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Abstract

A star coloring of a graph is a proper vertex-coloring such that no
path on four vertices is 2-colored. We prove that the vertices of every
bipartite planar graph can be star colored from lists of size 14, and
we give an example of a bipartite planar graph that requires at least
8 colors to star color.

1 Introduction

A proper coloring of a graph G is an assignment of colors to the vertices of
G such that adjacent vertices receive different colors. In 1973, Griinbaum [4]
introduced acyclic colorings, that is proper colorings such that all 2-colored
subgraphs are acyclic. Griinbaum proved that any planar graph can be acycli-
cally colored with nine colors, and conjectured that any planar graph can be
acyclically colored with five colors. This was confirmed by Borodin [2] in
1979. Kostochka and Melnikov [5] gave examples of a bipartite planar graph
that requires 5 colors to acyclically color so that Borodin’s result is optimal,
even when restricted to bipartite planar graphs.
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Griinbaum [4] also suggested the notion of what has become known as
star colorings, i.e. proper colorings such that no path on four vertices is 2-
colored, in other words all 2-colored subgraphs are star-forests. Any star
coloring is also an acyclic coloring so that star colorings typically require
more colors than acyclic colorings, and less is known about star colorings
of planar graphs. Albertson, Chappell, Kierstead, Kiindgen, and Rama-
murthi [1] established that the minimum number of colors sufficient for star
coloring arbitrary planar graphs is between 10 and 20. A corollary to a result
of Nesetril and Ossona de Mendez [6] shows that any bipartite planar graph
can be star colored with 18 colors, but the best published constructions of
bipartite planar graphs require only 5 colors to star color: Fertin, Raspaud
and Reed [3] establish this for grid graphs of size at least 4 x 4, whereas
Ramamurthi and Sanders [7] show that bipartite outerplanar graphs can be
5-star colored and that this is best possible by exhibiting a small outerpla-
nar grid-like graph requiring 5 colors. Of course the examples of Kostochka
and Melnikov [5] also require at least 5 colors to star color: for example, the
graph obtained from the double-wheel C5 VV K5 by replacing each edge uv of
the 5-cycle with a copy of K54 so that u,v are the degree 4 vertices.

In Section 3 we prove that every bipartite planar graph can be star colored
from lists of size 14, and in Section 4 we give an example of a bipartite
planar graph that requires 8 colors to star color. We begin by collecting
some relevant definitions and notations.

2 Preliminaries

All graph considered have no loops or multiple edge. We denote the vertex
set of a graph G by V(G) and denote the edge set of G by E(G). If G has
vertex set V(G) and edge set E(G) we may write G = (V, E). An orientation
of a graph G is a digraph G obtained by assigning one of two directions to
cach edge of G. If G is a digraph, we may write G = (V, E) If edge e has
endpoints z and y we may write xy to denote e. If e is an oriented edge
that points away from z and towards y then we may write (z,y) or z — y
to denote e and its orientation.

Let dg(z) denote the degree of x in G and let A(G) denote the maximum
degree of GG. The outdegree of a vertex v in a digraph is the number of edges
adjacent to v that are oriented away from v. Let df,(v) denote the outdegree
of v in G. The maximum outdegree of a digraph G is denoted by A+(C_j).



A graph is k-choosable if given any assignment of lists of size k to the
vertices of GG, G has a proper coloring in which the colors are chosen from
the lists. Similarly, a graph is k-star choosable if given any assignment of
lists of size k to the vertices of GG, there is a star coloring in which the colors
are chosen from the lists. It is known that if every subgraph H C G has
average (and thus minimum) degree less than k, then G is k-choosable. Of
course k-star choosable graphs are k-star colorable.

3 The upper bound

In this section we prove that bipartite planar graphs are 14-star choosable. A
useful equivalent notion to star coloring introduced (in an equivalent form)
by Nesetril and Ossona de Mendez [6] and used by Albertson, Chappell,
Kierstead, Kundgen Ramamurthi [1] is that of an in-coloring. An in-coloring
of a digraph Gis a proper coloring of G such that any 2-colored path on
three vertices has its edges oriented towards the center vertex. We repeat
the following proof for the sake of completeness.

Lemma 3.1 A coloring of G is a star coloring if and only if it is an in-
coloring for some orientation G of G.

Proof. If GG has been assigned a star coloring, then we may orient each edge
towards the center of each star in each star forest induced by the union of
two color classes. Assume G has an in-coloring. If zyzt is a path on four
vertices in G then we may assume yz is oriented into z. Then three colors
must appear on z,y, and z. ]

For any graph G = (V, F) and orientation G = (V, E), define a super-
graph G* = (V, E*) by E* = E UO(G) UT(G), where

OG)={zz:22¢ EAnz#2NTyly — x Ay — 2)} and
T(G)={ez:22¢ EATy(z —yAy— 2)}.
At times we may abuse notation by also writing O(G) and T(G) for the
graphs they induce.

