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Abstract

A star coloring of a graph is a proper vertex-coloring such that no
path on four vertices is 2-colored. We prove that the vertices of every
bipartite planar graph can be star colored from lists of size 14, and
we give an example of a bipartite planar graph that requires at least
8 colors to star color.

1 Introduction

A proper coloring of a graph G is an assignment of colors to the vertices of
G such that adjacent vertices receive different colors. In 1973, Grünbaum [4]
introduced acyclic colorings, that is proper colorings such that all 2-colored
subgraphs are acyclic. Grünbaum proved that any planar graph can be acycli-
cally colored with nine colors, and conjectured that any planar graph can be
acyclically colored with five colors. This was confirmed by Borodin [2] in
1979. Kostochka and Melnikov [5] gave examples of a bipartite planar graph
that requires 5 colors to acyclically color so that Borodin’s result is optimal,
even when restricted to bipartite planar graphs.
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Grünbaum [4] also suggested the notion of what has become known as
star colorings, i.e. proper colorings such that no path on four vertices is 2-
colored, in other words all 2-colored subgraphs are star-forests. Any star
coloring is also an acyclic coloring so that star colorings typically require
more colors than acyclic colorings, and less is known about star colorings
of planar graphs. Albertson, Chappell, Kierstead, Kündgen, and Rama-
murthi [1] established that the minimum number of colors sufficient for star
coloring arbitrary planar graphs is between 10 and 20. A corollary to a result
of Nes̆etr̆il and Ossona de Mendez [6] shows that any bipartite planar graph
can be star colored with 18 colors, but the best published constructions of
bipartite planar graphs require only 5 colors to star color: Fertin, Raspaud
and Reed [3] establish this for grid graphs of size at least 4 × 4, whereas
Ramamurthi and Sanders [7] show that bipartite outerplanar graphs can be
5-star colored and that this is best possible by exhibiting a small outerpla-
nar grid-like graph requiring 5 colors. Of course the examples of Kostochka
and Melnikov [5] also require at least 5 colors to star color: for example, the
graph obtained from the double-wheel C5 ∨K2 by replacing each edge uv of
the 5-cycle with a copy of K2,4 so that u, v are the degree 4 vertices.

In Section 3 we prove that every bipartite planar graph can be star colored
from lists of size 14, and in Section 4 we give an example of a bipartite
planar graph that requires 8 colors to star color. We begin by collecting
some relevant definitions and notations.

2 Preliminaries

All graph considered have no loops or multiple edge. We denote the vertex
set of a graph G by V (G) and denote the edge set of G by E(G). If G has
vertex set V (G) and edge set E(G) we may write G = (V, E). An orientation

of a graph G is a digraph ~G obtained by assigning one of two directions to
each edge of G. If ~G is a digraph, we may write G = (V, ~E). If edge e has
endpoints x and y we may write xy to denote e. If e is an oriented edge
that points away from x and towards y then we may write (x, y) or x → y
to denote e and its orientation.

Let dG(x) denote the degree of x in G and let ∆(G) denote the maximum
degree of G. The outdegree of a vertex v in a digraph is the number of edges
adjacent to v that are oriented away from v. Let d+

G(v) denote the outdegree

of v in ~G. The maximum outdegree of a digraph ~G is denoted by ∆+(~G).
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A graph is k-choosable if given any assignment of lists of size k to the
vertices of G, G has a proper coloring in which the colors are chosen from
the lists. Similarly, a graph is k-star choosable if given any assignment of
lists of size k to the vertices of G, there is a star coloring in which the colors
are chosen from the lists. It is known that if every subgraph H ⊆ G has
average (and thus minimum) degree less than k, then G is k-choosable. Of
course k-star choosable graphs are k-star colorable.

3 The upper bound

In this section we prove that bipartite planar graphs are 14-star choosable. A
useful equivalent notion to star coloring introduced (in an equivalent form)
by Nes̆etr̆il and Ossona de Mendez [6] and used by Albertson, Chappell,
Kierstead, Kündgen, Ramamurthi [1] is that of an in-coloring. An in-coloring

of a digraph ~G is a proper coloring of ~G such that any 2-colored path on
three vertices has its edges oriented towards the center vertex. We repeat
the following proof for the sake of completeness.

