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Abstract

An r-cut of the complete r-uniform hypergraph K] is obtained by partitioning its
vertex set into r parts and taking all edges that meet every part in exactly one vertex.
In other words it is the edge set of a spanning complete r-partite subhypergraph of
K]. An r-cut cover is a collection of r-cuts so that each edge of K, is in at least one
of the cuts. While in the graph case r = 2 any 2-cut cover on average covers each
edge at least 2 — o(1) times, when r is odd we exhibit an r-cut cover in which each
edge is covered exactly once. When r is even no such decomposition can exist, but

we can bound the average number of times an edge is cut in an r-cut cover between

1+o0(1)
logr

1+ ﬁ and 1+ . The upper bound construction can be reformulated in terms
of a natural polyhedral problem or as a probability problem, and we solve the latter

asymptotically.
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1 Introduction

A cut in a graph G is the set of all edges that meet both sets in a partition of its vertex
set V(G) into two parts X;, Xs. A cut cover of G is a collection of cuts whose union is
its edge set E(G). Cut covers in graphs have been studied at least since the 1970’s when
several authors [7, 10, 17] showed that the minimum number of cuts in a cut cover of G
is [log, x(G)], where x(G) is the chromatic number of G. A more challenging problem is
determining how often an edge must be cut on average in a cut cover. In a cut cover with
star cuts (|X;| = 1) each edge is cut at most twice, so that for non-bipartite graphs this
number is strictly between 1 and 2. (For more detailed results see [6, 16].) The complete
graph K, is the n-vertex graph that is the hardest to cut, with each edge cut at least 2 — %
times on average (when n > 8) and this value can only be achieved by using n — 1 star cuts,
a result that was discovered by several authors in different contexts [11, 12, 14, 15].

The goal of this paper is to extend the results for K, to the complete r-uniform hyper-
graph on n vertices, K. One way to generalize the notion of a cut to a hypergraph H is
to partition V(#H) into 2 parts X7, X, and take every edge that meets both parts. In this
way the proof for graphs can be easily adapted to yield that the minimum number of cuts
in a cover of E(H) is [logy x(H)]. Again, on average K is hardest to cover, and in [3] it
is shown that for n sufficiently large the most efficient way is to take Uf%llj such cuts with
|X1| <r—1, covering each edge r — O(%) times on average.

In this paper we focus on another way to generalize the notion of a cut to r-uniform hyper-
graphs: Partition the vertex set into r parts Xy, Xo, ..., X, and let the r-cut [ X1, X, ..., X,]
of H consist of all edges {z1,...,x,} such that z; € X; for all ¢ with 1 <4 <r. So an r-cut
in K] is a spanning complete r-partite subhypergraph of K. In Section 2 we will see that
every r-uniform hypergraph on n vertices can be covered with O(logn) r-cuts (when r is
fixed), and K shows that this is best possible. Turning our focus to the average number of
times an edge must be cut in an r-cut cover, we show in Section 3 that the answer is always
1 (that is we can decompose H into r-cuts) when r is odd. We also show that this is not
possible when r is even, and in fact each edge of K] is cut on average at least 1+ TJ%I times.
In Section 4 we propose an efficient r-cut cover of K for even r, and we show in Section 5

1+0(1)

that in this cover on average each edge is cut 1 + Togr times.



2 Minimizing the number of r-cuts in a cover

In this section we will see that the minimum number of r-cuts needed to cover K] is of size

clogn, where ¢ depends only on r. To our knowledge, the best estimates for the constant
c are () <§;> = c¢ = 0O(re") (see [21]). This problem has been well studied and is related
to interesting questions in data storage, computer science and information theory regarding
families of perfect hash functions, separating systems and graph entropy (see [5, 18, 19, 21]).
The results contained in this section are due to Melhorn [18] and Graham (cf. Fredman
and Komlés [5], see also [19, 21]), and we include some discussion here for the sake of
completeness.

The following simple lower bound is a straight-forward adaptation of the graph case
r=2

1
logr

Theorem 1 Every r-cut cover of K] has size at least logn.

Proof. Suppose we have a cover of K] with m r-cuts. With each vertex v we associate
an m-tuple (vy, v, ...,v,) where v; = j precisely when v € X, in the i-th r-cut. Different
vertices must receive different labels, since otherwise none of the edges containing both are
covered in an r-cut. Thus n <™. O
The observation that vertices of the same label must form an independent set easily yields
that an r-cut cover of the edge set of any r-uniform hypergraph H of order n» must contain
at least Q(log x(#)) cuts, where x(#) is the chromatic number of H (see also [21].) A more
careful argument can be used to improve the 1/logr factor in Theorem 1 to (%), see
for example [19] with b = k = r = j 4+ 2 for a simple probabilistic proof.

