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Abstract

An r-cut of the complete r-uniform hypergraph Kr
n is obtained by partitioning its

vertex set into r parts and taking all edges that meet every part in exactly one vertex.

In other words it is the edge set of a spanning complete r-partite subhypergraph of

Kr
n. An r-cut cover is a collection of r-cuts so that each edge of Kr

n is in at least one

of the cuts. While in the graph case r = 2 any 2-cut cover on average covers each

edge at least 2 − o(1) times, when r is odd we exhibit an r-cut cover in which each

edge is covered exactly once. When r is even no such decomposition can exist, but

we can bound the average number of times an edge is cut in an r-cut cover between

1 + 1
r+1 and 1 + 1+o(1)

log r . The upper bound construction can be reformulated in terms

of a natural polyhedral problem or as a probability problem, and we solve the latter

asymptotically.
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1 Introduction

A cut in a graph G is the set of all edges that meet both sets in a partition of its vertex

set V (G) into two parts X1, X2. A cut cover of G is a collection of cuts whose union is

its edge set E(G). Cut covers in graphs have been studied at least since the 1970’s when

several authors [7, 10, 17] showed that the minimum number of cuts in a cut cover of G

is �log2 χ(G)�, where χ(G) is the chromatic number of G. A more challenging problem is

determining how often an edge must be cut on average in a cut cover. In a cut cover with

star cuts (|X1| = 1) each edge is cut at most twice, so that for non-bipartite graphs this

number is strictly between 1 and 2. (For more detailed results see [6, 16].) The complete

graph Kn is the n-vertex graph that is the hardest to cut, with each edge cut at least 2− 1
n

times on average (when n ≥ 8) and this value can only be achieved by using n− 1 star cuts,

a result that was discovered by several authors in different contexts [11, 12, 14, 15].

The goal of this paper is to extend the results for Kn to the complete r-uniform hyper-

graph on n vertices, Kr
n. One way to generalize the notion of a cut to a hypergraph H is

to partition V (H) into 2 parts X1, X2 and take every edge that meets both parts. In this

way the proof for graphs can be easily adapted to yield that the minimum number of cuts

in a cover of E(H) is �log2 χ(H)�. Again, on average Kr
n is hardest to cover, and in [3] it

is shown that for n sufficiently large the most efficient way is to take �
n−1
r−1 � such cuts with

|X1| ≤ r − 1 , covering each edge r −O( 1n) times on average.

In this paper we focus on another way to generalize the notion of a cut to r-uniform hyper-

graphs: Partition the vertex set into r parts X1, X2, . . . , Xr and let the r-cut [X1, X2, . . . , Xr]

of H consist of all edges {x1, . . . , xr} such that xi ∈ Xi for all i with 1 ≤ i ≤ r. So an r-cut

in Kr
n is a spanning complete r-partite subhypergraph of Kr

n. In Section 2 we will see that

every r-uniform hypergraph on n vertices can be covered with O(log n) r-cuts (when r is

fixed), and Kr
n shows that this is best possible. Turning our focus to the average number of

times an edge must be cut in an r-cut cover, we show in Section 3 that the answer is always

1 (that is we can decompose H into r-cuts) when r is odd. We also show that this is not

possible when r is even, and in fact each edge of Kr
n is cut on average at least 1+ 1

r+1 times.

In Section 4 we propose an efficient r-cut cover of Kr
n for even r, and we show in Section 5

that in this cover on average each edge is cut 1 + 1+o(1)
log r times.
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2 Minimizing the number of r-cuts in a cover

In this section we will see that the minimum number of r-cuts needed to cover Kr
n is of size

c log n, where c depends only on r. To our knowledge, the best estimates for the constant

c are Ω
�

er

r
√
r

�
= c = O(rer) (see [21]). This problem has been well studied and is related

to interesting questions in data storage, computer science and information theory regarding

families of perfect hash functions, separating systems and graph entropy (see [5, 18, 19, 21]).

The results contained in this section are due to Melhorn [18] and Graham (cf. Fredman

and Komlós [5], see also [19, 21]), and we include some discussion here for the sake of

completeness.

