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Abstract. This is the second of a pair of papers devoted to the local invariants of Goursat
distributions. The study of these distributions naturally leads to a tower of spaces over
an arbitrary surface, called the monster tower, and thence to connections with the topic of
singularities of curves on surfaces. In the prior paper we studied those invariants of Goursat
distributions akin to those of curves on surfaces, which we call structural invariants. In this
paper we study invariants arising from the small growth sequence of a Goursat distribution,
and relate them to the the structural invariants.

1. Introduction

A distribution D on a manifold M is a subbundle of the tangent bundle TM . It is called
Goursat if the Lie square sequence

D = D1 ⊆ D2 ⊆ D3 ⊆ · · ·
(as defined in Section 3) is a sequence of vector bundles for which

rankDi+1 = 1 + rankDi

until one reaches the full tangent bundle. This is the second of a pair of papers devoted to the
local invariants of Goursat distributions. In the first paper [2] we gave an account of those
invariants that are akin to well-known invariants in the theory of curves on surfaces. Here
we turn our attention to invariants stemming more directly from the definition of Goursat
distributions, which have no existing counterpart in the theory of curves on surfaces; we will
call them small growth invariants. We continue, however, to use the connection with that
other theory in order to analyze them and work out recursive schemes for computing them.
The invariants of the earlier paper, when applied in the context of curves on surfaces, are all
what singularity theorists call complete topological invariants. The small growth invariants
are somewhat coarser: this is because curves that are not of the same topological type may
define the same Goursat distribution. Nevertheless, they seem to be more challenging to
calculate.

Figure 1 shows most of the invariants that are analyzed in the two papers. (In the body
of this paper we will introduce several other invariants, including the table of values for the
quantities ehi of Section 8, its associated b vector, and the proximity diagram.) Figure 2
presents an example, using the same layout.

As explained in Section 2, we give our explanations and arguments simultaneously in
three settings: smooth manifolds, complex manifolds, and nonsingular algebraic varieties.
We begin in Section 3 by reviewing the definitions of the Lie square sequence, Goursat
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Figure 1. The invariants listed in the top five boxes were studied in our prior
paper [2]; those listed in the bottom box are invariants of the small growth
sequence of a Goursat germ. See Figure 2 for an example.

distributions, the small growth sequence and small growth vector, Jean’s beta vector and its
derived vectors, and the degree of nonholonomy. In Section 4 we briefly recall the content
of our earlier paper [2]. We merely name the most essential vocabulary from that paper; to
fully understand what we are doing here, one will need to read many of its details. Since
we make extensive use of the coordinate systems on the standard charts of the monster
spaces, in Section 5 we recall their construction; we also introduce two sequences of standard
vector fields. In the rather technical Section 6, we work out formulas for the Lie brackets
of these vector fields, and find a particular basis in which these formulas look relatively
simple. Section 7 explicates the notions of focal order and vertical order for functions on
the monster spaces. Section 8 presents Theorem 19, our main technical result; it provides
detailed information about the sheaves in the small growth sequence, leading to inequalities
(in Corollary 22) that compare structural invariants and small growth invariants. We want
to show that in fact we have equalities, and to do so we need to exhibit specific sections
of the sheaves. We do exactly that in Section 9; the basic idea is that we want to avoid
certain cancellations of leading terms. The remaining sections are the payoff. Section 10
briefly explains the simple relationships between three structural invariants and their three
small growth counterparts. Section 11 discusses how one can calculate these six invariants as
functions of the RVT or Goursat code words via recursion. Our line of argument naturally
leads to front-end recursions, but we also remark on back-end recursions, most notably that
of Jean for his beta vector [3]. We conclude in Section 12 by showing that the degree
of nonholonomy for a Goursat distribution coincides with the last entry in its associated
Puiseux characteristic; it seems that this was never noticed previously.

We thank Richard Montgomery, Piotr Mormul, Lee McEwan, and Justin Lake for valued
feedback and enormous patience.
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RVTVRVRVT

RRVRVRVT

[30; 42, 45, 46]

[12; 30, 33, 34]

30,12,12,6,6,3,3,1,1,1, . . .

(18, 0, 6, 0, 3, 0, 2, 0)

12,12,6,6,3,3,1,1,1, . . .

(0, 6, 0, 3, 0, 2, 0)

RRRVRVRVT

RRVRVRVT

[12; 42, 45, 46]

[12; 30, 33, 34]

2,3,4,5,5,5,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10,10,10,10,11, . . .

(1, 2, 3, 4, 7, 10, 16, 22, 34, 46)

(1, 1, 1, 3, 3, 6, 6, 12, 12)

(0, 0, 2, 0, 3, 0, 6, 0)

(0, 6, 0, 3, 0, 2, 0)

2,3,4,5,5,5,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10, . . .

(1, 2, 3, 4, 7, 10, 16, 22, 34)

(1, 1, 1, 3, 3, 6, 6, 12)

(0, 0, 2, 0, 3, 0, 6)

(6, 0, 3, 0, 2, 0)

Figure 2. An example of the invariants of Figure 1. The dashed arrows
indicate compatible front-end recursions.

2. The three settings

We begin with a space M of dimension m ≥ 2, by which we mean either

(1) a smooth manifold, or
(2) a complex manifold, or
(3) a nonsingular algebraic variety over an algebraically closed field of characteristic 0.

All the constructions of this paper are understood to be in the chosen setting, e.g., in setting 2
we work with holomorphic sections of holomorphic bundles, with m denoting the complex
dimension of M , whereas in setting 3 we work with algebraic bundles and sections. In a
similar way, we use the word “surface” to mean either a smooth manifold of dimension 2,
a complex manifold of dimension 2, or a nonsingular algebraic surface over an algebraically
closed field of characteristic 0, with a similar convention for the word “curve.” We remark
that although in our prior paper [2] we assumed the first setting, all of the results obtained
there are equally valid in all three settings.

3



3. Small growth

We repeat here selected definitions from [2]. LetD be a distribution onM , i.e., a subbundle
of its tangent bundle TM . Let E be its sheaf of sections, which is a subsheaf of the sheaf
ΘM of sections of TM . In other words, let ΘM be the sheaf of vector fields on M , and let E
be the subsheaf of vector fields tangent to D.

The Lie square of E is

E2 = [E , E ],
meaning the subsheaf of ΘM whose sections are generated by Lie brackets of sections of E
and the sections of E itself. Note that in general the rank of E2 may vary from point to
point. If, however, E2 is the sheaf of sections of a distribution D2, then this rank is constant.
Beginning with E1 = E , recursively we define Ei+1 to be the Lie square of Ei, and we call

E1 ⊆ E2 ⊆ E3 ⊆ · · · (3.1)

the Lie square sequence.
Let d be the rank of D. We say that D is a Goursat distribution if each sheaf Ei is the

sheaf of sections of a distribution Di and if

rankDi+1 = 1 + rankDi

for i = 1, . . . ,m − d. In particular Dm−d+1 is the tangent bundle TM . For a Goursat
distribution, the sequence

D = D1 ⊂ D2 ⊂ D3 ⊂ · · · ⊂ Dm−d ⊂ Dm−d+1 = TM

is also called the Lie square sequence. Since a distribution of rank 1 is always integrable, a
Goursat distribution necessarily has rank at least 2. As explained at the end of Section 6 of
[2], the essential case for understanding all Goursat distributions is the case of rank 2. For
the remainder of the paper we assume that D is a Goursat distribution with d = 2.

Again denoting the sheaf of sections of D by E , we consider the small growth sequence:

E = E1 ⊆ E2 ⊆ E3 ⊆ · · ·

defined by

E j = [E , E j−1],

meaning the subsheaf of ΘM whose sections are generated by Lie brackets of sections of E
with sections of E j−1 and by the sections of E j−1. Note how this differs from the Lie square
sequence in (3.1): at each step we form Lie brackets with vector fields from the beginning
distribution. For each point p ∈ M we let SGi denote the rank of E i at p; we call

SG(D, p) = SG1, SG2, . . .

the small growth vector. At each step the rank grows at most by one, and eventually the
entries of SG stabilize at the value m. Simple examples show that this vector may differ
from point to point of M .

