Covering complete r-graphs with spanning complete r-partite r-graphs

Sebastian M. Cioabă, André Kündgen[†], Craig M. Timmons[‡] and Vladislav V. Vysotsky[§]

December 24, 2010

Abstract

An r-cut of the complete r-uniform hypergraph K_n^r is obtained by partitioning its vertex set into r parts and taking all edges that meet every part in exactly one vertex. In other words it is the edge set of a spanning complete r-partite subhypergraph of K_n^r . An r-cut cover is a collection of r-cuts so that each edge of K_n^r is in at least one of the cuts. While in the graph case r=2 any 2-cut cover on average covers each edge at least 2-o(1) times, when r is odd we exhibit an r-cut cover in which each edge is covered exactly once. When r is even no such decomposition can exist, but we can bound the average number of times an edge is cut in an r-cut cover between $1+\frac{1}{r+1}$ and $1+\frac{1+o(1)}{\log r}$. The upper bound construction can be reformulated in terms of a natural polyhedral problem or as a probability problem, and we solve the latter asymptotically.

^{*}Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, cioaba@math.udel.edu. Research supported by a startup grant from the Department of Mathematical Sciences of the University of Delaware.

 $^{^\}dagger \mbox{Department}$ of Mathematics, California State University San Marcos, San Marcos, CA 92096, akundgen@csusm.edu.

[‡]Department of Mathematics, University of California San Diego, La Jolla, CA 92093, ctimmons@ucsd.edu.

[§]Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, vysot-sky@math.udel.edu.

1 Introduction

A cut in a graph G is the set of all edges that meet both sets in a partition of its vertex set V(G) into two parts X_1 , X_2 . A cut cover of G is a collection of cuts whose union is its edge set E(G). Cut covers in graphs have been studied at least since the 1970's when several authors [7, 10, 17] showed that the minimum number of cuts in a cut cover of G is $\lceil \log_2 \chi(G) \rceil$, where $\chi(G)$ is the chromatic number of G. A more challenging problem is determining how often an edge must be cut on average in a cut cover. In a cut cover with star cuts $(|X_1| = 1)$ each edge is cut at most twice, so that for non-bipartite graphs this number is strictly between 1 and 2. (For more detailed results see [6, 16].) The complete graph K_n is the n-vertex graph that is the hardest to cut, with each edge cut at least $2 - \frac{1}{n}$ times on average (when $n \geq 8$) and this value can only be achieved by using n-1 star cuts, a result that was discovered by several authors in different contexts [11, 12, 14, 15].

The goal of this paper is to extend the results for K_n to the complete r-uniform hypergraph on n vertices, K_n^r . One way to generalize the notion of a cut to a hypergraph \mathcal{H} is to partition $V(\mathcal{H})$ into 2 parts X_1, X_2 and take every edge that meets both parts. In this way the proof for graphs can be easily adapted to yield that the minimum number of cuts in a cover of $E(\mathcal{H})$ is $\lceil \log_2 \chi(\mathcal{H}) \rceil$. Again, on average K_n^r is hardest to cover, and in [3] it is shown that for n sufficiently large the most efficient way is to take $\lfloor \frac{n-1}{r-1} \rfloor$ such cuts with $|X_1| \leq r-1$, covering each edge $r-O(\frac{1}{n})$ times on average.

In this paper we focus on another way to generalize the notion of a cut to r-uniform hypergraphs: Partition the vertex set into r parts X_1, X_2, \ldots, X_r and let the r-cut $[X_1, X_2, \ldots, X_r]$ of \mathcal{H} consist of all edges $\{x_1, \ldots, x_r\}$ such that $x_i \in X_i$ for all i with $1 \le i \le r$. So an r-cut in K_n^r is a spanning complete r-partite subhypergraph of K_n^r . In Section 2 we will see that every r-uniform hypergraph on n vertices can be covered with $O(\log n)$ r-cuts (when r is fixed), and K_n^r shows that this is best possible. Turning our focus to the average number of times an edge must be cut in an r-cut cover, we show in Section 3 that the answer is always 1 (that is we can decompose \mathcal{H} into r-cuts) when r is odd. We also show that this is not possible when r is even, and in fact each edge of K_n^r is cut on average at least $1 + \frac{1}{r+1}$ times. In Section 4 we propose an efficient r-cut cover of K_n^r for even r, and we show in Section 5 that in this cover on average each edge is cut $1 + \frac{1+o(1)}{\log r}$ times.