The upper bound complementing Theorem 1 can also be easily proved probabilistically.
Theorem 2 For every r there is a ¢ such that K] can be covered with clogn r-cuts.

Proof. Consider a random cut in which each vertex is put into the parts with equal proba-
bility. The probability that a given edge is not cut by such an r-cut is P = ”Tr—j’”' < 1. Thus in
a cover with clogn random cuts the expected number of uncut edges is (:f) pelogn o preclog P
This number is less than 1 for ¢ > —r/log P, so that some such cover will have no uncut
edges. The value ¢ = O(re") can be obtained by instead using the alteration method in the

same set-up (see [2, 19] for more details.) O

A very important problem is to explicitly construct covers of K| with O(logn) r-cuts.
Some explicit constructions are known, see [5, 21] for more details on explicit constructions

and related questions.



3 Decomposing K/ into r-cuts for odd r

In this section we give a simple construction to show that when r is odd we can actually
partition the edges of any r-uniform hypergraph into r-cuts, and we also show that this is
not possible when r is even. It suffices to prove both statements for complete hypergraphs,
since the r-cover we propose in the next proposition in fact yields a decomposition for all
r-uniform hypergraphs.

For a given sequence 1 < a; < as < --- < ap <nwelet A; = {a; 1+1,a; 1+2,...,a;—1}
for 1 <7 < k+1, where we set ag = 0 and agy1 = n+1. The sequential cut of Kﬁk“ induced

bY’al,...,ijS L417{a1}7/427{a2}7"'714k7{ak}7/4k+1}
Proposition 3 The collection of all sequential cuts of K***1 forms a partition of E(K2*+1).

Proof. Anedge {x1,..., %oy} is covered by the sequential cut induced by ay, as, . .., a

if and only if a1 = 29, a0 = x4, ..., a0 = Tox. O

Observe that a sequential cut is empty if a; = a;_1 + 1 for some 1 <7 < k + 1. Thus the

n—k—1
k

used in [4] to give an upper bound on the number of complete r-partite r-graphs needed to

number of non-empty sequential cuts in K2*! is ( ), and this construction was already
partition the edges of K. This question, studied first by Alon [1], is a hypergraph version of
a well-known problem of partitioning the edge set of a graph into the minimum number of
complete bipartite subgraphs that was investigated by Graham-Pollak and Tverberg among
others (see [8, 9, 20, 22, 23| for more details).

We now turn our attention to the case when r is even. We start by observing that the
minimum number of times an edge in K is cut on average, ¢.(n) is monotone in n. To that
end we define t(n,r) as the minimum total size (sum of the sizes of the r-cuts) of an r-cut

cover of K7, i.e. t(n,r) = ¢, (n)(").

Lemma 4 For m <n we have ¢,(m) < ¢.(n).

Proof. Consider an optimal r-cut cover C of K],. For each m-set M of vertices of K],

C induces an r-cut cover C|ys of K by restricting each X; to X; N M. Since each edge is

covered in exactly (") covers C|y and the total size of each C|y is at least t(m,r), the
n n—r
1t foll f t < Clul| < t . O
result follows from (m) (m,r) < g IC|n| < (m—r) (n,r)

|M|=m

When 7 is even, K ; has an odd number of edges, but every r-cut has size 2, so that it

is easy to see that t(r+1,7) = r+2. Thus it follows from Lemma 4 that K has no partition
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into r-cuts when n > r + 1, since

r+2 1
cr(n)zcr(r+1):r+1:1+r+1. (1)

Determining c¢,.(n) is a non-trivial problem, but Lemma 4 implies that ¢, = lim,,_,, ¢,.(n)
exists, with ¢, > 1 + H% for r even, since we will show at the start of the next section that
cr(n) < 2. In fact, the rest of this paper is devoted to proving the upper bound of our main

result.

Theorem 5 1+ :11 <ec <1+ 11%(:) when r 1s even.

4 Constructions for even r

In this section we give an explicit cover of K] for r even with very small covering multiplicity,
and we start analyzing the efficiency of the cover by reformulating it as a probability problem
and a polyhedral problem that could be of independent interest.

Since sequential covers are so efficient in the odd case it seems sensible to obtain a
modified cover for K2* from the sequential cover for K?**1. The simplest way to do this is
to always merge A; and Ay, into one part, since then each edge {x1, s, ..., zor} of K2 is
covered exactly twice: once in the 2k-cut derived from the sequential (2k + 1)-cut induced
by X, x4, ..., T and once in the 2k-cut derived from xy, z3, ..., z95_1. Thus ¢,(n) <2 and
cr < 2.