Jean’s beta vector [3]

β(D, p) = (β2, β3, . . . , βm)

records the positions in the small growth vector where the rank increases:

βi = min{j : SGj = i}.
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The last entry βm, which records how many steps it takes to reach the full tangent bundle,
is called the degree of nonholonomy.

From the definitions we immediately see that E1 = E1, E2 = E2, and that E3 is a subsheaf
of E3. In fact E3 = E3. To establish the opposite containment, we consider a generator of E3
and write it, using the Jacobi identity, as a sum of two sections of E3:

[[a, b], [c, d]] = −[c, [d, [a, b]]] + [d, [c, [a, b]]].

Thus the small growth vector of a rank 2 Goursat distribution always begins with 2, 3, 4 and
the initial components of the beta vector are 1, 2, 3.
The differences of successive terms

deri = βi − βi−1

form the derived vector
der(D, p) = (der3, der4, . . . , derm),

and the second differences
der2i = deri− deri−1

form the second derived vector

der2(D, p) = (der24, der
2
5, . . . , der

2
m).

We note that the derived vector must begin with a pair of 1’s and the second derived vector
begins with 0.

Example 1. If the small growth vector of D at p is

SG(D, p) = 2, 3, 4, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, . . .

then

β(D, p) = (1, 2, 3, 4, 5, 8, 11, 17, 26)

der(D, p) = (1, 1, 1, 1, 3, 3, 6, 9)

der2(D, p) = (0, 0, 0, 2, 0, 3, 3).

4. Recollection of the first paper

This paper relies heavily on our previous paper [2]. In the following breezy recollection, we
italicize vocabulary whose definitions can be found there. In that paper we recalled, following
[5] and [6], how one assigns a Goursat code word to the germ of a Goursat distribution at
a point. Following [5], we explained the notion of prolongation of Goursat distributions,
which leads to a construction of the monster tower, a tower of monster spaces S(k) over a
surface S; each S(k) is a space of dimension k + 2. These spaces are universal for Goursat
distributions: given a germ of Goursat distribution of rank 2 and corank k, one can find a
point on S(k) for which the germ of the focal distribution ∆(k) at that point is equivalent to
the specified germ. The spaces S(k) are naturally stratified by their divisors at infinity and
the prolongation of these divisors; using them we introduce RVT code words, which agree
with the Goursat code words if one avoids the divisor at infinity I2. Working with focal
curve germs, we defined various structural invariants—those shown in the top five boxes of
Figure 1—and explicated recursive schemes for calculating them. We introduced the notion
of Goursat invariants ; the present paper is devoted to further study of these invariants.
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5. Charts, coordinates, focal vector fields

We will use the standard charts on the monster space S(k) explained in Section 8 of [2].
We repeat here, mostly verbatim, our descriptions of those charts.

We begin with a specified chart U on S with coordinates r0 and n0. On S(k) there are 2k

standard charts over U , each of which is a copy of U ×Ak, and on each such chart there are
k+2 coordinate functions, namely r0 and n0 together with k affine coordinates. At each level
j, by a recursive procedure, two of these coordinates are designated as active coordinates.
One is the new coordinate nj and the other is the retained coordinate rj. In addition, for
j > 0, a third coordinate is designated as the deactivated coordinate dj.
To describe the recursive procedure, we begin with a standard chart on U(j) with coordi-

nates nj, rj, and dj together with j − 1 unnamed coordinates. At each point of the chart,
the fiber of ∆(j) (except for the zero vector) consists of tangent vectors for which either the
restriction of the differential dnj or that of drj is nonzero. Create a standard chart at the
next level by choosing one of the following two options:

• Assuming the restriction of drj is nonzero, let nj+1 = dnj/drj; then set rj+1 = rj
and dj+1 = nj. We call this the ordinary choice.

• Assuming the restriction of dnj is nonzero, let nj+1 = drj/dnj; then set rj+1 = nj

and dj+1 = rj. We call this the inverted choice.

In every standard chart the names of the coordinates are r0, n0, n1, . . . , nj, but their
meaning depends on the chart. The charts are given names such as C(oiiooi), where each
symbol o or i records which choice has been made, either ordinary or inverted.

In an alternative procedure for naming coordinates, we begin with coordinates x(0) = x and
y(0) = y. At each level, the two active coordinates will be x(i) and y(j), for some nonnegative
integers i and j. If we create our chart at the next level by designating x(i) as the retained
coordinate, then the new active coordinate is y(j+1) = dy(j)/dx(i); if we designate y(j) as the
retained coordinate, then the new active coordinate is x(i+1) = dx(i)/dy(j).
As remarked in the earlier paper, the focal sheaf ∆(k) consists of those vector fields

annihilated by the differential form

ddi − ni dri (5.1)

for i = 1, . . . , k; we call them focal vector fields. Since k is fixed, we abbreviate to ∆.
Similarly, the other sheaves ∆i in the Lie square sequence, which (by equation (5.3) of
[2]) are extensions of focal sheaves from spaces lower in the tower, consist of vector fields
annihilated by (5.1) for i = 1, . . . , k − i+ 1.
On each standard chart we now define two sequences of standard vector fields. The se-

quence v0, v1, . . . , vk is defined by

vi =
∂

∂ni

. (5.2)

The last vector field vk is vertical, i.e., its projection to S(k− 1) is the zero vector field. For
1 ≤ i ≤ k − 1, each vi projects to a vertical vector field at level i (and hence to the zero
vector field at level i− 1). The sequence f0, f1, . . . , fk is defined by recursion. To begin, set

f0 =
∂

∂r0
. (5.3)
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If at level i we make the ordinary choice, then we define

fi = fi−1 + ni vi−1 . (5.4)

If at level i we make the inverted choice, then we define

fi = nifi−1 + vi−1 . (5.5)

The last vector field fk is focal, and each fi projects to a focal vector field at level i.

Example 2. In chart C(ooioii) we have

f0 = f0

f1 = f0 + n1v0

f2 = f0 + n1v0 + n2v1

f3 = n3f0 + n1n3v0 + n2n3v1 + v2

f4 = n3f0 + n1n3v0 + n2n3v1 + v2 + n4v3

f5 = n3n5f0 + n1n3n5v0 + n2n3n5v1 + n5v2 + n4n5v3 + v4

f6 = n3n5n6f0 + n1n3n5n6v0 + n2n3n5n6v1 + n5n6v2 + n4n5n6v3 + n6v4 + v5 .

If we prefer the alternative coordinate names, we use x, y, and

y′ = dy/dx

y′′ = dy′/dx

x′ = dx/dy′′

x′′ = dx′/dy′′

y(3) = dy′′/dx′′

x(3) = dx′′/dy(3).

In these coordinates we have

f0 = ∂/∂x

v0 = ∂/∂y

v1 = ∂/∂y′

v2 = ∂/∂y′′

v3 = ∂/∂x′

v4 = ∂/∂x′′

v5 = ∂/∂y(3)

v6 = ∂/∂x(3)
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and

f1 = f0 + y′v0

f2 = f0 + y′v0 + y′′v1

f3 = x′f0 + y′x′v0 + y′′x′v1 + v2

f4 = x′f0 + y′x′v0 + y′′x′v1 + v2 + x′′v3

f5 = x′y(3)f0 + y′x′y(3)v0 + y′′x′y(3)v1 + y(3)v2 + x′′y(3)v3 + v4

f6 = x′y(3)x(3)f0 + y′x′y(3)x(3)v0 + y′′x′y(3)x(3)v1 + y(3)x(3)v2 + x′′y(3)x(3)v3 + x(3)v4 + v5 .