Since an in-coloring of G corresponds to a proper coloring of E* we im-
mediately obtain the following result, which is essentially Corollary 3 of [6].



Lemma 3.2 A coloring of G is a star coloring if and only if it is a proper
coloring of G for some orientation G of G.

The following observation will be crucial.

Lemma 3.3 FEwvery bipartite planar graph G can be partitioned into two edge-
disjoint forests.

Proof. Every subgraph H C G is bipartite and planar. Using Euler’s
formula H has at most 2 |V (H)| — 4 edges. By the Nash-Williams Theorem,
the edges of GG can be partitioned into two forests. [ ]

Theorem 3.4 Fvery bipartite planar graph is 14-star choosable.

Proof. Let G = (V, E) be a bipartite planar graph. Using Lemma 3.3, let
G = Fy U F,, where F; and F, are edge- dlSJOlnt forests. Orient each Fj,
i =1,2, as F; so that AY(F) < 1 and let G = (V, E) = F, U Fy. Denote
(z,y) € E(F) by © —; y. By Lemma 3.2 it suffices to show that G* i
14-choosable.

Define graphs H = (V, A) and H' = (V, A’) and digraph H' = (V, A") by

A={zz:zz¢ ENx#2ANTylay € ENyYy —1 2)},
A ={(x,2) 22 ¢ EATy(x — y Ay —, 2)} and
A= {xz:(x,z) Eff'}.

First we show that O(G) C A: Suppose 2125 € O(G). Then there exists
y € V such that y — x; and y — x. Since df, (y) < 1, there exists i € {1,2}
such that y —; ;. Thus x125 € A.

Next we show that T(G) € AU A": Suppose 2125 € T(G). Then there
exists y € V and ¢ € {1,2} such that z3_; — y and y — z;. If y — z; then
T1T9 € A; otherwise y —o x; and x125 € A,

It now follows that G* C GU H U H’, so to prove that G* is 14-choosable
it suffices to show that the average degree of any subgraph of G U H U
H' is less than 14. Note that A*(ITI') < 2. Since every edge in H goes
between vertices of the same color class in G it follows that H consists of two
disjoint subgraphs, both of which are minors of GG, and thus H is planar. By
hypothesis G is a bipartite planar graph. These properties are all preserved
for subgraphs. The average degree of a bipartite planar graph is less than 4.
So the average degree of any subgraph of GUHUH' is less than 4+6+4 = 14.
|



4 A construction

In this section we give an example of a bipartite planar graph that is not
7-star colorable.

The simple observation that in any 7-star coloring of K,; the degree
seven vertices must receive different colors will be useful. So if a given graph
contains vertices x and y that are the degree 7 vertices of a K, 7-subgraph,
then we say that x and y are weakly adjacent, and we speak of the weak
edge ry. A weak edge between two vertices will be depicted by a double edge
(see Figure 1). Weak edges can help us in bipartite constructions because
they allow us to connect vertices in the same partition. For example, the
Kostochka-Melnikov construction [5] is essentially a K55 in which we add a
5-cycle of weak edges in the larger part. We can also use the Ramamurthi-
Sanders construction [7] of a bipartite outerplanar graph requiring 5 colors
to obtain a bipartite planar graph requiring 6 colors by adding a vertex in
the outer face, and connecting it with edges to every vertex in the first part,
and with weak edges to every vertex in the second part. However, we need
to work harder than that to force more colors.

A weak k-path is a sequence of vertices zq, ...,z such that z; is weakly
adjacent to z;11 for k=1,... k—1. If x and y are two vertices each of which
is adjacent to every vertex of a weak 7-path, then we say that S(xz1yz7) is
a strong 4-cycle, and S(zz1yz;) will be depicted by a 4-cycle in which x,y
are colored black and z1, z7 are colored white (See Figure 1). Observe that
in this case x and y are weakly adjacent.

x x x x
21 ) 27
Y Y Y Y
Figure 1: A weak edge A strong 4-cycle

The next definition is crucial for our construction.

Definition 4.1 A k-cluster with center v is a graph C with vertez-set V(C') =
{v, 21,22, ..., T, Y1, Y2, - - ., Yk}, together with a star-coloring f such that:

1. v has k distinct neighbors x1,xs, ..., xy, called its special neighbors,



2. each x; is adjacent to a vertex y; # v with f(y;) = f(v).

The edges x;y; are said to be the legs of the k-cluster.