2 Minimizing the number of r-cuts in a cover

In this section we will see that the minimum number of r-cuts needed to cover K_n^r is of size $c \log n$, where c depends only on r. To our knowledge, the best estimates for the constant c are $\Omega\left(\frac{e^r}{r\sqrt{r}}\right) = c = O(re^r)$ (see [21]). This problem has been well studied and is related to interesting questions in data storage, computer science and information theory regarding families of perfect hash functions, separating systems and graph entropy (see [5, 18, 19, 21]). The results contained in this section are due to Melhorn [18] and Graham (cf. Fredman and Komlós [5], see also [19, 21]), and we include some discussion here for the sake of completeness.

The following simple lower bound is a straight-forward adaptation of the graph case r=2:

Theorem 1 Every r-cut cover of K_n^r has size at least $\frac{1}{\log r} \log n$.

Proof. Suppose we have a cover of K_n^r with m r-cuts. With each vertex v we associate an m-tuple (v_1, v_2, \ldots, v_m) where $v_i = j$ precisely when $v \in X_j$ in the i-th r-cut. Different vertices must receive different labels, since otherwise none of the edges containing both are covered in an r-cut. Thus $n \leq r^m$.

The observation that vertices of the same label must form an independent set easily yields that an r-cut cover of the edge set of any r-uniform hypergraph \mathcal{H} of order n must contain at least $\Omega(\log \chi(\mathcal{H}))$ cuts, where $\chi(\mathcal{H})$ is the chromatic number of \mathcal{H} (see also [21].) A more careful argument can be used to improve the $1/\log r$ factor in Theorem 1 to $\Omega\left(\frac{e^r}{r\sqrt{r}}\right)$, see for example [19] with b=k=r=j+2 for a simple probabilistic proof.

The upper bound complementing Theorem 1 can also be easily proved probabilistically.

Theorem 2 For every r there is a c such that K_n^r can be covered with $c \log n$ r-cuts.

Proof. Consider a random cut in which each vertex is put into the parts with equal probability. The probability that a given edge is not cut by such an r-cut is $P = \frac{r^r - r!}{r^r} < 1$. Thus in a cover with $c \log n$ random cuts the expected number of uncut edges is $\binom{n}{r} P^{c \log n} < n^{r+c \log P}$. This number is less than 1 for $c > -r/\log P$, so that some such cover will have no uncut edges. The value $c = O(re^r)$ can be obtained by instead using the alteration method in the same set-up (see [2, 19] for more details.)

A very important problem is to explicitly construct covers of K_n^r with $O(\log n)$ r-cuts. Some explicit constructions are known, see [5, 21] for more details on explicit constructions and related questions.

3 Decomposing K_n^r into r-cuts for odd r

In this section we give a simple construction to show that when r is odd we can actually partition the edges of any r-uniform hypergraph into r-cuts, and we also show that this is not possible when r is even. It suffices to prove both statements for complete hypergraphs, since the r-cover we propose in the next proposition in fact yields a decomposition for all r-uniform hypergraphs.

For a given sequence $1 \le a_1 < a_2 < \dots < a_k \le n$ we let $A_i = \{a_{i-1}+1, a_{i-1}+2, \dots, a_i-1\}$ for $1 \le i \le k+1$, where we set $a_0 = 0$ and $a_{k+1} = n+1$. The sequential cut of K_n^{2k+1} induced by a_1, \dots, a_k is $[A_1, \{a_1\}, A_2, \{a_2\}, \dots, A_k, \{a_k\}, A_{k+1}]$.

Proposition 3 The collection of all sequential cuts of K_n^{2k+1} forms a partition of $E(K_n^{2k+1})$.