The recursive formulas (5.4) and (5.5) lead to an explicit formula for fi in terms of this
basis. To state it, we let IP denote the set of positions at which we have made the inverted
choice, and then define (for 1 ≤ i ≤ j ≤ k)

aij =
∏
h∈IP

i+1≤h≤j

nh (5.6)

and (for 0 ≤ i < j ≤ k)

bij =

{
ai+1, j if i+ 1 ∈ IP

ni+1ai+1, j if i+ 1 /∈ IP.
(5.7)

By an easy induction on j we have

fj = a1jf0 +

j−1∑
i=0

bijvi. (5.8)

The vector fields

fk−i+1, vk−i+1, vk−i+2, . . . , vk (5.9)

form a basis of sections of ∆i. One extreme case is the focal bundle ∆, whose sections are
spanned by fk and vk. At the other extreme is the full tangent bundle TS(k), whose sections
are spanned by f0, v0, v1, . . . , vk. For future reference, we note an alternative basis for ∆i.

Lemma 3. For each i, there is an alternative basis for ∆i:

(a) If k − i+ 2 /∈ IP, then fk−i+2, vk−i+1, vk−i+2, . . . , vk is an alternative basis.
(b) If k − i+ 2 ∈ IP, then fk−i+2, fk−i+1, vk−i+2, . . . , vk is an alternative basis.

Proof. In case (a), formula (5.4) tells us that we may replace the basis element fk−i+1 by
fk−i+2. Similarly in case (b), formula (5.5) tells us that we may replace the basis element
vk−i+1 by fk−i+2. □

6. Lie derivatives and Lie brackets

In this section we work out some needed facts about Lie derivatives and Lie brackets,
using the standard coordinate functions and standard vector fields of Section 5. As we will
see, the formulas for Lie brackets are somewhat irregular. In Lemma 9, however, we will
identify a particular basis mixing the standard vertical and focal vector fields (the precise
mixture being determined by the choice of chart); for this basis there is a uniform formula, as
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expressed in property (5) of the lemma. This basis will be used in Theorem 19 to characterize
the sections of the small growth sheaves.

If z is a vector field on S(k) and a is a smooth function, we use the usual notation z(a)
for the Lie derivative. Looking at a specified standard chart on S(k), we now present two
lemmas about specific Lie derivatives.

Lemma 4. For i < j we have that
fj(ni) = bij. (6.1)

Proof. This is an immediate consequence of formula (5.8). □

Lemma 5. Suppose that the function a is a monomial in the standard coordinates. Then
vk(a) and fk(a) are linear combination of monomials with positive coefficients.

Proof. Formulas (5.2) and (5.3) tell us that f0, v0, v1, . . . , vk form a basis of vector fields,
namely the partial derivatives with respect to the coordinate system r0,n0, . . . ,nk. Formula
(5.8) tells us how to express fk as a linear combination of this basis, and definitions (5.6) and
(5.7) guarantee that the coefficients in this linear combination are monomials with positive
coefficients. □

Turning to Lie brackets, we note that we will make frequent use of the product rule for a
function a and a pair w, z of vector fields:

[w, az] = a[w, z] + w(a)z . (6.2)

Looking at our standard vector fields, we first present an example.

Example 6. Continuing Example 2, here is a table of Lie brackets in the chart C(ooioii),
for which IP = {3, 5, 6}. The row heading indicates the vector field used in the left slot, e.g.,
[v1, f1] = v0.

f0 f1 f2 f3 f4 f5 f6
v0 0 0 0 0 0 0 0
v1 0 v0 v0 n3v0 n3v0 n3n5v0 n3n5n6v0
v2 0 0 v1 n3v1 n3v1 n3n5v1 n3n5n6v1
v3 0 0 0 f2 f2 n5f2 n5n6f2
v4 0 0 0 0 v3 n5v3 n5n6v3
v5 0 0 0 0 0 f4 n6f4
v6 0 0 0 0 0 0 f5
f0 0 0 0 0 0 0 0
f1 0 0 −n2v0 −n2n3v0 −n2n3v0 −n2n3n5v0 −n2n3n5n6v0
f2 0 n2v0 0 −v1 −v1 −n5v1 −n5n6v1
f3 0 n2n3v0 v1 0 −n4f2 −n4n5f2 −n4n5n6f2
f4 0 n2n3v0 v1 n4f2 0 −v3 −n6v3
f5 0 n2n3n5v0 n5v1 n4n5f2 v3 0 −f4
f6 0 n2n3n5n6v0 n5n6v1 n4n5n6f2 n6v3 f4 0

We now explain how to obtain the sort of explicit formulas appearing in Example 6. To
begin, an elementary computation shows that, for each j,

[v0, fj] = [f0, fj] = 0. (6.3)

The following two lemmas give the other formulas.
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Lemma 7. For i > j we have
[vi, fj] = 0. (6.4)

For 1 ≤ i ≤ j ≤ k,

[vi, fj] =

{
aijfi−1 if i ∈ IP

aijvi−1 if i /∈ IP.
(6.5)

Proof. In (5.8) we see that fj is a linear combination of f0 and v0, . . . , vj−1, from which (6.4)
is immediate.

We prove the formulas of (6.5) by induction on j. In the inductive step, we first suppose
that j ∈ IP. Here (5.5) and the product rule (6.2) give us that

[vi, fj] = [vi,njfj−1 + vj−1] = vi(nj)fj−1 + nj[vi, fj−1]. (6.6)

If i < j, then the first term on the right of (6.6) vanishes, and using (5.6) we find that

[vi, fj] = nj[vi, fj−1] =

{
njai,j−1fi−1 = aijfi−1 if i ∈ IP

njai,j−1vi−1 = aijvi−1 if i /∈ IP.

In the remaining case i = j, the last term on the right of (6.6) vanishes (as a consequence of
(6.4)), and thus we have

[vj, fj] = fj−1 = ajjfj−1.

Now suppose that j /∈ IP. Here (5.4) and the product rule (6.2) give us that

[vi, fj] = [vi, fj−1 + nj−1vj−1] = [vi, fj−1] + vi(nj)vj−1. (6.7)

If i < j, then the second term on the right of (6.7) vanishes, so that

[vi, fj] = [vi, fj−1] =

{
ai,j−1fi−1 = aijfi−1 if i ∈ IP

ai,j−1vi−1 = aijvi−1 if i /∈ IP.

In the remaining case i = j, the first term on the right of (6.7) vanishes, and thus we have

[vj, fj] = vj−1 = ajjvj−1.

□

Lemma 8. For 1 ≤ i < j ≤ k

[fi, fj] =

{
−bijfi−1 if i ∈ IP

−bijvi−1 if i /∈ IP.
(6.8)

For 0 ≤ i < j ≤ k {
ni+1[fi, fj] + [vi, fj] = 0 if i+ 1 ∈ IP

[fi, fj] + ni+1[vi, fj] = 0 if i+ 1 /∈ IP.
(6.9)

Proof. In view of (6.5), and using the definitions (5.6) and (5.7), one sees that formulas (6.8)
and (6.9) are equivalent for each i ≥ 1. We prove them by induction on i. To provide a base
case for the induction, we remark that when i = 0, formula (6.9) is a consequence of (6.3).

Here is the inductive step of the argument: If i ∈ IP, then by (5.5) we have

[fi, fj] = [nifi−1 + vi−1, fj]

= −fj(ni)fi−1 + ni[fi−1, fj] + [vi−1, fj].
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The inductive hypothesis tells us that the sum of the last two terms vanishes. Thus, by
Lemma 4,

[fi, fj] = −bijfi−1.

If i /∈ IP, then by (5.4) we have

[fi, fj] = [fi−1 + nivi−1, fj]

= [fi−1, fj]− fj(ni)vi−1 + ni[vi−1, fj].