The following simple lower bound is a straight-forward adaptation of the graph case

r = 2:

Theorem 1 Every r-cut cover of Kr
n has size at least

1
log r log n.

Proof. Suppose we have a cover of Kr
n with m r-cuts. With each vertex v we associate

an m-tuple (v1, v2, . . . , vm) where vi = j precisely when v ∈ Xj in the i-th r-cut. Different

vertices must receive different labels, since otherwise none of the edges containing both are

covered in an r-cut. Thus n ≤ rm.

The observation that vertices of the same label must form an independent set easily yields

that an r-cut cover of the edge set of any r-uniform hypergraph H of order n must contain

at least Ω(logχ(H)) cuts, where χ(H) is the chromatic number of H (see also [21].) A more

careful argument can be used to improve the 1/ log r factor in Theorem 1 to Ω
�

er

r
√
r

�
, see

for example [19] with b = k = r = j + 2 for a simple probabilistic proof.

The upper bound complementing Theorem 1 can also be easily proved probabilistically.

Theorem 2 For every r there is a c such that Kr
n can be covered with c log n r-cuts.

Proof. Consider a random cut in which each vertex is put into the parts with equal proba-

bility. The probability that a given edge is not cut by such an r-cut is P = rr−r!
rr < 1. Thus in

a cover with c log n random cuts the expected number of uncut edges is
�
n
r

�
P c logn < nr+c logP .

This number is less than 1 for c > −r/ logP , so that some such cover will have no uncut

edges. The value c = O(rer) can be obtained by instead using the alteration method in the

same set-up (see [2, 19] for more details.)

A very important problem is to explicitly construct covers of Kr
n with O(log n) r-cuts.

Some explicit constructions are known, see [5, 21] for more details on explicit constructions

and related questions.
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3 Decomposing Kr
n into r-cuts for odd r

In this section we give a simple construction to show that when r is odd we can actually

partition the edges of any r-uniform hypergraph into r-cuts, and we also show that this is

not possible when r is even. It suffices to prove both statements for complete hypergraphs,

since the r-cover we propose in the next proposition in fact yields a decomposition for all

r-uniform hypergraphs.

For a given sequence 1 ≤ a1 < a2 < · · · < ak ≤ n we let Ai = {ai−1+1, ai−1+2, . . . , ai−1}

for 1 ≤ i ≤ k+1, where we set a0 = 0 and ak+1 = n+1. The sequential cut of K2k+1
n induced

by a1, . . . , ak is [A1, {a1}, A2, {a2}, . . . , Ak, {ak}, Ak+1].

Proposition 3 The collection of all sequential cuts of K2k+1
n forms a partition of E(K2k+1

n ).

Proof. An edge {x1, . . . , x2k+1} is covered by the sequential cut induced by a1, a2, . . . , ak

if and only if a1 = x2, a2 = x4, . . . , ak = x2k.

Observe that a sequential cut is empty if ai = ai−1 + 1 for some 1 ≤ i ≤ k + 1. Thus the

number of non-empty sequential cuts in K2k+1
n is

�
n−k−1

k

�
, and this construction was already

used in [4] to give an upper bound on the number of complete r-partite r-graphs needed to

partition the edges of Kr
n. This question, studied first by Alon [1], is a hypergraph version of

a well-known problem of partitioning the edge set of a graph into the minimum number of

complete bipartite subgraphs that was investigated by Graham-Pollak and Tverberg among

others (see [8, 9, 20, 22, 23] for more details).

We now turn our attention to the case when r is even. We start by observing that the

minimum number of times an edge in Kr
n is cut on average, cr(n) is monotone in n. To that

end we define t(n, r) as the minimum total size (sum of the sizes of the r-cuts) of an r-cut

cover of Kr
n, i.e. t(n, r) = cr(n)

�
n
r

�
.

Lemma 4 For m ≤ n we have cr(m) ≤ cr(n).

Proof. Consider an optimal r-cut cover C of Kr
n. For each m-set M of vertices of Kr

n,

C induces an r-cut cover C|M of Kr
m by restricting each Xi to Xi ∩ M . Since each edge is

covered in exactly
�
n−r
m−r

�
covers C|M and the total size of each C|M is at least t(m, r), the

result follows from

�
n

m

�
t(m, r) ≤

�

|M |=m

|C|M | ≤

�
n− r

m− r

�
t(n, r).