Proof. An edge $\{x_1, \ldots, x_{2k+1}\}$ is covered by the sequential cut induced by a_1, a_2, \ldots, a_k if and only if $a_1 = x_2, a_2 = x_4, \ldots, a_k = x_{2k}$.

Observe that a sequential cut is empty if $a_i = a_{i-1} + 1$ for some $1 \le i \le k+1$. Thus the number of non-empty sequential cuts in K_n^{2k+1} is $\binom{n-k-1}{k}$, and this construction was already used in [4] to give an upper bound on the number of complete r-partite r-graphs needed to partition the edges of K_n^r . This question, studied first by Alon [1], is a hypergraph version of a well-known problem of partitioning the edge set of a graph into the minimum number of complete bipartite subgraphs that was investigated by Graham-Pollak and Tverberg among others (see [8, 9, 20, 22, 23] for more details).

We now turn our attention to the case when r is even. We start by observing that the minimum number of times an edge in K_n^r is cut on average, $c_r(n)$ is monotone in n. To that end we define t(n,r) as the minimum total size (sum of the sizes of the r-cuts) of an r-cut cover of K_n^r , i.e. $t(n,r) = c_r(n)\binom{n}{r}$.

Lemma 4 For $m \le n$ we have $c_r(m) \le c_r(n)$.

Proof. Consider an optimal r-cut cover \mathcal{C} of K_n^r . For each m-set M of vertices of K_n^r , \mathcal{C} induces an r-cut cover $\mathcal{C}|_M$ of K_m^r by restricting each X_i to $X_i \cap M$. Since each edge is covered in exactly $\binom{n-r}{m-r}$ covers $\mathcal{C}|_M$ and the total size of each $\mathcal{C}|_M$ is at least t(m,r), the result follows from $\binom{n}{m}t(m,r) \leq \sum_{|M|=m} |\mathcal{C}|_M| \leq \binom{n-r}{m-r}t(n,r)$.

When r is even, K_{r+1}^r has an odd number of edges, but every r-cut has size 2, so that it is easy to see that t(r+1,r) = r+2. Thus it follows from Lemma 4 that K_n^r has no partition

into r-cuts when $n \ge r + 1$, since

$$c_r(n) \ge c_r(r+1) = \frac{r+2}{r+1} = 1 + \frac{1}{r+1}.$$
 (1)

Determining $c_r(n)$ is a non-trivial problem, but Lemma 4 implies that $c_r = \lim_{n \to \infty} c_r(n)$ exists, with $c_r \ge 1 + \frac{1}{r+1}$ for r even, since we will show at the start of the next section that $c_r(n) \le 2$. In fact, the rest of this paper is devoted to proving the upper bound of our main result.

Theorem 5 $1 + \frac{1}{r+1} \le c_r \le 1 + \frac{1+o(1)}{\log r}$ when *r* is even.

4 Constructions for even r

In this section we give an explicit cover of K_n^r for r even with very small covering multiplicity, and we start analyzing the efficiency of the cover by reformulating it as a probability problem and a polyhedral problem that could be of independent interest.

Since sequential covers are so efficient in the odd case it seems sensible to obtain a modified cover for K_n^{2k} from the sequential cover for K_n^{2k+1} . The simplest way to do this is to always merge A_1 and A_{k+1} into one part, since then each edge $\{x_1, x_2, \ldots, x_{2k}\}$ of K_n^{2k} is covered exactly twice: once in the 2k-cut derived from the sequential (2k+1)-cut induced by x_2, x_4, \ldots, x_{2k} and once in the 2k-cut derived from $x_1, x_3, \ldots, x_{2k-1}$. Thus $c_r(n) \leq 2$ and $c_r \leq 2$.

However, we can do better. In fact we will give a construction that shows that $c_r \to 1$ as $r \to \infty$. Let $[a_1, \ldots, a_k]$ denote the 2k-cut obtained by merging A_{k+1} with the largest of the remaining parts, call it A_m , in the sequential (2k+1)-cut derived from a_1, \ldots, a_k . (If there are several largest parts, then let A_m be any one of these.) More formally we let $B_m = A_m \cup A_{k+1}$ and $B_i = A_i$ for $i \neq m$, and let $[a_1, \ldots, a_k] = [B_1, \{a_1\}, B_2, \{a_2\}, \ldots, B_k, \{a_k\}]$ be the modified cut of K_n^{2k} derived from the sequential cut $[A_1, \{a_1\}, A_2, \{a_2\}, \ldots, A_k, \{a_k\}, A_{k+1}]$ of K_n^{2k+1} .