The inductive hypothesis tells us that the sum of the first and last terms vanishes. Thus, by
Lemma 4,

[fi, fj] = −bijvi−1.

□

Lemma 9. On each standard chart of S(k), there is an ordered basis g0, g1, . . . , gk+1 of
sections of the tangent bundle with the following properties:

(1) The first two elements are the standard focal and vertical vector fields: g0 = fk and
g1 = vk.

(2) For 2 ≤ i ≤ k + 1 we have

gi =

{
±vk−i+1 if k − i+ 2 /∈ IP

±fk−i+1 if k − i+ 2 ∈ IP,

with the appropriate sign being determined by property (5). The vector field gi gen-
erates the rank one quotient sheaf ∆i/∆i−1.

(3) The vector fields g0, g1, . . . , gi form a basis of sections of ∆i.
(4) If a is a monomial in the standard coordinates, then g0(a) and g1(a) are linear com-

binations of monomials with positive coefficients.
(5) For 1 ≤ i ≤ k we have

[g0, gi] =

 k∏
h=k−i+3

h∈IP

nh

 gi+1 .

Proof. We define g0 and g1 as required by property (1), and define (for g ≥ 1)

gi+1 =

 k∏
h=k−i+3

h∈IP

nh


−1

[g0, gi] .

Although it seems that there is a denominator, we proceed to demonstrate that we obtain
the formulas of property (2), as follows.

Starting with the formula in property (5) and making the substitutions of property (2),
we find that the two formulas of property (2) are equivalent to the following four displayed
formulas; thus these formulas provide an inductive proof of property (2). Here are the four
formulas:

[fk, vk−i+1] = ±

 k∏
h=k−i+3

h∈IP

nh

 vk−i if k − i+ 2 /∈ IP and k − i+ 1 /∈ IP
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[fk, vk−i+1] = ±

 k∏
h=k−i+3

h∈IP

nh

 fk−i if k − i+ 2 /∈ IP and k − i+ 1 ∈ IP

[fk, fk−i+1] = ±

 k∏
h=k−i+3

h∈IP

nh

 vk−i if k − i+ 2 ∈ IP and k − i+ 1 /∈ IP

[fk, fk−i+1] = ±

 k∏
h=k−i+3

h∈IP

nh

 fk−i if k − i+ 2 ∈ IP and k − i+ 1 ∈ IP

The first two formulas are special cases (with indeterminate signs) of (6.5); observe that to
verify this we use the condition k− i+2 /∈ IP to infer that ak−i+1,k = ak−i+2,k. The last two
formulas are special cases of (6.8); to verify this, we use the condition k − i+ 2 ∈ IP, which
tells us that in (5.7) we should read the top line to infer that bk−i+1,k = ak−i+2,k.

To obtain property (2), we compare the basis

fk−i+2, vk−i+2, . . . , vk

for ∆i−1 obtained from (5.9) with the alternative basis for ∆i exhibited in Lemma 3. Property
(3) is now immediate, and property (4) is a restatement of Lemma 5. □

Example 10. On chart C(ooioii), using the results from Example 6, we have

g0 = f6

g1 = v6

g2 = [g0, g1] = −f5

g3 = [g0, g2] = −f4

g4 =
1
n6
[g0, g3] = −v3

g5 =
1

n5n6
[g0, g4] = f2

g6 =
1

n5n6
[g0, g5] = v1

g7 =
1

n3n5n6
[g0, g6] = −v0.

From these explicit calculations on each standard chart, we can now draw a global con-
clusion. Recall from Section 9 of [2] that the monster space S(k) carries divisors at infinity
Ij for 2 ≤ j ≤ k. Let Ij denote the ideal sheaf of Ij.

Corollary 11. For each i with 3 ≤ i ≤ k we have

[∆,∆i] = ∆i +

(
k∏

j=k−i+3

Ij

)
∆i+1. (6.10)

Proof. Consider a chart specified by a word in the symbols o and i. In this chart the divisor
at infinity Ij is the hyperplane nj = 0 if j ∈ IP, but if j /∈ IP then Ij does not meet the

12



chart. Therefore in this chart the ideal appearing in (6.10) is∏
j∈IP

k−i+3≤j≤k

Ij (6.11)

and it is a principal ideal generated by ∏
j∈IP

k−i+3≤j≤k

nj .

We know that [∆,∆i−1] is a subsheaf of ∆i = [∆i−1,∆i−1], and thus to understand [∆,∆i] it
suffices to know the Lie brackets of the two generators g0, g1 of ∆ with the single generator
gi of the quotient sheaf ∆i/∆i−1. By definition g1 = vk, and (6.4) tells us that [g1, gi] = 0.
Thus by property (5) of Lemma 9 we obtain (6.10). □

7. Focal order and vertical order

The notion of focal order which we lay out here is a special case of the notion of order of
a function with respect to a nonholonomic system, as explicated in Section 2.1.1 of [4] and
in Section 4 of [1]. Our starting point and application are quite different, however; we do
not employ a metric, nor do we make use of privileged coordinates. Thus we offer here a
self-contained treatment, confined to the case of the Goursat distribution ∆ on a space in
the monster tower.

Given a point p ∈ S(k), a smooth function a defined in some neighborhood, and a pa-
rameterized smooth focal curve germ C through p, let #(a · C) be the intersection number.
Concretely, if γ : Γ → C is the parametrization and t is the parameter (so that γ(0) = p),
then #(a ·C) is the order of vanishing of a ◦ γ as function of t. If the focal curve lies within
the hypersurface a = 0, then the intersection number is +∞.
We define the focal order of a to be

o(a) = min{#(a · C)},

the minimum over all possible focal curve germs through p. The focal order is a valuation,
but here the value +∞ is impossible, since there are no integral hypersurfaces for the focal
distribution. Note that in a family of curves, the intersection number can only increase
or stay the same under specialization; in this sense the order is the generic value of the
intersection number.

Example 12. Working at the point p = (0, 0; 0, 0, 0, 1) ∈ C(ooio) on S(4), and using the
coordinates x, y, y′ = dy/dx, y′′ = dy′/dx, x′ = dx/dy′′, x′′ = dx′/dy′′, consider the function
a = y − 1

15
(y′′)15. We write

y′′ = A1t+ A2t
2 + · · ·

x′′ = 1 +B1t+B2t
2 + · · ·

13



where the ellipses indicate higher-order terms. By repeated integration we find that

x′ =

∫
x′′dy′′ = A1t+

(
A2 +

1
2
A1B1

)
t2 + · · ·

x =

∫
x′dy′′ = 1

2
A1

2 t2 +
(
A1A2 +

1
6
A1

2B1

)
t3 + · · ·

y′ =

∫
y′′dx = 1

3
A1

3 t3 +
(
A1

2A2 +
1
8
A1

3B1

)
t4 + · · ·

y =

∫
y′dx = 1

15
A1

5 t5 +
(
1
3
A1

4A2 +
7

144
A1

5B1

)
t6 + · · ·

y − 1
15
(y′′)5 = 7

144
A1

5B1t
6 + · · ·

so that the intersection number #(a · C) is 6 whenever A1 and B1 don’t vanish, and larger
otherwise. Thus o(a) = 6. (For those familiar with the notion of nonholonomic privileged
coordinates, this is the last coordinate in a system of such coordinates; as already indicated,
however, we make no use of this concept.)

The notion of order is easily extended to exact 1-forms: we define o(da) = o(a − a(p)).
Conversely, if we know o(da) then we can compute o(a): if a vanishes at p we have o(a) =
o(da), and otherwise o(a) = 0. Using this extension, we can easily compute the focal orders
of the standard coordinates in a standard chart on a monster space.