Observe that we require the z;’s to be distinct and so they receive distinct
colors, and none of these colors is f(v). However some of the y;’s may be
identical. For instance every 7-star colored weak edge xy contains a 2-cluster
with center different from x and y. The main idea of the construction is
to build a sequence of bipartite planar graphs Gs, G4, G5 such that every
7-star coloring of G, contains a k-cluster (for k = 3,4), whereas G5 can’t be
7-star colored at all. To construct G we will attach a separate copy Hy(v)
of a graph Hj, to every vertex v of Gj_1, and use Hy(v) to show that the
(k — 1)-cluster C' in Gy_; centered at v forces a k-cluster in the subgraph
Hy(v) U C of Gg. Formally we say that a cluster C' with center v is attached
to a subgraph H if v is the only vertex shared by C' and H. Figure 4 shows
2-clusters attached to v and w in a specific graph.

To start the construction we let A(v,y) denote the graph consisting of
the strong 4-cycles S(ca'ya”) and S(cb'vb”) (which only share ¢) together
with the edges va' and va”. A(v,y) will be denoted by a triple edge with an
arrow pointing towards y (See Figure 2). Furthermore B(v,w) denotes the
bipartite planar graph obtained from K, g with parts {v, w} and {z1, ..., xs}
by connecting each x; to z; 41 with a path z;y;x;;1 and then adding in A(v, y;)
and A(w,y;) for all 1 < i <7 (See Figure 3). Finally, G5 is obtained from
a K14 with parts {wy,we} and {uy,...,u4} by adding B(u;, u;1q) for all
1 <0< 138.

Figure 2: Graph A(v,y)



Figure 3: Graph B(v,w)

Lemma 4.2 Fvery 7-star coloring of G3 contains a 3-cluster.

Proof. Let f be a 7-star coloring of G3, where we may assume that f(w;) = 1
and f(wq) = 2. Observe that K514 must contain consecutive vertices u;, ;41
both of which are centers of 2-clusters in K314 (any u; whose color is used
twice in K514 is the center of a 2-cluster). Since B(u;, u;+1) contains a weak
edge w;u; 41 we can assume that f(u;) = 3, f(u;+1) = 4. Observe that w;
and wy are special neighbors of both u; and u;;;. Thus we have a copy of
B(v,w) with attached 2-clusters as in Figure 4, where the neighbors of v, w
of colors 1,2 represent wy, wy respectively. We focus on this copy of B(v,w)
and relabel u; as v and ;1 as w.

Observe colors 3 and 4 are forbidden on each y; for if f(y;) =3 or f(y;) =
4 then v or w respectively is the center of a 3-cluster. If f(x;) = f(x;41),
then z; is the center of a 3-cluster with legs vz;1, w1, and y;x;41. Since
each x; is adjacent to both v and w, f(z;) € {5,6,7} for each j. Since
there are eight distinct z;’s, we can find j # k with f(z;) = f(z)) and
f(zj+1) = f(xp41). Without loss of generality, we can assume that f(z;) =5
and f(z;11) = 6, and all vertices are named as in Figure 4.

Both aj and a] are adjacent to v so colors 1,2, and 3 are forbidden on a}
and a;. If either of these vertices are assigned colors 5 or 6, then z; respec-
tively ;11 is the center of a 3-cluster with legs y;af, vy, wry respectively



Y;a, Vg1, Wk (i =1ori="7). If aj and af are assigned the same color,
then a; is the center of a 3-cluster with legs vay, c;af, and y;aj. So, by sym-
metry of A(v,y;), we may assume f(aj) = 7 and f(a) = 4. Similarly, we
may assume f(p;) = 7 and f(pj) = 3. Applying the same argument with
the roles of k and j interchanged we obtain f(at) =7, f(al) =4, f(pt) = 7,
and f(pi) = 3. Only colors 1 and 2 are available for y;, so without loss of
generality f(y;) =1 (See Figure 4).

L

Tj4+1

Figure 4: Partial Coloring of B(v,w)

Since each a§ is adjacent to y;, color 1 is forbidden on each aé-. If az. is
assigned color 4, then af is the center of a 3-cluster with legs c;a},y;a}, and
vaj. Similarly, if a} is assigned colors 5, 6, or 7, then x;, 211, or a;j (respec-
tively) is the center of a 3-cluster with legs y;aj, vry, way or y;a%, vrg 1, WTki
or yjaé-,cjctj-,vcz}C (respectively). Therefore we may assume f(aj) = 2 and
f(aj“) = 3 for some s € {2,3}. By symmetry, we may assume f(p}) = 2

and f(p™) = 4 for some t € {2,3}.