Definition 6 An edge $E = \{x_1, x_2, \dots, x_{2k}\}$ of K_n^{2k} with $0 = x_0 < x_1 < x_2 < \dots < x_{2k} \le n$ is called exceptional if there is an even number q with $0 \le q \le 2k - 2$ and

$$x_{q+1} - x_q \ge x_2 - x_0, x_4 - x_2, \dots, x_q - x_{q-2}, x_{q+3} - x_{q+1}, \dots, x_{2k-1} - x_{2k-3}.$$
 (2)

Let $M_k(n)$ denote the number of exceptional edges.

Observe that for any exceptional edge q is unique, since $x_{q+1} - x_q$ must be the unique maximum among all values $x_i - x_{i-1}$ for $1 \le i \le 2k - 1$.

Proposition 7 The collection of modified cuts of K_n^{2k} is a cover of $E(K_n^{2k})$ of total size $\binom{n}{2k} + M_k(n)$.

Proof. Consider an edge $E = \{x_1, \ldots, x_{2k}\}$ of K_n^{2k} where $x_1 < x_2 < \cdots < x_{2k}$. A modified cut $[a_1, \ldots, a_k]$ covering E must have that for all i, $a_i = x_{f(i)}$, where f is an increasing function with $1 \le f(1) \le 2$, $2k - 1 \le f(k) \le 2k$, and $f(i+1) \le f(i) + 2$. Thus it follows that there is a j such that $[a_1, \ldots, a_k] = [x_2, x_4, \ldots, x_{2j-2}, x_{2j-1}, x_{2j+1}, \ldots, x_{2k-1}] = C_j$ where $1 \le j \le k+1$. So $C_1 = [x_1, x_3, \ldots, x_{2k-1}]$, $C_{k+1} = [x_2, x_4, \ldots, x_{2k}]$ and all other C_j contain exactly two consecutive x_i 's, namely x_{2j-2}, x_{2j-1} .

The cut C_{k+1} clearly contains E, so that the modified cuts form a cover of K_n^{2k} . For any other C_j to cover E we need $x_{2k} \in A_{k+1} \subseteq B_{m(C_j)}$, and in fact $m(C_j) = j$. The definition of B_m implies that $|A_m| \ge |A_1|, |A_2|, \ldots, |A_k|$, and thus E satisfies (2) with q = 2j - 2.

So for E to be covered at least twice it must be exceptional. In that case, since q is unique for any edge satisfying (2), at most one other cut covers E, namely C_j . In fact, when E is exceptional it is easy to see that C_j indeed covers E. Thus every exceptional edge is covered twice and every other edge is covered once and the result follows.

To see how good the modified cover is it remains to count exceptional edges.

Definition 8 A sequence $0 = x_0 < x_1 < x_2 < \cdots < x_{2k} < x_{2k+1}$ is called special if

$$x_{2k+1} - x_{2k} \ge x_2 - x_0, x_4 - x_2, \dots, x_{2k} - x_{2k-2}. \tag{3}$$

Let $Q_k(N)$ be the number of special sequences of 2k+1 integers with $x_{2k+1}=N$.

Lemma 9

$$M_k(n) = k \sum_{N=1}^{n} Q_{k-1}(N)(n-N).$$

Proof. If we fix $x_{2k-1} = N$, then $Q_{k-1}(N)(n-N)$ counts exactly the number of those sequences of length 2k satisfying (2) for q = 2k-2. So to prove the equation it suffices to see that the number of such sequences is the same for any other choice of an even number q with $0 \le q \le 2k-4$. We do so by giving a bijection from the sequences $0 = x_0 < x_1 < x_2 < \cdots < x_{2k} \le n$ satisfying (2) for fixed $q \ne 2k-2$ to those for q = 2k-2. From a given $0 = x_0 < x_1 < x_2 < \cdots < x_{2k} \le n$ we obtain $0 = y_0 < y_1 < y_2 < \cdots < x_{2k} \le n$

