20 when assessing outcome associations to avoid excluding potential 
confounders, even if their individual predictive power was weak22. 

 

Table 1. Descriptions of the 15 covariates used in final propensity score model 

Name Description 
grade.num.1 Grade in Organic I 
coh Indicates transfer or native freshman 
acad.stndng.stat.desc Academic standing 
gender Gender 
eth.ipeds Ethnicity 
foreign.flg International student status 
father.ed Father’s level of education 
mother.ed Mother’s level of education 
pell.term.flg Was student Pell eligible when entering Sacramento State 
term.age Student’s age in term 
school.zip.median.income Median income in student’s last school ZIP code 
prop.pssd Proportion of non-remedial units passed in the current term 
tot.cumulative.start Total units taken at start of term 
cum.gpa.start Cumulative GPA at start of term 
data.chem.hs.gpa High school chemistry GPA 

 

Each propensity score represents the probability of a student having participated in NSM 12N, 
the PAL support course for Organic I. Using the propensity score model, each student in the 
dataset was assigned a weight using inverse probability weighting. See Austin and Stuart42 for 
more details on inverse probability weighting in propensity score analysis. These weights are 
then used in subsequent analyses to calculate quantities like, for example, a weighted mean 
grade for each group or a weighted t-test for difference of means. After weighting, absolute 
mean differences were examined to confirm covariate balance. The criteria for covariate 
balance range from a strong criterion of standardized differences less than 0.1 to a more 
lenient criterion24 of less than 0.25. In this analysis, all absolute mean differences achieved the 
strong criterion, with the exception of prop.pssd, which had a weighted absolute mean 
difference of 0.107. See Figure 1 for a summary of absolute mean differences for this model; 
note the first row shows the absolute mean differences in propensity scores decreasing from 
0.65 before weighting to 0.02 after weighting. 



 9 

 
 

Figure 1. Covariate balance before and after propensity score weighting. The strong criterion of 
0.1 is shown as a dashed line. See Table 1 for descriptions of covariates. 

Finally, we examined the weighted means for each group and performed a weighted t-test 
(using R package weights43) to compare the mean grade for students who took PAL courses for 
both Organic I and Organic II to the mean grade for students who took the Organic II PAL only. 
Our main results appear in Table 2.  We found that students who took both PAL courses 
outperformed those who took the Organic II PAL only.  Taking the second PAL class resulted in 
an average course GPA boost of 0.58 grade points (P=0.028, 95% CI 0.07-1.10), a shift from a C+ 
to a B. The R Markdown files with the code used in our analysis appear in the Supporting 
Information and are posted publicly online.44 
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Table 2: Course GPAs for select groups of students; our main result is the last column, which 
shows a 0.58 grade point increase for students taking a second organic chemistry PAL course 

Group n Unweighted GPA 
in Organic I 

Unweighted GPA 
in Organic II 

PS-Weighted GPA 
in Organic II 

Organic II PAL only 31 2.45 2.41 2.29 
PAL for Organic I and II 46 2.70 2.82 2.87 

 

A sensitivity analysis was conducted using the EValue package in R.45 This package translates 
the difference in means result into a risk ratio for interpretability of results and produces e-
values, which provide a measure of how strong an unmeasured confounder would have to be 
to explain away the observed treatment effect. The translated risk ratio for our result is 1.63, 
with an e-value of 2.64. This means that, to fully explain away the treatment effect, an 
unmeasured confounder would need to be associated with both the treatment and the 
outcome by a risk ratio of at least 2.64 each, after adjusting for all measured covariates. This is 
a moderately strong effect.45 However, the lower bound of the confidence interval is more 
sensitive, with a risk ratio of 1.07 and an e-value of 1.33. This suggests that the lower bound of 
the confidence interval is moderately sensitive to unmeasured covariates.45  

 

Discussion 
We conclude that the Peer Assisted Learning program at Sacramento State demonstrated a 
significant dosing effect in the organic chemistry sequence.  However, there are substantial 
limitations to this study, and our results should be taken as an invitation to further research. 

In particular, this was a relatively small sample size (n=77, tiny compared to our sample size of 
10,333 in Shanbrom et al.11).  Our results are statistically significant largely due to the strength 
of the GPA increase.  While here our outcome focused on only one upper-division class which 
was taken by relatively few students, the large amount of subsetting necessary to examine the 
student groups of interest also led to a loss of approximately half of our initial data.  For 
example, many Organic II students took Organic I at a community college and were 
subsequently removed from our dataset.  Furthermore, we analyzed one specific program at 
one specific institution and were limited by the fact that PAL support for Organic II was first 
offered in Fall 2020 (other PAL courses at Sacramento State date back to 2012).  This small 
sample size prohibited the examination of how GPA effects varied across demographic 
subgroups, but we do account for some of these variables in our model. 