However, we can do better. In fact we will give a construction that shows that ¢, — 1 as
r — oo. Let [aq,...,a;] denote the 2k-cut obtained by merging Ay, 1 with the largest of the
remaining parts, call it A,,, in the sequential (2k+1)-cut derived from ay, ..., ay. (If there are
several largest parts, then let A, be any one of these.) More formally we let B, = A,,UAx 1
and B; = A; fori # m, and let [aq, ..., a;] = [B1,{a1}, B2, {as}, ..., By, {ax}] be the modified
cut of K2* derived from the sequential cut [Ay, {a1}, Ao, {as}, ..., Ag, {ar}, Aps1] of K2EFL

Definition 6 An edge E = {x1,29,..., 29} of ng with 0 =29 < 11 < Ty < - < Top <N

1s called exceptional if there is an even number ¢ with 0 < q < 2k — 2 and
Tg1 — Tqg 2 Tg — Lo, Ly — T2y, Lg — L2, Tgy3 — Tgply - -5 L2h—1 — T2k—3- (2)
Let My(n) denote the number of exceptional edges.

Observe that for any exceptional edge ¢ is unique, since z,4; — x, must be the unique

maximum among all values z; — x;_; for 1 <i <2k — 1.



Proposition 7 The collection of modified cuts of K2* is a cover of E(K?*) of total size

Proof. Consider an edge E = {x1,..., 20t} of K?* where 71 < x5 < --+ < Top. A
modified cut [ai,...,a;] covering £ must have that for all 4, a; = x4, where f is an
increasing function with 1 < f(1) < 2,2k —1 < f(k) < 2k, and f(i+1) < f(i) + 2. Thus it
follows that there is a j such that [ay, ..., k] = [T2, T4, . . ., T2j_2, Toj_1, Taji1, - - -, Tog—1] = C}
where 1 < j <k+1. So Cy = [z1,23,...,%9%-1], Crp1 = [, %4, ..., 29 and all other C;
contain exactly two consecutive x;’s, namely xa;_2, Toj_1.

The cut Cy,; clearly contains F, so that the modified cuts form a cover of K2*. For any
other C; to cover E/ we need xo; € Apy1 € Biyc,), and in fact m(C;) = j. The definition of
B,,, implies that |A,,| > |A1|, |As], ..., |Ak|, and thus E satisfies (2) with ¢ =2j — 2.

So for E to be covered at least twice it must be exceptional. In that case, since ¢ is
unique for any edge satisfying (2), at most one other cut covers £, namely C;. In fact, when
E is exceptional it is easy to see that C; indeed covers E. Thus every exceptional edge is

covered twice and every other edge is covered once and the result follows. O

To see how good the modified cover is it remains to count exceptional edges.

Definition 8 A sequence 0 = xp < x1 < x5 < -+ < Top, < Togs 1S called special if

Tog41 — Lok = T — T, Ty — T2, ..., Lo — Tog—2. (3)

Let Qr(N) be the number of special sequences of 2k + 1 integers with xop 1 = N.

Lemma 9

Mi(n) =k Qr-1(N)(n — N).

Proof. If we fix 291 = N, then Q_1(N)(n — N) counts exactly the number of
those sequences of length 2k satisfying (2) for ¢ = 2k — 2. So to prove the equation it
suffices to see that the number of such sequences is the same for any other choice of an
even number ¢ with 0 < ¢ < 2k — 4. We do so by giving a bijection from the sequences
0=1z9 < <xg <+ <Xy < n satisfying (2) for fixed ¢ # 2k — 2 to those for ¢ = 2k — 2.

Fromagiven 0 = 29 < 2y < 29 < -+ < a9 <nweobtain 0 =yg <y <o < -+ <



Yor < n by letting
T for 0 <i<gq

Yi = Tiv1 — Tgp1 + 24 for g <i<2k—2
X for i =2k — 1,2k
This shifted sequence is increasing and satisfies (2) with ¢ = 2k — 2, since yor_1 — Yop—2 =

Top—1 — (Tok—1 — Tg1 + Tg) = Tgp1 — Zg. 0

Observe that

> (amp)em = X placs) ety

— n %”_ 1) —(2k— 1)("221) - (272)

Thus if Qk,l(N)/(é\,Z:é) — qx—1 as N — oo, then Lemma 9 implies that for n — oo we

have My (n)/(5;) = kqr—1, and it follows from Proposition 7 that
Cok <1+ kqp—1. (4)

Obviously Qr(N)/ (1\72;1) is the probability that a randomly chosen sequence of distinct
integers 0 = g < 11 < T3 < -+ < Xgr < Torpr1 = IV is special. By standard probability
theory arguments as N — oo this sequence of probabilities converges to the probability that
a randomly chosen sequence of distinct numbers in the unit interval 0 = 2y < 1 < x5 <
s < Xop < Topy1 = 1 is special. We devote the next section to the computation of this limit
probability .