Example 13. We use the same chart C(ooioii) as in Examples 2, 6, and 10. Working at
the point (x, y; y′, y′′, x′, x′′, y(3), x(3)) = (0, 0; 0, 0, 0, 1, 0, 0), begin with the fact that the focal
order of each active coordinate is 1, and then compute as follows:

o(dy(3)) = 1 o(y(3)) = 1

o(dx(3)) = 1 o(x(3)) = 1

o(dx′′) = o(x(3)) + o(dy(3)) = 2 o(x′′) = 0

o(dy′′) = o(y(3)) + o(dx′′) = 3 o(y′′) = 3

o(dx′) = o(x′′) + o(dy′′) = 3 o(x′) = 3

o(dx) = o(x′) + o(dy′′) = 6 o(x) = 6

o(dy′) = o(y′′) + o(dx) = 9 o(y′) = 9

o(dy) = o(y′) + o(dx) = 15 o(y) = 15

The RVT code word of this point is RRVRV V .

14



Example 14. If instead we work at the origin of this chart, whose code word is RRV TV V ,
we find that

o(dy(3)) = o(y(3)) = 1

o(dx(3)) = o(x(3)) = 1

o(dx′′) = o(x′′) = 2

o(dy′′) = o(y′′) = 3

o(dx′) = o(x′) = 5

o(dx) = o(x) = 8

o(dy′) = o(y′) = 11

o(dy) = o(y) = 19

The general procedure is as follows.

(1) The order of the differential of each active coordinate is 1.
(2) Recursively, using the definitions of the coordinates in backwards order:

(a) use the definition of the coordinate to infer the order of vanishing of the differ-
ential of a prior coordinate;

(b) if the prior coordinate vanishes at p, then its order agrees with the order of its
differential, and otherwise is 0.

Given a parameterized focal curve germ C through p, locally there is a focal vector field
vC whose integral curve through p is C; it is not unique, but its restriction to C is unique.
For a smooth function germ a in a neighborhood of p, we consider the Lie derivative vC(a).

Lemma 15. Suppose that #(a · C) > 0. Then

#(vC(a) · C) = #(a · C)− 1.

Proof. This follows from the basic fact that for a curve germ parameterized by γ : Γ → C,
we have

d
dt
(a ◦ γ) = vC(a) ◦ γ,

and that differentiation reduces the order of vanishing by 1. □

Corollary 16. If o(a) > 0, then o(vC(a)) = o(a)− 1.

This leads to an alternative characterization of the focal order. For each focal vector
field w, we can differentiate a repeatedly with respect to this vector field until we obtain
a function with nonzero value at p; call this value the order of a with respect to w. (If we
never reach such a function, then we say the order is +∞.) Then o(a) is the minimal order
of a, taking the minimum over all focal vector fields. One can even vary the choice of vector
field at each step: o(a) is also the least number of focal derivatives required to take a to a
function with nonzero value. This is the definition that one finds in [1] and [4].

For 2 ≤ j ≤ k, consider the divisor at infinity Ij. Given a point p ∈ S(k), we define
its vertical order VOj to be the focal order of the function defining Ij, i.e., the minimum
intersection number of a regular focal curve germ with this divisor; this is independent of
the choice of chart. The vertical orders vector is

VO(p) = (VO2,VO3, . . . ,VOk).
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If p /∈ Ij, then VOj = 0; in general we can compute it by computing the focal order of the
standard coordinate function defining Ij.

Example 17. Referring to Example 13, we observe that (0, 0; 0, 0, 0, 1, 0, 0) does not meet
I2 or I4. Furthermore the divisors I3, I5, and I6 are defined by the vanishing, respectively,
of x′, y(3), and x(3). Thus the vertical orders vector at p is

(0, 3, 0, 1, 1).

To relate this notion to our earlier paper [2], observe that there we associated a vertical
orders vector to a curve germ C on the base surface S (and more generally to a focal curve
germ at some other level). Starting with a curve C that lifts to a regular curve germ through
p ∈ S(k), we see that the two notions agree. For a more extensive example, we refer to
Example 31 of [2], which shows that the vertical orders vector associated to a point with
RVT code word RV V VRV T is (6, 3, 3, 0, 2, 0); since the word is not a Goursat word, the first
entry is nonzero.

8. Sections of the small growth sheaves

Suppose that k ≥ 3. Here we consider the small growth sheaves ∆h on S(k). In Theorem 19
we will give a description of their sections; it involves bounds on certain focal orders. In the
subsequent section, we will show that these bounds are sharp, and this will allow us to give
new characterizations of the small growth invariants.

Choosing a point p ∈ S(k) and using the entries in its vertical orders vector, for h ≥ 2
and 2 ≤ i ≤ min{h, k + 1} we define

ehi =


−(h− i) +

k∑
j=k−i+4

(i+ j − k − 3)VOj if this quantity is nonnegative,

0 otherwise.

(8.1)

The sum in (8.1) is zero if i = 2 or 3; hence eh2 = eh3 = 0 in all cases. Note that all
the values ehi depend only on the Goursat code word of the specified point; thus they are
Goursat invariants. It is helpful to arrange these invariants in a table, as in the following
example.

Example 18. For a point with Goursat word RRV TV V , such as the point in Example 14,
here is a table of values for ehi. To the right, we present the table of values for a point whose
Goursat word is RRRV V . In Example 21 we explain why certain rows are colored in red;
in Section 9 we will explain how we know the values of the small growth vector listed in the
rightmost column. The juxtaposition of the two tables hints at a recursion for computing
them; we will explain this in Section 11, where we introduce the notion of lifted Goursat
word.
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h
i

2 3 4 5 6 7 SGh

2 0 3
3 0 0 4
4 0 0 1 4
5 0 0 0 3 5
6 0 0 0 2 5 5
7 0 0 0 1 4 12 5
8 0 0 0 0 3 11 6
9 0 0 0 0 2 10 6
10 0 0 0 0 1 9 6
11 0 0 0 0 0 8 7
12 0 0 0 0 0 7 7
13 0 0 0 0 0 6 7
14 0 0 0 0 0 5 7
15 0 0 0 0 0 4 7
16 0 0 0 0 0 3 7
17 0 0 0 0 0 2 7
18 0 0 0 0 0 1 7
19 0 0 0 0 0 0 8

h
i

2 3 4 5 6 SGh

2 0 3
3 0 0 4
4 0 0 1 4
5 0 0 0 3 5
6 0 0 0 2 5 5
7 0 0 0 1 4 5
8 0 0 0 0 3 6
9 0 0 0 0 2 6
10 0 0 0 0 1 6
11 0 0 0 0 0 7

Here are some elementary properties:

max{ehi − 1, 0} = eh+1,i . (8.2)

ehi ≥ eh+1,i (8.3)

eh,i+1 ≥ ehi (8.4)

ehi +
k∑

j=k−i+3

VOj ≥ eh+1,i+1, with equality when h = i . (8.5)

As remarked in Section 3, the subsheaves ∆h and ∆h of the tangent sheaf ΘS(k) are equal
for h = 1, 2, 3. To describe the other sheaves in the small growth sequence, we employ the
ordered basis g0, g1, . . . , gk+1 developed in Lemma 9.

Theorem 19. Consider a standard chart of S(k) containing the point p. For each h ≥ 3,
each section of the sheaf ∆h in this chart may be written in the form

w +

min{h,k+1}∑
i=4

chigi, (8.6)

where w is a section of ∆3, and each chi is a function whose focal order o(chi) at p is at least
ehi.