 $y_{2k} \leq n$ by letting

$$y_{i} = \begin{cases} x_{i} & \text{for } 0 \le i \le q \\ x_{i+1} - x_{q+1} + x_{q} & \text{for } q \le i \le 2k - 2 \\ x_{i} & \text{for } i = 2k - 1, 2k \end{cases}$$

This shifted sequence is increasing and satisfies (2) with q=2k-2, since $y_{2k-1}-y_{2k-2}=x_{2k-1}-(x_{2k-1}-x_{q+1}+x_q)=x_{q+1}-x_q$.

Observe that

$$\sum_{N=1}^{n} \binom{N-1}{2k-2} (n-N) = \sum_{N=1}^{n} \left[n \binom{N-1}{2k-2} - (2k-1) \binom{N}{2k-1} \right]$$
$$= n \binom{n}{2k-1} - (2k-1) \binom{n+1}{2k} = \binom{n}{2k}.$$

Thus if $Q_{k-1}(N)/\binom{N-1}{2k-2} \to q_{k-1}$ as $N \to \infty$, then Lemma 9 implies that for $n \to \infty$ we have $M_k(n)/\binom{n}{2k} \to kq_{k-1}$, and it follows from Proposition 7 that

$$c_{2k} \le 1 + kq_{k-1}. (4)$$

Obviously $Q_k(N)/\binom{N-1}{2k}$ is the probability that a randomly chosen sequence of distinct integers $0=x_0 < x_1 < x_2 < \cdots < x_{2k} < x_{2k+1} = N$ is special. By standard probability theory arguments as $N \to \infty$ this sequence of probabilities converges to the probability that a randomly chosen sequence of distinct numbers in the unit interval $0=x_0 < x_1 < x_2 < \cdots < x_{2k} < x_{2k+1} = 1$ is special. We devote the next section to the computation of this limit probability q_k .

We want to briefly mention a natural **polyhedral reformulation** suggested to us by Zoltán Füredi. With the change of variables $y_i = x_i - x_{i-1}$, q_k is the fraction of the simplex bounded by $y_1 + \cdots + y_{2k} \le 1$ and $y_i \ge 0$ that remains when we cut off the vertices in pairs (y_{2i-1}, y_{2i}) by including the stronger constraints $y_1 + y_2 + \cdots + y_{2i-2} + 2y_{2i-1} + 2y_{2i} + y_{2i+1} + \cdots + y_{2k} \le 1$ for each i with $1 \le i \le k$.

5 Probability that a random sequence in [0,1] is special

In this section we determine the exact value of q_k as a simple integral, and then we solve this integral asymptotically.

Let X_1, X_2, \ldots, X_n be independent random variables uniformly distributed over [0, 1]. We arrange this sequence in ascending order and get the sequence $X_{1,n} \leq X_{2,n} \leq \cdots \leq X_{n,n}$ of the so-called order statistics. Is is known (see [13, Sec. 13.1]) that the random vector $(X_{1,n},\ldots,X_{n,n})$ admits the following representation. Let Y_1,Y_2,\ldots,Y_{n+1} be independent identically distributed random variables with a standard exponential distribution, that is, $\mathbb{P}(Y_i \in dy) = e^{-y}dy$ for any $y \geq 0$, and let $S_n := Y_1 + \cdots + Y_n$ be the corresponding random walk. Then the random vector $(X_{1,n},\ldots,X_{n,n})$ has the same distribution as $\left(\frac{S_1}{S_{n+1}},\ldots,\frac{S_n}{S_{n+1}}\right)$.