When r is even, Kr
r+1 has an odd number of edges, but every r-cut has size 2, so that it

is easy to see that t(r+1, r) = r+2. Thus it follows from Lemma 4 that Kr
n has no partition
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into r-cuts when n ≥ r + 1, since

cr(n) ≥ cr(r + 1) =
r + 2

r + 1
= 1 +

1

r + 1
. (1)

Determining cr(n) is a non-trivial problem, but Lemma 4 implies that cr = limn→∞ cr(n)

exists, with cr ≥ 1 + 1
r+1 for r even, since we will show at the start of the next section that

cr(n) ≤ 2. In fact, the rest of this paper is devoted to proving the upper bound of our main

result.

Theorem 5 1 + 1
r+1 ≤ cr ≤ 1 + 1+o(1)

log r when r is even.

4 Constructions for even r

In this section we give an explicit cover of Kr
n for r even with very small covering multiplicity,

and we start analyzing the efficiency of the cover by reformulating it as a probability problem

and a polyhedral problem that could be of independent interest.

Since sequential covers are so efficient in the odd case it seems sensible to obtain a

modified cover for K2k
n from the sequential cover for K2k+1

n . The simplest way to do this is

to always merge A1 and Ak+1 into one part, since then each edge {x1, x2, . . . , x2k} of K2k
n is

covered exactly twice: once in the 2k-cut derived from the sequential (2k + 1)-cut induced

by x2, x4, . . . , x2k and once in the 2k-cut derived from x1, x3, . . . , x2k−1. Thus cr(n) ≤ 2 and

cr ≤ 2.

However, we can do better. In fact we will give a construction that shows that cr → 1 as

r → ∞. Let [a1, . . . , ak] denote the 2k-cut obtained by merging Ak+1 with the largest of the

remaining parts, call it Am, in the sequential (2k+1)-cut derived from a1, . . . , ak. (If there are

several largest parts, then let Am be any one of these.) More formally we let Bm = Am∪Ak+1

and Bi = Ai for i �= m, and let [a1, . . . , ak] = [B1, {a1}, B2, {a2}, . . . , Bk, {ak}] be themodified

cut of K2k
n derived from the sequential cut [A1, {a1}, A2, {a2}, . . . , Ak, {ak}, Ak+1] of K2k+1

n .

Definition 6 An edge E = {x1, x2, . . . , x2k} of K2k
n with 0 = x0 < x1 < x2 < · · · < x2k ≤ n

is called exceptional if there is an even number q with 0 ≤ q ≤ 2k − 2 and

xq+1 − xq ≥ x2 − x0, x4 − x2, . . . , xq − xq−2, xq+3 − xq+1, . . . , x2k−1 − x2k−3. (2)

Let Mk(n) denote the number of exceptional edges.

Observe that for any exceptional edge q is unique, since xq+1 − xq must be the unique

maximum among all values xi − xi−1 for 1 ≤ i ≤ 2k − 1.
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Proposition 7 The collection of modified cuts of K2k
n is a cover of E(K2k

n ) of total size
�
n
2k

�
+Mk(n).

Proof. Consider an edge E = {x1, . . . , x2k} of K2k
n where x1 < x2 < · · · < x2k. A

modified cut [a1, . . . , ak] covering E must have that for all i, ai = xf(i), where f is an

increasing function with 1 ≤ f(1) ≤ 2, 2k− 1 ≤ f(k) ≤ 2k, and f(i+1) ≤ f(i) + 2. Thus it

follows that there is a j such that [a1, . . . , ak] = [x2, x4, . . . , x2j−2, x2j−1, x2j+1, . . . , x2k−1] = Cj

where 1 ≤ j ≤ k + 1. So C1 = [x1, x3, . . . , x2k−1], Ck+1 = [x2, x4, . . . , x2k] and all other Cj

contain exactly two consecutive xi’s, namely x2j−2, x2j−1.