Proof. We prove the theorem by induction on h. For the base case h = 3, the sum in (8.6) is
empty and the assertion is that ∆3 = ∆3, which we already know. The theorem thus being
clear for k < 3, we henceforth assume that k ≥ 3.
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Consider a section of ∆h; by the inductive hypothesis it may be written as in (8.6).
Bracketing this section with a focal vector field z (i.e., a section of ∆) yields

[z, w] +

min{h,k+1}∑
i=4

(chi[z, gi] + z(chi)gi) . (8.7)

Note we have used the product rule (6.2). We will separately analyze the three types of
terms in (8.7), showing that each contribution satisfies the required inequality on the orders
of the coefficients. To begin, by Corollary 11 the vector field [z, w] is a section of ∆3+Ik∆4,
and each section of Ik on our chart is a function with focal order at least VOk ≥ eh,4.
Assume that h < k+1. We now deal with the second sort of term in (8.7). By Corollary 11,

each [z, gi] is a section of

∆i +

(
k∏

j=k−i+3

Ij

)
∆i+1 ,

and thus may be written as

wi +

(
k∏

j=k−i+3

cj

)
gi+1 ,

where wi is a section of ∆i and each function cj is a section of Ij. Writing

wi = w3 +
i∑

j=4

ajgj

with w3 a section of ∆3, we remark that

o(chiaj) ≥ o(chi) ≥ ehi ≥ eh+1,j

for all j; here we have used the inductive hypothesis together with properties (8.3) and (8.4).
Observe that by (8.5) we know that

o

(
chi

k∏
j=k−i+3

cj

)
≥ ehi +

k∑
j=k−i+3

VOj ≥ eh+1,i+1 .

For the third type of term in (8.7) we observe that

o(z(chi)) ≥ max{o(chi)− 1, 0} ≥ max{ehi − 1, 0} = eh+1,i

using the inductive hypothesis and property (8.2).
If h ≥ k + 1, the same arguments apply, except that [z, gk+1] is already a section of the

full tangent bundle ∆k+1. □

Example 20. As in Example 18, we consider a point p ∈ S(6) in chart C(ooioii) whose code
word is RRV TV V . Applying Theorem 19 with h = 7, we see that in this chart each section
of ∆7 may be written as

w + c74g4 + c75g5 + c76g6 + c77g7,

where w is a section of ∆3, and with o(c75) ≥ 1, o(c76) ≥ 4, and o(c77) ≥ 12.
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For each i with 2 ≤ i ≤ k + 1, let bi be the smallest integer for which ebi,i = 0. Using the
definition in (8.1), we see that

bi = i+
k∑

j=k−i+4

(i+ j − k − 3)VOj . (8.8)

We call (b2, b3, . . . , bk+1) the b vector.

Example 21. Consider the table on the left in Example 18. To directly use the definition of
bi we look in each column for the first appearance of a zero, concluding that b2 = 2, b3 = 3,
b4 = 5, b5 = 8, b6 = 11, and b7 = 19. Alternatively, using formula (8.8), we have, e.g.,

b7 = 7 + VO3+2VO4+3VO5+4VO6 = 7 + 5 + 0 + 3 + 4 = 19.

In both tables, the rows indexed by bi’s are highlighted in red.

Corollary 22.

(1) For each h ≥ 2,

SGh ≤ 2 + the number of zero entries in row h of the table of ehi values.

(2) For 2 ≤ i ≤ k + 1 we have βi+1 ≥ bi.

Proof.

(1) Consider a section of ∆h, as in display (8.6). When we evaluate this section at p, any
coefficient chi for which ehi > 0 will vanish.

(2) This is now immediate from the definitions of βi and bi.

□

9. Calculation pathways

In this section, we will show that the inequalities in Corollary 22 are actually equalities. To
do this, we produce some specific sections of the sheaves ∆h, by following certain calculation
pathways.

Theorem 23. Assume the circumstances of Theorem 19. For each h ≥ 3 and for each i
with 3 ≤ i ≤ min{h, k + 1}, there is a section fhi of ∆

h for which, when we write it as in
(8.6), the coefficient chi has focal order exactly ehi.

Proof. We first remark that it suffices to produce fhi when the quantity on the top line of
(8.1) is nonnegative, since in the remaining cases we may set fhi = fh−1,i. We will obtain
each of the other required sections by beginning with f33 = g3 and repeatedly Lie-bracketing
on the left by either g0 or g1, with the exact sequence of calculations to be specified below.
The basis g0, g1, . . . , gk+1 has been chosen so that the results of these calculations have only
positive coefficients, and thus it suffices to exhibit a single term of fhi of the form agi in
which a has the required focal order ehi, since there is no possibility of cancellation.
To produce fii, we use only g0:

f33 = g3

f44 = [g0, f33]

f55 = [g0, f44]

etc.
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We claim that fii includes the term

ti :=

 k∏
j=k−i+4

j∈IP

ni+j−k−3
j

 gi (9.1)

which visibly has the required focal order

eii =
k∑

j=k−i+4

(i+ j − k − 3)VOj .

This is clear by induction, beginning with f33 = g3 (with the product being interpreted by
the usual convention to be 1). In the inductive step we see that if we apply the product rule
(6.2) to [g0, ti] we obtain two terms, one of which is k∏

j=k−i+4
j∈IP

ni+j−k−3
j

 [g0, gi] =

 k∏
j=k−i+4

j∈IP

ni+j−k−3
j


 k∏

j=k−i+3
j∈IP

nj

 gi+1

=

 k∏
j=k−(i+1)+4

j∈IP

n
(i+1)+j−k−3
j

 gi+1 .

(Note that we have used property (5) of Lemma 9 in this computation.)
In general, we define the vector field fhi by fixing i and inducting on h, beginning with

fii. Having singled out a term
th = agi (9.2)

in fhi with o(a) = ehi, we examine the coefficient a to see whether it includes the coordinate
function nk. If so, we define fh+1,i = [g1, fhi]; then by the product rule fh+1,i includes the
term

th+1 := g1(a)gi = vk(a)gi =
∂

∂nk

(a)gi ,

in which the coefficient has focal order o(a)−1 = ehi−1 = eh+1,i. If the coefficient a in (9.2)
does not include nk, then we define fh+1,i = [g0, fhi]. By the product rule fh+1,i includes
g0(a)gi = fk(a)gi, which may consist of multiple terms. There is, however, at least one term,
and each one is of the form a′gi, where the coefficient has focal order o(a′) = o(a) − 1 =
ehi − 1 = eh+1,i. Select one of these terms and call it th+1. This induction continues until we
reach the first zero value for ehi, i.e., until we reach h = bi. □

Corollary 24. The inequalities of Corollary 22 are in fact equalities:

(1) For each h ≥ 2,

SGh = 2 + the number of zero entries in row h of the table of ehi values.

(2) For 2 ≤ i ≤ k + 1 we have βi+1 = bi.

Example 25. As in Example 18, we work in chart C(ooioii). For the RRV TV V point at
the origin, here is a calculation leading to the vector field f19,7.
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vector field term in this vector field focal order of its coefficient
f33 = g3 t3 = g3 0

f44 = [g0, f33] t4 = n6g4 1
f55 = [g0, f44] t5 = n5n6

2g5 3
f66 = [g0, f55] t6 = n5

2n6
3g6 5

f77 = [g0, f66] t7 = n3n5
3n6

4g7 12
f87 = [g1, f77] t8 = 4n3n5

3n6
3g7 11

f97 = [g1, f87] t9 = 12n3n5
3n6

2g7 10
f10,7 = [g1, f97] t10 = 24n3n5

3n6g7 9
f11,7 = [g1, f10,7] t11 = 24n3n5

3g7 8
f12,7 = [g0, f11,7] t12 = 24n4n5

4n6g7 7
f13,7 = [g1, f12,7] t13 = 24n4n5

4g7 6
f14,7 = [g0, f13,7] t14 = 24n5

4n6g7 5
f15,7 = [g1, f14,7] t15 = 24n5

4g7 4
f16,7 = [g0, f15,7] t16 = 96n5

3g7 3
f17,7 = [g0, f16,7] t17 = 288n5

2g7 2
f18,7 = [g0, f17,7] t18 = 576n5g7 1
f19,7 = [g0, f18,7] t19 = 576 g7 0

(By a laborious calculation one discovers that in fact f19,7 = t19.)