Lemma 3.1 A coloring of G is a star coloring if and only if it is an in-
coloring for some orientation ~G of G.

Proof. If G has been assigned a star coloring, then we may orient each edge
towards the center of each star in each star forest induced by the union of
two color classes. Assume ~G has an in-coloring. If xyzt is a path on four
vertices in G then we may assume yz is oriented into z. Then three colors
must appear on x, y, and z.

For any graph G = (V, E) and orientation ~G = (V, ~E), define a super-

graph ~G∗ = (V, ~E∗) by ~E∗ = ~E ∪O(~G) ∪ T (~G), where

O(~G) = {xz : xz /∈ E ∧ x 6= z ∧ ∃y(y → x ∧ y → z)} and

T (~G) = {xz : xz /∈ E ∧ ∃y(x → y ∧ y → z)} .

At times we may abuse notation by also writing O(~G) and T (~G) for the
graphs they induce.

Since an in-coloring of ~G corresponds to a proper coloring of ~E∗ we im-
mediately obtain the following result, which is essentially Corollary 3 of [6].
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Lemma 3.2 A coloring of G is a star coloring if and only if it is a proper
coloring of ~G∗ for some orientation ~G of G.

The following observation will be crucial.

Lemma 3.3 Every bipartite planar graph G can be partitioned into two edge-
disjoint forests.

Proof. Every subgraph H ⊆ G is bipartite and planar. Using Euler’s
formula H has at most 2 |V (H)| − 4 edges. By the Nash-Williams Theorem,
the edges of G can be partitioned into two forests.

Theorem 3.4 Every bipartite planar graph is 14-star choosable.

Proof. Let G = (V, E) be a bipartite planar graph. Using Lemma 3.3, let
G = F1 ∪ F2, where F1 and F2 are edge-disjoint forests. Orient each Fi,
i = 1, 2, as ~Fi so that ∆+(~Fi) ≤ 1 and let ~G = (V, ~E) = ~F1 ∪ ~F2. Denote

(x, y) ∈ E(~Fi) by x →i y. By Lemma 3.2 it suffices to show that ~G∗ is
14-choosable.

Define graphs H = (V, A) and H ′ = (V, A′) and digraph ~H ′ = (V, ~A′) by

A = {xz : xz /∈ E ∧ x 6= z ∧ ∃y(xy ∈ E ∧ y →1 z)} ,

~A′ = {(x, z) : xz /∈ E ∧ ∃y(x → y ∧ y →2 z)} and

A′ =
{

xz : (x, z) ∈ ~A′
}

.

First we show that O(~G) ⊆ A: Suppose x1x2 ∈ O(~G). Then there exists
y ∈ V such that y → x1 and y → x2. Since d+

F2
(y) ≤ 1, there exists i ∈ {1, 2}

such that y →1 xi. Thus x1x2 ∈ A.
Next we show that T (~G) ⊆ A ∪ A′: Suppose x1x2 ∈ T (~G). Then there

exists y ∈ V and i ∈ {1, 2} such that x3−i → y and y → xi. If y →1 xi then
x1x2 ∈ A; otherwise y →2 xi and x1x2 ∈ A′.

It now follows that G∗ ⊆ G∪H ∪H ′, so to prove that ~G∗ is 14-choosable
it suffices to show that the average degree of any subgraph of G ∪ H ∪
H ′ is less than 14. Note that ∆+( ~H ′) ≤ 2. Since every edge in H goes
between vertices of the same color class in G it follows that H consists of two
disjoint subgraphs, both of which are minors of G, and thus H is planar. By
hypothesis G is a bipartite planar graph. These properties are all preserved
for subgraphs. The average degree of a bipartite planar graph is less than 4.
So the average degree of any subgraph of G∪H∪H ′ is less than 4+6+4 = 14.
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4 A construction

In this section we give an example of a bipartite planar graph that is not
7-star colorable.