The cut Ck+1 clearly contains E, so that the modified cuts form a cover of K2k
n . For any

other Cj to cover E we need x2k ∈ Ak+1 ⊆ Bm(Cj), and in fact m(Cj) = j. The definition of

Bm implies that |Am| ≥ |A1|, |A2|, . . . , |Ak|, and thus E satisfies (2) with q = 2j − 2.

So for E to be covered at least twice it must be exceptional. In that case, since q is

unique for any edge satisfying (2), at most one other cut covers E, namely Cj. In fact, when

E is exceptional it is easy to see that Cj indeed covers E. Thus every exceptional edge is

covered twice and every other edge is covered once and the result follows.

To see how good the modified cover is it remains to count exceptional edges.

Definition 8 A sequence 0 = x0 < x1 < x2 < · · · < x2k < x2k+1 is called special if

x2k+1 − x2k ≥ x2 − x0, x4 − x2, . . . , x2k − x2k−2. (3)

Let Qk(N) be the number of special sequences of 2k + 1 integers with x2k+1 = N .

Lemma 9

Mk(n) = k

n�

N=1

Qk−1(N)(n−N).

Proof. If we fix x2k−1 = N , then Qk−1(N)(n − N) counts exactly the number of

those sequences of length 2k satisfying (2) for q = 2k − 2. So to prove the equation it

suffices to see that the number of such sequences is the same for any other choice of an

even number q with 0 ≤ q ≤ 2k − 4. We do so by giving a bijection from the sequences

0 = x0 < x1 < x2 < · · · < x2k ≤ n satisfying (2) for fixed q �= 2k− 2 to those for q = 2k− 2.

From a given 0 = x0 < x1 < x2 < · · · < x2k ≤ n we obtain 0 = y0 < y1 < y2 < · · · <
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y2k ≤ n by letting

yi =






xi for 0 ≤ i ≤ q

xi+1 − xq+1 + xq for q ≤ i ≤ 2k − 2

xi for i = 2k − 1, 2k

This shifted sequence is increasing and satisfies (2) with q = 2k−2, since y2k−1−y2k−2 =

x2k−1 − (x2k−1 − xq+1 + xq) = xq+1 − xq.

Observe that
n�

N=1

�
N − 1

2k − 2

�
(n−N) =

n�

N=1

�
n

�
N − 1

2k − 2

�
− (2k − 1)

�
N

2k − 1

��

= n

�
n

2k − 1

�
− (2k − 1)

�
n+ 1

2k

�
=

�
n

2k

�
.

Thus if Qk−1(N)/
�
N−1
2k−2

�
→ qk−1 as N → ∞, then Lemma 9 implies that for n → ∞ we

have Mk(n)/
�
n
2k

�
→ kqk−1, and it follows from Proposition 7 that

c2k ≤ 1 + kqk−1. (4)

Obviously Qk(N)/
�
N−1
2k

�
is the probability that a randomly chosen sequence of distinct

integers 0 = x0 < x1 < x2 < · · · < x2k < x2k+1 = N is special. By standard probability

theory arguments as N → ∞ this sequence of probabilities converges to the probability that

a randomly chosen sequence of distinct numbers in the unit interval 0 = x0 < x1 < x2 <

· · · < x2k < x2k+1 = 1 is special. We devote the next section to the computation of this limit

probability qk.

We want to briefly mention a natural polyhedral reformulation suggested to us by

Zoltán Füredi. With the change of variables yi = xi − xi−1, qk is the fraction of the simplex

bounded by y1 + · · ·+ y2k ≤ 1 and yi ≥ 0 that remains when we cut off the vertices in pairs

(y2i−1, y2i) by including the stronger constraints y1+ y2+ · · ·+ y2i−2+2y2i−1+2y2i + y2i+1+

· · ·+ y2k ≤ 1 for each i with 1 ≤ i ≤ k.

5 Probability that a random sequence in [0, 1] is special

In this section we determine the exact value of qk as a simple integral, and then we solve

this integral asymptotically.

Let X1, X2, . . . , Xn be independent random variables uniformly distributed over [0, 1].