10. Relating the structural and small growth invariants

Corollary 24 provides a bridge between the structural invariants and the small growth
invariants, which we now explain further. Looking at a point p ∈ S(k), we consider three
structural invariants:

(1) The b vector

(b2, b3, . . . , bk+1)

has been defined in Section 8.
(2) From the multiplicity sequence m0,m1, . . . of any curve on S whose lift is a regular

focal curve through p, we extract the entries m1 through mk−1, writing them in
reverse order. We call

(mk−1,mk−2, . . . ,m1)

the multiplicity vector. For the definition of the multiplicity sequence, see Section 13
of [2] or Section 3.5 of [8]. The omitted value m0 is not a Goursat invariant, and at
the other end we have mi = 1 for i ≥ k.

(3) We consider the restricted vertical orders vector

(VOk,VOk−1, . . . ,VO3),

writing the entries in reverse order from the convention used in [2].

There are three corresponding small growth invariants, namely the beta vector and its first
two derived vectors, denoted der and der2.
By Theorem 33 of [2], we have mi − mi+1 = VOi+2; this tells us that the (reversed)

restricted vertical orders vector is the derived vector of the multiplicity vector, i.e., its vector
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of successive differences.∗ Going in the opposite direction, we see that the vertical orders are
obtained from the multiplicities by accumulation:

mi = 1 +
k∑

j=i+2

VOj (10.1)

(since we automatically have mk−1 = 1). Using the entries in the b vector as specified by
(8.8), we compute that

bi+1 − bi = 1 +
k∑

j=k−i+3

VOj

and then compare with (10.1) to conclude that bi+1 − bi = mk−i+1. This tells us that the
multiplicity vector is the derived vector of the b vector. From these remarks and Corollary 24
we obtain the following result.

Theorem 26. The b vector is obtained from the beta vector by removing its initial entry.
Therefore the multiplicity vector is obtained from der, the derived vector of the beta vector,
by removing its initial entry, and the (reversed) restricted vertical orders vector is obtained
from der2 by removing its initial entry. Conversely one obtains β, der, and der2 from the b
vector, the multiplicity vector, and the reversed restricted vertical orders vector by inserting
the initial entries 1, 1, 0 (respectively).

Example 27. For a point with RVT code word RRV TV V , we have k = 6 and

(β2, . . . , β8) = (1, 2, 3, 5, 8, 11, 19) (b2, . . . , b7) = (2, 3, 5, 8, 11, 19)

(der3, . . . , der8) = (1, 1, 2, 3, 3, 8) (m5, . . . ,m1) = (1, 2, 3, 3, 8)

(der24, . . . , der
2
8) = (0, 1, 1, 0, 5) (VO6, . . . ,VO3) = (1, 1, 0, 5).

11. Recursions

Here we address the issue of effective calculations. If we know any one of the six invariants
of Section 10, we can easily obtain the other five; thus the issue is how to gain the first toehold.

In Section 8 we presented a method for determining the vertical orders: working in a chart
containing our selected point p ∈ S(k), calculate the focal orders of the standard coordinates;
each vertical order equals one of these focal orders or is zero. This is a rather cumbersome
method, however, involving parallel calculations for the focal orders of both the coordinates
and their differentials.

The proximity diagram of Section 13 of [2] allows one to easily compute the multiplicity
sequence. This seems to be the most efficient method for obtaining all six of our invariants.
(Regarding proximity diagrams, see also Section 3.5 of [8], but note that Wall does not use
code words.)

Implicit in the use of the proximity diagram is a front-end recursion, meaning a recursion
for computing an invariant that uses alterations to the front end of the code word. Given a
Goursat word W , we obtain its lifted Goursat word LG(W ) by the following procedure:

• Remove the first symbol R.

∗We take the opportunity to correct a slight error in the range of applicability of Theorem 33 in that
earlier paper; the appropriate range there should be k ≤ j ≤ r − 2.
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• If the new second symbol is V (i.e., if the truncated word fails to be Goursat), replace
it by R, and likewise replace any immediately succeeding T ’s by R’s. Stop when you
reach the next R, the next V , or the end of the word.

The terminology comes from a consideration of focal curves on the monster spaces and their
lifts into the monster tower. We introduced a similar procedure in Section 10.5 of [2], where
we defined the lifted word associated to an arbitrary RVT code word; here, by contrast, we
begin and end with Goursat words.

The proximity diagram for W is obtained from the proximity diagram for LG(W ) as
follows:

• Put a new vertex to the left (in position 0) and draw a horizontal edge to the vertex
in position 1.

• From the vertex in position 1, draw edges rightward to the vertices whose labels have
changed (if any); these vertices will be labeled by a block V T τ .

This procedure is shown in Figure 3, which also illustrates the recursive rule for calculating
the multiplicity mi: sum the multiplicities on the vertices proximate to vertex i. (The
leftmost vertex is vertex 0.) Appending m1 to the end of the derived vector for LG(W ) gives
us the derived vector for W . Similarly, one obtains each of our five other invariants for a
Goursat word W by appending the appropriate value to the end of the same invariant for
LG(W ); the easiest way to find this value seems to be to first work out the multiplicities.

R

8 3 3

V

2 1 1 1

VVT R

R

3 3

R

2 1 1 1

VVR R

R

Figure 3. Obtaining the proximity diagram for the Goursat word
RRV TV V R from the proximity diagram for its lifted Goursat word
RRRV V R; the new multiplicity is m1 = 3 + 3 + 2.
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Example 28. Here is the front-end calculation of the derived vector of RRV TRRRV TTTV :

der(RR) = (1, 1)

der(RRV ) = (1, 1, 2)

der(RRRRRV ) = (1, 1, 2, 2, 2, 2)

der(RRV TTTV ) = (1, 1, 2, 2, 2, 2, 9)

der(RRRRRRV TTTV ) = (1, 1, 2, 2, 2, 2, 9, 9, 9, 9, 9)

der(RRV TRRRV TTTV ) = (1, 1, 2, 2, 2, 2, 9, 9, 9, 9, 9, 27)

There are also back-end recursions for our invariants, dating back to the work of Jean [3],
who stated such a recursion for the beta vector. He stated and proved it while studying
the configuration space for a physical system: a truck pulling multiple trailers. This was
before the later work of Montgomery and Zhitomirskii [5], who showed that the truck-and-
trailers configuration space is a universal space for Goursat distributions. More precisely, the
configuration space for a truck with n trailers is the oriented version of the monster space
R2(n + 1) over the real plane; it is thus an unramified cover of degree 2n+1 over R2(n + 1).
Jean’s recursion is stated in terms of special angles between trailers, and his proof of the
recursion is achieved via an elaborate recursive calculation in trigonometry. Jean’s work also
predates the introduction of code words for coarse classification of Goursat distributions; see
[6] for an early instance.

Here we will show that Jean’s back-end recursion is a consequence of our front-end recur-
sion, thus extending its validity to all Goursat distributions in all three settings of Section 2.

Theorem 29. For every nonempty Goursat word β2(W ) = 1, and β3(W ) = 2 for every word
of length at least 2. Letting X represent any single symbol, we have these recursive formulas:

(1) βj(WR) = 1 + βj−1(W ),
(2) βj(WXV ) = βj−1(WX) + βj−2(W ),
(3) βj(WXT ) = 2βj−1(WX)− βj−2(W ).

Proof. We first observe that Jean’s recursions are equivalent to the following recursions for
computing the derived vector, which we proceed to prove:

(1) derj(WR) = derj−1(W ),
(2) derj(WXV ) = derj−1(WX) + derj−2(W ),
(3) derj(WXT ) = 2 derj−1(WX)− derj−2(W ).

Using the derived vector to label the vertices of the proximity diagram, let derv(W ) indicate
the component of derv(W ) labeling vertex v. Note that der is essentially the multiplicity
vector; thus we use the same rules to compute it from the diagram. One obtains the proximity
diagram of WR from that of W by adding a single vertex at the right, together with a single
horizontal edge. The label at this vertex is 1, and the label at each other vertex is unchanged.
This establishes (1).