A different limitation is that our quantitative results fail to shed light on the question of how 
exactly taking the Organic I PAL helped the Organic II students.  For example, we could be 
seeing more of a persistence effect than a dosing effect; perhaps the impact of the Organic I 
PAL persisting after that treatment had ended is more responsible for the observed GPA 
increase than the two treatments in combination. We believe a more important question here 
is whether the academic gains were due to specific content knowledge (a stronger foundation 
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in Organic Chemistry I material, more time spent solving organic chemistry problems) or due to 
enhanced socio-emotional-psychological factors (confidence, sense of belonging, study skills, 
etc.).  We suspect the answer is a combination of both. 
 
An additional important limitation is the potential existence of unknown confounders: 
covariates which impacted the outcome but were not accounted for in our model since they do 
not appear in our database.  The set of possible unknown confounders includes numerous 
variables which may be impossible to quantify reliably, or those which may fluctuate from 
semester to semester, or even within a single semester.  Unknown confounders could be 
personal in nature: students with higher levels of motivation may be more likely to opt into 
PAL. Or they could be essentially logistic: students who have significant work or family or 
caregiving responsibilities may simply not have enough time for a PAL course.  Other could be 
academic: some students, especially first-year or first-generation, may be less adept at 
navigating and utilizing campus resources like PAL.  Moreover, not all students in this study 
took organic chemistry with the same instructor, and some instructors are more likely to 
promote PAL than others (and of course instructors’ grading scales and styles can vary 
considerably). In all of these diverse hypothetical scenarios it is quite plausible that the 
observed GPA increase is not caused by PAL enrollment, but rather some other covariate which 
is correlated to PAL enrollment.  Thus, the propensity score analysis here can only (imperfectly) 
account for those variables which are quantifiable, known, and present in the institutional 
dataset.  
 
Therefore, the propensity score analysis certainly does not control for every difference 
between the two populations.  Indeed, Table 2 suggests that the students opting into the 
Organic I PAL may be stronger in organic chemistry than those who did not, as their GPA in 
Organic I was already higher (2.70 versus 2.45).  However, this gap widened in Organic II (2.82 
versus 2.41), and widened even further after propensity score weighting (2.87 versus 2.29), 
which provides further evidence that the Organic I PAL participation did indeed positively affect 
performance in Organic II. 

It is interesting to compare these results with those of Mitchell et al.8; see their Table 3 and 
surrounding discussion in particular.  Like us, they consider a PLTL program at a large primarily 
undergraduate institution and examine combinations of PLTL dosage in a two-semester 
chemistry sequence.  Unlike us, they measure pass rates as the outcome of interest and focus 
on the general chemistry sequence.  Interestingly, they did not find a dosing effect in the same 
way that we did: students who had PLTL in both courses actually passed the second sequential 
course at a lower rate (79.3%) than students who had PLTL in only the second course (81.3%). 
They reasonably conclude that “that the improved success observed with PLTL in GC1 did not 
lead to transferable skills that students could then employ in GC2, and rather the effectiveness 
of PLTL is concentrated on the course in which it is enacted.”  This is starkly different from our 
conclusion. 

However, there are several very plausible explanations for this contrast, beyond the obvious 
differences in measured outcome (pass rate versus GPA) and course content (general chemistry 
versus organic chemistry).  While the PAL program in our study is based on the PLTL 
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pedagogical model, in practice it looks very different from the PLTL program studied by 
Mitchell, et al.8 In particular, their PLTL program is not voluntary for students, but rather for 
instructors.  That is, some instructors opted to use PLTL, and their students were required to 
participate as part of the grade in the parent course (as opposed to a separate course 
enrollment and grade).  While this avoids many of the self-selection problems which make 
evaluating the student-voluntary PAL program challenging (and thus the need for propensity 
score analysis), it introduces different challenges, and the authors acknowledge that “No effort 
was made on behalf of the research study to standardize the method of instruction, the in-class 
exams or assignments given, in order to model and evaluate the natural implementation of the 
PLTL reform.”  Thus, we consider our results to be complementary to those of Mitchell, et al.8 
rather than contradictory. 

In conclusion, this limited study implies the possibility of dosing effects in other courses and 
disciplines, in other supplemental instruction programs, and at other institutions.  We consider 
our results to be proof of concept and evidence of promising directions for further research. 

 

Supporting information 

R Markdown code for all statistical analysis (PDF).  Sample syllabi, sample exams, and all PAL 
worksheets for both Organic I and Organic II (PDF). 
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