The simple observation that in any 7-star coloring of K2,7 the degree
seven vertices must receive different colors will be useful. So if a given graph
contains vertices x and y that are the degree 7 vertices of a K2,7-subgraph,
then we say that x and y are weakly adjacent, and we speak of the weak
edge xy. A weak edge between two vertices will be depicted by a double edge
(see Figure 1). Weak edges can help us in bipartite constructions because
they allow us to connect vertices in the same partition. For example, the
Kostochka-Melnikov construction [5] is essentially a K2,5 in which we add a
5-cycle of weak edges in the larger part. We can also use the Ramamurthi-
Sanders construction [7] of a bipartite outerplanar graph requiring 5 colors
to obtain a bipartite planar graph requiring 6 colors by adding a vertex in
the outer face, and connecting it with edges to every vertex in the first part,
and with weak edges to every vertex in the second part. However, we need
to work harder than that to force more colors.

A weak k-path is a sequence of vertices z1, . . . , zk such that zi is weakly
adjacent to zi+1 for k = 1, . . . , k−1. If x and y are two vertices each of which
is adjacent to every vertex of a weak 7-path, then we say that S(xz1yz7) is
a strong 4-cycle, and S(xz1yz7) will be depicted by a 4-cycle in which x, y
are colored black and z1, z7 are colored white (See Figure 1). Observe that
in this case x and y are weakly adjacent.
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Figure 1: A weak edge A strong 4-cycle

The next definition is crucial for our construction.

Definition 4.1 A k-cluster with center v is a graph C with vertex-set V (C) =
{v, x1, x2, . . . , xk, y1, y2, . . . , yk}, together with a star-coloring f such that:

1. v has k distinct neighbors x1, x2, . . . , xk, called its special neighbors,
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2. each xi is adjacent to a vertex yi 6= v with f(yi) = f(v).

The edges xiyi are said to be the legs of the k-cluster.

Observe that we require the xi’s to be distinct and so they receive distinct
colors, and none of these colors is f(v). However some of the yi’s may be
identical. For instance every 7-star colored weak edge xy contains a 2-cluster
with center different from x and y. The main idea of the construction is
to build a sequence of bipartite planar graphs G3, G4, G5 such that every
7-star coloring of Gk contains a k-cluster (for k = 3, 4), whereas G5 can’t be
7-star colored at all. To construct Gk we will attach a separate copy Hk(v)
of a graph Hk to every vertex v of Gk−1, and use Hk(v) to show that the
(k − 1)-cluster C in Gk−1 centered at v forces a k-cluster in the subgraph
Hk(v) ∪C of Gk. Formally we say that a cluster C with center v is attached
to a subgraph H if v is the only vertex shared by C and H. Figure 4 shows
2-clusters attached to v and w in a specific graph.

To start the construction we let A(v, y) denote the graph consisting of
the strong 4-cycles S(ca1ya7) and S(cb1vb7) (which only share c) together
with the edges va1 and va7. A(v, y) will be denoted by a triple edge with an
arrow pointing towards y (See Figure 2). Furthermore B(v, w) denotes the
bipartite planar graph obtained from K2,8 with parts {v, w} and {x1, . . . , x8}
by connecting each xi to xi+1 with a path xiyixi+1 and then adding in A(v, yi)
and A(w, yi) for all 1 ≤ i ≤ 7 (See Figure 3). Finally, G3 is obtained from
a K2,14 with parts {w1, w2} and {u1, . . . , u14} by adding B(ui, ui+1) for all
1 ≤ i ≤ 13.
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Figure 3: Graph B(v, w)

Lemma 4.2 Every 7-star coloring of G3 contains a 3-cluster.

Proof. Let f be a 7-star coloring of G3, where we may assume that f(w1) = 1
and f(w2) = 2. Observe that K2,14 must contain consecutive vertices ui, ui+1

both of which are centers of 2-clusters in K2,14 (any ui whose color is used
twice in K2,14 is the center of a 2-cluster). Since B(ui, ui+1) contains a weak
edge uiui+1 we can assume that f(ui) = 3, f(ui+1) = 4. Observe that w1

and w2 are special neighbors of both ui and ui+1. Thus we have a copy of
B(v, w) with attached 2-clusters as in Figure 4, where the neighbors of v, w
of colors 1,2 represent w1, w2 respectively. We focus on this copy of B(v, w)
and relabel ui as v and ui+1 as w.