To establish (2), we consider three cases.

• Compare the right ends of the proximity diagrams of WRV , WR, and W :

24



112

11

R V

R

1

Observe that at the circled vertex we have derv(WRV ) = derv(WR) + derv(W ). All
the undrawn edges are common to all three diagrams; thus the same equation holds
for all vertices further to the left.

• Compare the right ends of the proximity diagrams of WV V , WV , and W :

123

11

VV

12 1

1

V

Note that we show only those edges that begin and end within the indicated portion
of the diagrams; there may or may not be an additional edge coming in from the
left, but it is common to all three diagrams. Observe the equality derv(WV V ) =
derv(WV )+derv(W ) at the circled vertices. This must persist for all vertices further
to the left of these.

• Compare the right ends of the proximity diagrams of WTV , WT , and W :
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V

2 2

T

2 2 1 1

TT V

2τ+3

τ+2

τ+1

τ

V

1 1

T

1 1 1

TT

τ

τ–1

V

1 1

T

1 1

T

Again we show only those edges that begin and end within the indicated portion of
the diagrams. Observe that W ends with V T τ−1 for some positive integer τ . At the
circled vertices we have derv(WTV ) = derv(WT )+derv(W ); thus the same equation
must hold at every vertex further to the left.

To establish (3), we consider two cases.

• Compare the right ends of the proximity diagrams of WV T , WV , and W :

113

11

TV

12 1

1

V

The equality derv(WV T ) = 2 derv(WV )− derv(W ) holds at the two circled vertices,
and thus at every vertex further to the left.

• Compare the right ends of the proximity diagrams of WTT , WT , and W :
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V

1 1

T

1 1 1 1

TT T

τ+3

τ+2

τ+1

τ

V

1 1

T

1 1 1

TT

τ

τ–1

V

1 1

T

1 1

T

The word W ends with V T τ−1 for some positive integer τ . At the circled vertices
we have derv(WTT ) = 2 derv(WT )− derv(W ); thus the same equation must hold at
every vertex further to the left.

□

Example 30. Here is the back-end calculation of the derived vector of RRV TRRRV TTTV :

der(RR) = (1, 1)

der(RRV ) = (1, 1, 2)

der(RRV T ) = (1, 1, 1, 3)

der(RRV TR) = (1, 1, 1, 1, 3)

der(RRV TRR) = (1, 1, 1, 1, 1, 3)

der(RRV TRRR) = (1, 1, 1, 1, 1, 1, 3)

der(RRV TRRRV ) = (1, 1, 2, 2, 2, 2, 2, 6)

der(RRV TRRRV T ) = (1, 1, 1, 3, 3, 3, 3, 3, 9)

der(RRV TRRRV TT ) = (1, 1, 1, 1, 4, 4, 4, 4, 4, 12)

der(RRV TRRRV TTT ) = (1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 15)

der(RRV TRRRV TTTV ) = (1, 1, 2, 2, 2, 2, 9, 9, 9, 9, 9, 27)
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For completeness, here is the back-end recursion for the second derived vector (i.e., for
the vertical orders). To begin, we have

(der24(W ), der25(W )) =

{
(0, 1) if W ends with V

(0, 0) otherwise.

For the other entries use these formulas, identical to those for the derived vector:

(1) der2j(WR) = der2j−1(W ),
(2) der2j(WXV ) = der2j−1(WX) + der2j−2(W ),
(3) der2j(WXT ) = 2 der2j−1(WX)− der2j−2(W ).

12. Degree of nonholonomy via the Puiseux characteristic

We end with an observation concerning the degree of nonholonomy. For a point p ∈ S(k),
let W be the RVT code word at p. As we know, W determines the beta vector of the focal
focal distribution ∆(k) at p. We denote it by β(W ) = (β2, . . . , βk+2); its last entry βk+2 is
the degree of nonholonomy. Let PC(W ) = [λ0;λ1, . . . , λg] be the Puiseux characteristic, as
defined in Section 12.5 of [2]. Recall that this is the Puiseux characteristic associated to
any regular focal curve germ passing through p, which in turn is the Puiseux characteristic
associated to the (usually singular) curve germ on S obtained by projecting. Its initial entry
λ0 is the multiplicity m0 of this curve. Note that m0 is not a Goursat invariant, as the
following example illustrates.

Example 31. The germ of the focal distribution ∆(5) at a point with code word RV TRV
is equivalent to the focal distribution at some other point with Goursat code word RRRRV .
The associated Puiseux characteristics are [6; 8, 9] and [2; 9].

Theorem 32.

(1) If W ends with a critical symbol V or T , then the last entry in the Puiseux charac-
teristic is the degree of nonholonomy: λg = βk+2.

(2) More generally, if W ends with a critical symbol followed by a string of r occurrences
of R, then λg + r = βk+2.

Proof. To prove (1), we first observe that if W is RV T τ , then the Puiseux characteristic is
[τ + 2; τ + 3] and the beta vector is (1, 2, . . . , τ + 3). These words provide the base cases
for a recursion. If W is not of this form, then its lifted word L(W ) again ends in a critical
symbol. Since the beta vector is the accumulation vector for the multiplicities, we know

βk+2(W ) = m0(L(W )) + βk+1(L(W )). (12.1)

There is a similar result for the last entry of the Puiseux characteristic, according to Theo-
rem 24 of [2]; in all three cases of that theorem we see that

λg(W ) = λ0(L(W )) + λlast(L(W )).

(Here λlast is either λg or λg−1.) Thus if the desired equation holds for L(W ) it likewise holds
for W .

Part (2) follows from the observation that adding an R to the end of a word doesn’t alter
the Puiseux characteristic, while increasing the degree of holonomy by 1. □
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The proof is elementary, but it may raise a question. As we have said, m0 is not a Goursat
invariant, but it appears in equation (12.1) as the difference of two Goursat invariants; how
can this be? The apparent contradiction is resolved by observing that all the RVT code words
associated to a particular Goursat distribution have the same lifted word; thus although the
distribution does not determine m0(W ) it does determine m0(L(W )). To say this another
way, the quantity m0(L(W )) is the same as m1(W ), and we know that m1 is a Goursat
invariant.

Theorem 32 is implicit in [7]. Our discussion here concerns just the initial entry and last
entry of the Puiseux characteristic; the cited paper also treats the more intricate relations
between the other entries of the Puiseux characteristic and the multiplicity sequence.
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Poincaré Anal. Non Linéaire, 18(4):459–493, 2001.

[6] Piotr Mormul. Geometric classes of Goursat flags and the arithmetics of their encoding by small growth
vectors. Cent. Eur. J. Math., 2(5):859–883, 2004.

[7] Corey Shanbrom. The Puiseux characteristic of a Goursat germ. J. Dyn. Control Syst., 20(1):33–46, 2014.
[8] C. T. C. Wall. Singular points of plane curves, volume 63 of London Mathematical Society Student Texts.

Cambridge University Press, Cambridge, 2004.

Department of Mathematics, Oberlin College, Oberlin, Ohio 44074, USA
Email address: scolley@oberlin.edu

Ohio State University at Mansfield, 1760 University Drive, Mansfield, Ohio 44906, USA
Email address: kennedy@math.ohio-state.edu

California State University, Sacramento, 6000 J St., Sacramento, CA 95819, USA
Email address: corey.shanbrom@csus.edu

29


	1. Introduction
	2. The three settings
	3. Small growth
	4. Recollection of the first paper
	5. Charts, coordinates, focal vector fields
	6. Lie derivatives and Lie brackets
	7. Focal order and vertical order
	8. Sections of the small growth sheaves
	9. Calculation pathways
	10. Relating the structural and small growth invariants
	11. Recursions
	12. Degree of nonholonomy via the Puiseux characteristic
	References