We want to briefly mention a natural polyhedral reformulation suggested to us by
Zoltan Fiiredi. With the change of variables y; = x; — x;_1, g is the fraction of the simplex
bounded by y; + - - 4+ yor. < 1 and y; > 0 that remains when we cut off the vertices in pairs
(y2i—1, Y2:) by including the stronger constraints y; + yo + - - - + y2i—2 + 2y2i—1 + 2y2; + Y2ir1 +
<o F g < 1 for each ¢ with 1 <7 < k.

5 Probability that a random sequence in [0, 1] is special

In this section we determine the exact value of g as a simple integral, and then we solve
this integral asymptotically.
Let X, Xs,..., X, be independent random variables uniformly distributed over [0, 1].

We arrange this sequence in ascending order and get the sequence X;, < X;, <--- < X, ,
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of the so-called order statistics. Is is known (see [13, Sec. 13.1]) that the random vector
(X1ms--., Xpn) admits the following representation. Let Y;,Y5,...,Y, 1 be independent
identically distributed random variables with a standard exponential distribution, that is,
P(Y; € dy) = e ¥dy for any y > 0, and let S,, :== Y] + - -- + Y}, be the corresponding random
walk. Then the random vector (X ,, ..., X, ) has the same distribution as ( S e

5"n,+1 ’ ’ Sn+1 ) :
This representation gives a simple way to compute the probability that the sequence

X1k, - -+, Xok ok 1s special. Indeed, defining X, := 0, we have

@ = ]P’(max (Xoi — Xpip) <1 X2k,2k>

1<i<k

- P(lrgz‘s}i<5i2; B 522;9 =1- Sfiil)

= P(max(qu +Y5) < Y2k+1>

1<i<k
= / P* (Y1 + Ya < y)e Vdy,
0

where we used independence of Y,, to get the last line. It is well known that Y; 4+ Y, has a
gamma(2) distribution whose density is given by P(Y; + Y5 € dy) = ye ¥dy for y > 0. Then
PY1+Y,<y)=1—(1+y)e ¥ for y >0, and we get

qr = /00 (1 -1+ y)e_y)ke_ydy.
0

The change of variables x = e™¥ now yields

k= /01<1 —(1- logm)x)kdx.

Theorem 10 implies immediately that g, is decreasing in k, whereas we still have no proof

Theorem 10

that cof is decreasing. While it seems difficult to solve this integral explicitly it is now easy

97

to compute small values using a computer algebra system: ¢, = %, @ = T/54, 3 = 1155

Thus combining (1) with (4) we obtain the following estimates for co,: 1.2 < ¢4 < 1.5,
1.14 < ¢g < 1.39, 1.11 < ¢g < 1.34. While we have little reason to believe that the upper
bounds obtained this way are optimal, the lower bounds are certainly weak. In fact for the
graph case we know that c; = 2, which is exactly what the construction in Proposition 7
yields, whereas the lower bound from (1) is only 4/3.

The upper bound for our main result, Theorem 5, immediately follows from the asymp-

totics of g given below.

Theorem 11 ¢ ~ m.



Proof. With the definition f(0) = 0, the function f(z) := (1 — logz)z is continuous
and increasing on [0, 1], with f'(z) = —logx and f(1) = 1. Thus

|

Observe that using y = —% in the inequality e’ > 1+ y we obtain (1 — %)k < e ™ when

FTHERER) 1

(1— f(z)*da +/ (1 — f(z))* da.

fo1(2loek)

u < k, and thus the second integral is bounded from above by e~21°8% = 1/k2. The change

of variables u = k f(x) now yields

1 2logk 1_gk 1
W[ o)
0

k —log f~1(}) k?
Note that log f~!(z) ~ log z as z — 0 now follows by L’Hopital’s rule:
Cdog fH2) . 2fY2) .. Z . fy)
lim ———= =lim ——— =1 =1 = 1.
S0 logz =0 f(z) 0 fEFE) w0 yf(y)
Hence
L[k (1 241+ o(2)) 1
- wroft)
G k/o ek —logu T O\
1 > (1—%k1+o0(%)) 1
= klogkA 11— % 1[0,210gk}(u) du+0<ﬁ>

u

For k large enough, the integrand does not exceed 2e~*, which is integrable on [0, 00). Since

u

for fixed u the integrand converges to e™ as k — oo, it now follows from the dominated

convergence theorem, that the integral converges to fooo e “du=1. O
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