Observe colors 3 and 4 are forbidden on each yj for if f(yj) = 3 or f(yj) =
4 then v or w respectively is the center of a 3-cluster. If f(xj) = f(xj+1),
then xj is the center of a 3-cluster with legs vxj+1, wxj+1, and yjxj+1. Since
each xj is adjacent to both v and w, f(xj) ∈ {5, 6, 7} for each j. Since
there are eight distinct xj’s, we can find j 6= k with f(xj) = f(xk) and
f(xj+1) = f(xk+1). Without loss of generality, we can assume that f(xj) = 5
and f(xj+1) = 6, and all vertices are named as in Figure 4.

Both a1
j and a7

j are adjacent to v so colors 1,2, and 3 are forbidden on a1
j

and a7
j . If either of these vertices are assigned colors 5 or 6, then xj respec-

tively xj+1 is the center of a 3-cluster with legs yja
i
j, vxk, wxk respectively
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yja
i
j, vxk+1, wxk+1 (i = 1 or i = 7). If a1

j and a7
j are assigned the same color,

then a1
j is the center of a 3-cluster with legs va7

j , cja
7
j , and yja

7
j . So, by sym-

metry of A(v, yj), we may assume f(a1
j) = 7 and f(a7

j) = 4. Similarly, we
may assume f(p1

j) = 7 and f(p7
j) = 3. Applying the same argument with

the roles of k and j interchanged we obtain f(a1
k) = 7, f(a7

k) = 4, f(p1
k) = 7,

and f(p7
k) = 3. Only colors 1 and 2 are available for yj, so without loss of

generality f(yj) = 1 (See Figure 4).
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Figure 4: Partial Coloring of B(v, w)

Since each ai
j is adjacent to yj, color 1 is forbidden on each ai

j. If ai
j is

assigned color 4, then a7
j is the center of a 3-cluster with legs cja

i
j, yja

i
j, and

va7
k. Similarly, if ai

j is assigned colors 5, 6, or 7, then xj, xj+1, or a1
j (respec-

tively) is the center of a 3-cluster with legs yja
i
j, vxk, wxk or yja

i
j, vxk+1, wxk+1

or yja
i
j, cja

i
j, va1

k (respectively). Therefore we may assume f(as
j) = 2 and

f(as+1
j ) = 3 for some s ∈ {2, 3}. By symmetry, we may assume f(pt

j) = 2

and f(pt+1
j ) = 4 for some t ∈ {2, 3}.

Since each bi
j is adjacent to v, colors 1,2, and 3 are forbidden on bi

j. If

f(bi
j) = 4 then a7

j is the center of a 3-cluster with legs vbi
j, cjb

i
j, and yjp

t+1
j .

If f(bi
j) = 7 then a1

j is the center of a 3-cluster with legs vbi
j, cjb

i
j, and yjp

1
j .

Therefore colors 5 and 6 must be used on the weakly adjacent vertices b1
j

and b2
j . Since cj has neighbors of each color other than 1, it follows that

f(cj) = 1, but cj is weakly adjacent to yj. Thus there is no 7-star coloring
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of G3 without 3-clusters.
Let H4 = H4(v) be the graph constructed as follows. Start with a K2,7

with parts {v, w} and {x1, . . . , x7}, and then do the following for all 1 ≤ j ≤
6: add the path xjyjxj+1, the strong 4-cycles S(va1

jyja
7
j) and S(xjb

1
jxj+1b

7
j),

followed by the weak edges xja
1
j and xj+1a

7
j . Now let G4 be obtained by

identifying every vertex v of G3 with its own copy H4(v) of H4 at the vertex
v.

Lemma 4.3 Every 7-star coloring of G4 contains a 4-cluster.

Proof. Suppose f is a 7-star coloring of G4. Then by Lemma 4.2 G3 contains
a 3-cluster C centered at some vertex v, and we may assume that f(v) = 1,
and the special neighbors of v have been assigned colors 2,3, and 4. This
3-cluster is attached to H4(v), and we look for a 4-cluster in the subgraph
C ∪H4(v) of G4.