This representation gives a simple way to compute the probability that the sequence $X_{1,2k}, \ldots, X_{2k,2k}$ is special. Indeed, defining $X_{0,n} := 0$, we have

$$\begin{split} q_k &= \mathbb{P}\Big(\max_{1 \leq i \leq k} (X_{2i} - X_{2i-2}) \leq 1 - X_{2k,2k}\Big) \\ &= \mathbb{P}\Big(\max_{1 \leq i \leq k} \Big(\frac{S_{2i}}{S_{2k+1}} - \frac{S_{2i-2}}{S_{2k+1}}\Big) \leq 1 - \frac{S_{2k}}{S_{2k+1}}\Big) \\ &= \mathbb{P}\Big(\max_{1 \leq i \leq k} (Y_{2i-1} + Y_{2i}) \leq Y_{2k+1}\Big) \\ &= \int_0^\infty \mathbb{P}^k \Big(Y_1 + Y_2 \leq y\Big) e^{-y} dy, \end{split}$$

where we used independence of Y_n to get the last line. It is well known that $Y_1 + Y_2$ has a gamma(2) distribution whose density is given by $\mathbb{P}(Y_1 + Y_2 \in dy) = ye^{-y}dy$ for $y \geq 0$. Then $\mathbb{P}(Y_1 + Y_2 \leq y) = 1 - (1 + y)e^{-y}$ for $y \geq 0$, and we get

$$q_k = \int_0^\infty \left(1 - (1+y)e^{-y}\right)^k e^{-y} dy.$$

The change of variables $x = e^{-y}$ now yields

Theorem 10

$$q_k = \int_0^1 (1 - (1 - \log x)x)^k dx.$$

Theorem 10 implies immediately that q_k is decreasing in k, whereas we still have no proof that c_{2k} is decreasing. While it seems difficult to solve this integral explicitly it is now easy to compute small values using a computer algebra system: $q_1 = \frac{1}{4}$, $q_2 = 7/54$, $q_3 = \frac{97}{1152}$. Thus combining (1) with (4) we obtain the following estimates for c_{2r} : $1.2 \le c_4 \le 1.5$, $1.14 \le c_6 \le 1.39$, $1.11 \le c_8 \le 1.34$. While we have little reason to believe that the upper bounds obtained this way are optimal, the lower bounds are certainly weak. In fact for the graph case we know that $c_2 = 2$, which is exactly what the construction in Proposition 7 yields, whereas the lower bound from (1) is only 4/3.

The upper bound for our main result, Theorem 5, immediately follows from the asymptotics of q_k given below.

Theorem 11 $q_k \sim \frac{1}{k \log k}$.

Proof. With the definition f(0) = 0, the function $f(x) := (1 - \log x)x$ is continuous and increasing on [0, 1], with $f'(x) = -\log x$ and f(1) = 1. Thus

$$q_k = \int_0^1 (1 - f(x))^k dx = \int_0^{f^{-1}(\frac{2\log k}{k})} (1 - f(x))^k dx + \int_{f^{-1}(\frac{2\log k}{k})}^1 (1 - f(x))^k dx.$$

Observe that using $y = -\frac{u}{k}$ in the inequality $e^y \ge 1 + y$ we obtain $(1 - \frac{u}{k})^k \le e^{-u}$ when $u \le k$, and thus the second integral is bounded from above by $e^{-2\log k} = 1/k^2$. The change of variables u = kf(x) now yields

$$q_k = \frac{1}{k} \int_0^{2\log k} \frac{(1 - \frac{u}{k})^k}{-\log f^{-1}(\frac{u}{k})} du + O\left(\frac{1}{k^2}\right).$$

Note that $\log f^{-1}(z) \sim \log z$ as $z \to 0$ now follows by L'Hôpital's rule:

$$\lim_{z \to 0} \frac{\log f^{-1}(z)}{\log z} = \lim_{z \to 0} \frac{zf^{-1}(z)'}{f^{-1}(z)} = \lim_{z \to 0} \frac{z}{f^{-1}(z)f'(f^{-1}(z))} = \lim_{y \to 0} \frac{f(y)}{yf'(y)} = 1.$$

Hence

$$q_k = \frac{1}{k} \int_0^{2\log k} \frac{(1 - \frac{u}{k})^k (1 + o(\frac{u}{k}))}{\log k - \log u} du + O\left(\frac{1}{k^2}\right)$$
$$= \frac{1}{k \log k} \int_0^\infty \frac{(1 - \frac{u}{k})^k (1 + o(\frac{u}{k}))}{1 - \frac{\log u}{\log k}} \mathbb{1}_{[0, 2\log k]}(u) du + O\left(\frac{1}{k^2}\right).$$

For k large enough, the integrand does not exceed $2e^{-u}$, which is integrable on $[0, \infty)$. Since for fixed u the integrand converges to e^{-u} as $k \to \infty$, it now follows from the dominated convergence theorem, that the integral converges to $\int_0^\infty e^{-u} du = 1$.