We arrange this sequence in ascending order and get the sequence X1,n ≤ X2,n ≤ · · · ≤ Xn,n
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of the so-called order statistics. Is is known (see [13, Sec. 13.1]) that the random vector

(X1,n, . . . , Xn,n) admits the following representation. Let Y1, Y2, . . . , Yn+1 be independent

identically distributed random variables with a standard exponential distribution, that is,

P(Yi ∈ dy) = e−ydy for any y ≥ 0, and let Sn := Y1 + · · ·+ Yn be the corresponding random

walk. Then the random vector (X1,n, . . . , Xn,n) has the same distribution as
�

S1
Sn+1

, . . . ,
Sn

Sn+1

�
.

This representation gives a simple way to compute the probability that the sequence

X1,2k, . . . , X2k,2k is special. Indeed, defining X0,n := 0, we have

qk = P
�
max
1≤i≤k

(X2i −X2i−2) ≤ 1−X2k,2k

�

= P
�
max
1≤i≤k

�
S2i

S2k+1
−

S2i−2

S2k+1

�
≤ 1−

S2k

S2k+1

�

= P
�
max
1≤i≤k

(Y2i−1 + Y2i) ≤ Y2k+1

�

=

� ∞

0

Pk
�
Y1 + Y2 ≤ y

�
e
−y
dy,

where we used independence of Yn to get the last line. It is well known that Y1 + Y2 has a

gamma(2) distribution whose density is given by P(Y1 + Y2 ∈ dy) = ye−ydy for y ≥ 0. Then

P(Y1 + Y2 ≤ y) = 1− (1 + y)e−y for y ≥ 0, and we get

qk =

� ∞

0

�
1− (1 + y)e−y

�k
e
−y
dy.

The change of variables x = e−y now yields

Theorem 10

qk =

� 1

0

�
1− (1− log x)x

�k
dx.

Theorem 10 implies immediately that qk is decreasing in k, whereas we still have no proof

that c2k is decreasing. While it seems difficult to solve this integral explicitly it is now easy

to compute small values using a computer algebra system: q1 = 1
4 , q2 = 7/54, q3 = 97

1152 .

Thus combining (1) with (4) we obtain the following estimates for c2r: 1.2 ≤ c4 ≤ 1.5,

1.14 ≤ c6 ≤ 1.39, 1.11 ≤ c8 ≤ 1.34. While we have little reason to believe that the upper

bounds obtained this way are optimal, the lower bounds are certainly weak. In fact for the

graph case we know that c2 = 2, which is exactly what the construction in Proposition 7

yields, whereas the lower bound from (1) is only 4/3.

The upper bound for our main result, Theorem 5, immediately follows from the asymp-

totics of qk given below.

Theorem 11 qk ∼
1

k log k .
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Proof. With the definition f(0) = 0, the function f(x) := (1 − log x)x is continuous

and increasing on [0, 1], with f �(x) = − log x and f(1) = 1. Thus

qk =

� 1

0

(1− f(x))kdx =

� f−1( 2 log k
k )

0

(1− f(x))k dx+

� 1

f−1( 2 log k
k )

(1− f(x))k dx.

Observe that using y = −
u
k in the inequality ey ≥ 1 + y we obtain (1− u

k )
k ≤ e−u when

u ≤ k, and thus the second integral is bounded from above by e−2 log k = 1/k2. The change

of variables u = kf(x) now yields

qk =
1

k

� 2 log k

0

(1− u
k )

k

− log f−1(uk )
du+O

� 1

k2

�
.

Note that log f−1(z) ∼ log z as z → 0 now follows by L’Hôpital’s rule:

lim
z→0

log f−1(z)

log z
= lim

z→0

zf−1(z)�

f−1(z)
= lim

z→0

z

f−1(z)f �(f−1(z))
= lim

y→0

f(y)

yf �(y)
= 1.

Hence

qk =
1

k

� 2 log k

0

(1− u
k )

k(1 + o(uk ))

log k − log u
du+O

� 1

k2

�

=
1

k log k

� ∞

0

(1− u
k )

k(1 + o(uk ))

1− log u
log k

[0,2 log k](u) du+O

� 1

k2

�
.

For k large enough, the integrand does not exceed 2e−u, which is integrable on [0,∞). Since

for fixed u the integrand converges to e−u as k → ∞, it now follows from the dominated

convergence theorem, that the integral converges to
�∞
0 e−udu = 1.
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