Since each xj is adjacent to v, f(xj) ∈ {5, 6, 7} for each j. Also, each xj

is weakly adjacent to xj+1 so that f(xj) 6= f(xj+1). We can find 2 ≤ j ≤ 5
with f(xj) = f(xk) and f(xj+1) = f(xl) for some k, l ∈ {1, . . . , 7}, k 6= j and
l 6= j + 1, and without loss of generality f(xj) = 5 and f(xj+1) = 6.

For each i, j, only colors 5,6, and 7 are available for ai
j since each ai

j is
adjacent to v. The weak path a1

j . . . a7
j requires 2 colors so that we may assume

f(am
j ) = 6 for some m (See Figure 5). Colors 1, 5, and 6 are forbidden on yj

since yj is weakly adjacent to v, and is adjacent to xj and xj+1. If f(yj) = 7,
then since a1

j is weakly adjacent to xj, we must have f(a1
j) = 6 which forces

f(a7
j) = 6, a contradiction since a7

j is weakly adjacent to xj+1. By symmetry
of colors 2,3, and 4, we may assume f(yj) = 2 (See Figure 5).

If f(ai
j+1) = 6 then xj+1 is the center of a 4-cluster with legs yj+1a

i
j+1,

yja
m
j , vxl, and wxl. Thus the weak path a1

j+1 . . . a7
j+1 must be colored using

colors 5 and 7. If f(yj+1) = 2 then the path yj+1xj+1yja
m
j is 2-colored. By

symmetry of colors 3 and 4, we may assume f(yj+1) = 3.
Observe that each vertex in X = {xj+2, w, b1

j+1, b
2
j+1} must receive a dif-

ferent color as xj+2 is adjacent to w, b1
j+1, and b2

j+1, the path xlwxj+1b
i
j+1,

i = 1, 2, would be 2-colored if w and bi
j+1 receive the same color, and b1

j+1 is
weakly adjacent to b2

j+1. For a contradiction it suffices to show that colors
1,2,3, and 6 cannot be used on any vertex in X.

Colors 1,2, and 3 cannot be assigned to xj+2 since xj+2 is adjacent to v.
If color 1 is assigned to any vertex in X − {xj+2}, then v is then center of a
4-cluster. If f(z) = 2 for some z ∈ X − {xj+2}, then zxj+1yja

m
j is 2-colored.
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Figure 5: Partial coloring of H4

If f(w) = 3 then yj+1xj+1wxl is 2-colored. Since xj+1 is weakly adjacent
to xj+2, it must be that f(xj+2) ∈ {5, 7}. The weak path a1

j+1 . . . a7
j+1 is

colored using colors 5 and 7 therefore, if f(bi
j+1) = 3 with i = 1, 2, then

bi
j+1xj+2yj+1a

n
j+1 is 2-colored for some n. Since each vertex in X is adjacent

or weakly adjacent to xj+1, color 6 is forbidden on X. We conclude that
no vertex in X may be assigned colors 1,2,3, or 6 which gives the needed
contradiction.

Let H5(v) consist of a vertex v adjacent to the vertices x1, x2, x3 of a
triangle of weak edges. Obtain G5 by attaching a separate H5(v) to each
vertex v of G4.

Theorem 4.4 G5 has no 7-star coloring.

Proof. Suppose f is a 7-star coloring of G5. Then by Lemma 4.3 G4 contains
a 4-cluster C centered at v and we may assume f(v) = 1 and the special
neighbors of v have been assigned colors 2,3,4, and 5. This 4-cluster is
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attached to H5(v) and colors 1,2,3,4, and 5 cannot be used on any xi in
H5(v), but each xi must be assigned a distinct color.

5 Remarks

It is possible that neither the upper bound of 14, nor the lower bound of 8 is
the correct answer for the minimum k such that each bipartite planar graph
is k-star colorable or k-star choosable, but we believe that the answer for
both questions is probably closer to the lower bound. To improve the lower
bound from 8 to 9 the difficulty lies in forcing k-clusters for 3 ≤ k ≤ 5 and
then the last step, Theorem 4.4, would work similarly.
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