6 Acknowledgements

We thank the referees for their useful suggestions.

References

- [1] N. Alon, Decomposition of the complete r-graph into complete r-partite r-graphs, Graphs Combin. 2 (1986), 95–100.
- [2] N. Alon and J. Spencer, The Probabilistic Method, Wiley Interscience Series in Discrete Mathematics and Optimization, 3rd Edition, (2008).

- [3] S.M. Cioabă and A. Kündgen, Covering hypergraphs with cuts of minimum total size, submitted.
- [4] S.M. Cioabă, A. Kündgen and J. Verstraëte, On decompositions of complete hypergraphs,
 J. Combin. Theory Ser. A 116 (2009), 1232–1234.
- [5] M.K. Fredman and J. Komlós, On the size of separating systems and families of perfect hash functions, SIAM J. Alg. Disc. Meth. 5 (1984), 61–68.
- [6] Z. Füredi and A. Kündgen, Covering a graph with cuts of minimum total size, Discrete Math. 237 (2001), 129–148.
- [7] M. Garey, D. Johnson and H. So, An application of graph coloring to printed circuit testing, IEEE Trans. Circuits and Systems CAS-23 (1976), 591–599.
- [8] R.L. Graham and H.O. Pollak, On the addressing problem for loop switching, Bell System Tech. J. **50** (1971), 2495–2519.
- [9] R.L. Graham and H.O. Pollak, On embedding graphs in squashed cubes, Lecture Notes in Math. 303, Springer, Berlin (1972), 99–110.
- [10] F. Harary, D. Hsu and Z. Miller, *The biparticity of a graph*, J. Graph Theory **1** (1977), 131–133.
- [11] F. Jaeger, A. Khelladi and M. Mollard, On shortest cocycle covers of graphs, J. Combin. Theory Ser. B 39 (1985), 153–163.
- [12] U. Jamshy and M. Tarsi, Cycle covering of binary matroids, J. Combin. Theory Ser. B 46 (1989), 154–161.
- [13] S. Karlin and H.M. Taylor, A Second Course in Stochastic Processes. Academic Press, New York (1981).
- [14] M. Klugerman, A. Russell and R. Sundaram, A note on embedding complete graphs into hypercubes, Discrete Math. 186 (1998), 289–293.
- [15] A. Kündgen, Covering cliques with spanning bicliques, J. Graph Theory 27 (1998), 223–227.
- [16] A. Kündgen and M. Spangler, A bound on the total size of a cut cover, Discrete Math. 296 (2005), 121–128.

- [17] D.W. Matula, k-components, clusters and slicings in graphs, SIAM J. Appl. Math. 22 (1972), 459–480.
- [18] K. Melhorn, On the program size of perfect functions and universal hash functions, Proc. 23rd Annual IEEE Symposium on Foundations of Computer Science, (1982).
- [19] A. Nilli, *Perfect hashing and probability*, Combinatorics, Probability and Computing **3** (1994), 407-409.
- [20] G.W. Peck, A new proof of a theorem of Graham and Pollak, Discrete Math. 49 (1984), 327–328.
- [21] J. Radhakrishnan, *Entropy and Counting*, IIT Kharagpur, Golden Jubilee Volume, on Computational Mathematics, Modelling and Algorithms (Ed. JC Mishra), Narosa Publishers, New Delhi, (2001).
- [22] H. Tverberg, On the decomposition of K_n into complete bipartite graphs, J. Graph Theory 6 (1982), 493–494.
- [23] S. Vishwanathan, A polynomial space proof of the Graham-Pollak theorem, J. Combin. Theory Ser. A 115 (2008), 674–676.