Since each b; is adjacent to v, colors 1,2, and 3 are forbidden on bz If
f(b) = 4 then al is the center of a 3-cluster with legs vb!, ¢;bt, and y;pi*'.
If f(b) = 7 then a} is the center of a 3-cluster with legs vb}, c;0%, and y;pj.
Therefore colors 5 and 6 must be used on the weakly adjacent vertices b;
and b?. Since c¢; has neighbors of each color other than 1, it follows that

f(c;) = 1, but ¢; is weakly adjacent to y;. Thus there is no 7-star coloring

8



of (G35 without 3-clusters. [

Let Hy = Hy(v) be the graph constructed as follows. Start with a K57
with parts {v,w} and {z1,..., 27}, and then do the following for all 1 < j <
6: add the path z;y;2;,1, the strong 4-cycles S(vajy;af) and S(x;bjx;4107),
followed by the weak edges xjajl and mj+1a]7~. Now let G4 be obtained by
identifying every vertex v of G3 with its own copy Hy(v) of Hy at the vertex

v.
Lemma 4.3 FEvery 7-star coloring of G4 contains a 4-cluster.

Proof. Suppose f is a 7-star coloring of GG4. Then by Lemma 4.2 (G5 contains
a 3-cluster C' centered at some vertex v, and we may assume that f(v) = 1,
and the special neighbors of v have been assigned colors 2,3, and 4. This
3-cluster is attached to Hy(v), and we look for a 4-cluster in the subgraph
C'U Hy(v) of Gy.

Since each z; is adjacent to v, f(z;) € {5,6,7} for each j. Also, each z;
is weakly adjacent to z;41 so that f(z;) # f(z;41). We can find 2 < j <5
with f(z;) = f(xx) and f(z;41) = f(z;) for some k,l € {1,...,7}, k # j and
[ # j + 1, and without loss of generality f(x;) =5 and f(xj4+1) = 6.

For each 1, 7, only colors 5,6, and 7 are available for a;'. since each aj- is
adjacent to v. The weak path ajl- e a; requires 2 colors so that we may assume
f(al') = 6 for some m (See Figure 5). Colors 1, 5, and 6 are forbidden on y;
since y; is weakly adjacent to v, and is adjacent to z; and ;4. If f(y;) =7,
then since a} is weakly adjacent to x;, we must have f (a}) = 6 which forces
f (a;) = 6, a contradiction since a]7~ is weakly adjacent to z;1;. By symmetry
of colors 2,3, and 4, we may assume f(y;) = 2 (See Figure 5).

If f(a},,) = 6 then x;, is the center of a 4-cluster with legs y;41a},,,
y;ay', vxy, and wx;. Thus the weak path aj,,...aJ,, must be colored using
colors 5 and 7. If f(y;11) = 2 then the path y;12;,1y;aT is 2-colored. By
symmetry of colors 3 and 4, we may assume f(y;+1) = 3.

Observe that each vertex in X = {0, w,b},,,b7,,} must receive a dif-
ferent color as x;19 is adjacent to w, b}H, and b§+1, the path zjwz;1b; 4,
i = 1,2, would be 2-colored if w and b}, receive the same color, and b}, is
weakly adjacent to b? +1- For a contradiction it suffices to show that colors
1,2,3, and 6 cannot be used on any vertex in X.

Colors 1,2, and 3 cannot be assigned to z,49 since z,49 is adjacent to v.
If color 1 is assigned to any vertex in X — {x;42}, then v is then center of a
4-cluster. If f(z) = 2 for some z € X — {72}, then zx;,,1y;a]" is 2-colored.

9
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Figure 5: Partial coloring of H,

If f(w) = 3 then y;1z;wa; is 2-colored. Since x4 is weakly adjacent
to Tj4o, it must be that f(z;4) € {5,7}. The weak path aj,,...al,, is
colored using colors 5 and 7 therefore, if f(b},,) = 3 with i = 1,2, then
b5 1Tj+2Yj+107, 1 18 2-colored for some n. Since each vertex in X is adjacent
or weakly adjacent to x;41, color 6 is forbidden on X. We conclude that
no vertex in X may be assigned colors 1,2,3, or 6 which gives the needed
contradiction. ]

Let Hs(v) consist of a vertex v adjacent to the vertices xy,xq,z3 of a
triangle of weak edges. Obtain G5 by attaching a separate Hy(v) to each
vertex v of Gy.

Theorem 4.4 G5 has no 7-star coloring.

Proof. Suppose f is a 7-star coloring of G5. Then by Lemma 4.3 G4 contains
a 4-cluster C' centered at v and we may assume f(v) = 1 and the special
neighbors of v have been assigned colors 2,3,4, and 5. This 4-cluster is
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attached to Hs(v) and colors 1,2,3,4, and 5 cannot be used on any z; in
H;(v), but each z; must be assigned a distinct color. n

5 Remarks

It is possible that neither the upper bound of 14, nor the lower bound of 8 is
the correct answer for the minimum £ such that each bipartite planar graph
is k-star colorable or k-star choosable, but we believe that the answer for
both questions is probably closer to the lower bound. To improve the lower
bound from 8 to 9 the difficulty lies in forcing k-clusters for 3 < k£ < 5 and
then the last step, Theorem 4.4, would work similarly.
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