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André Kündgen∗ Craig Timmons†

June 4, 2008

Abstract

A star coloring of a graph is a proper vertex-coloring such that no path
on four vertices is 2-colored. We prove that the vertices of every planar
graph of girth 6 (respectively 7,8) can be star colored from lists of size 8
(respectively 7,6). We give an example of a planar graph of girth 5 that
requires 6 colors to star color.

1 Introduction

A proper coloring of a graph is an assignment of colors to the vertices of
the graph such that adjacent vertices are assigned different colors. In 1973,
Grünbaum [4] introduced acyclic colorings and star colorings. An acyclic col-
oring of a graph is a proper coloring such that no cycle is 2-colored. A star
coloring of a graph is a proper coloring such that no path on four vertices is
2-colored, or equivalently, the union of any two color classes is a star forest.
The fewest number of colors needed to properly (resp. acyclically, star) color a
graph G is the chromatic (resp. acyclic chromatic, star chromatic) number of
G.

Grünbaum [4] showed that every planar graph can be acyclically colored with
9 colors, and conjectured that any planar graph can by acyclically colored with
5 colors. In 1979, Borodin [2] confirmed Grünbaum’s conjecture. This upper
bound is best possible since there are planar graphs that require 5 colors to
acyclically color (see [6] for example). Grünbaum noted that the star chromatic
number of a graph is bounded by a function of its acyclic chromatic number.
This observation, along with Borodin’s 5-coloring result, implies that any planar
graph can be star colored with 80 colors.

In 2003, Nes̆etr̆il and Ossona de Mendez [7] made a significant improvement
upon this upper bound by proving that any planar graph has a star coloring
with 30 colors. Additionally, they proved that any bipartite planar graph has a
star coloring with 18 colors. Further improvements were made by Albertson et
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al. [1] who proved that any planar graph has a star coloring with 20 colors, and
gave an example of a planar graph that required 10 colors to star color. They
also showed that planar graphs of girth 5 (resp. 7) can be star colored with
16 (resp. 9) colors. Furthermore, they observed that the graph C+

n (an n-cycle
with a leaf vertex added to each vertex of the cycle) has star chromatic number
4 when n is not divisible by 3. Thus there are planar graphs of arbitrarily high
girth that require 4 colors to star color. Recently Kierstead et al. [5] showed
that bipartite planar graphs can be (list) star colored with 14 colors, and gave
an example of a bipartite planar graph that requires 8 colors to star color. For
low girth planar graphs, the bounds proved in [1] and [5] are the best known.

For high girth planar graphs, the bounds are closer together. Bu et al. [3]
proved that planar graphs of girth 13 can be star colored with 4 colors, while
in [10] it is shown that planar graphs of girth 9 can be star colored with 5 colors,
and an example of a planar graph of girth 7 that requires 5 colors to star color
is given.

In this paper we improve upon the upper bounds on the star chromatic
number for the families of planar graphs of girth in the intermediate range 6 to
8. In particular, we show that planar graphs of girth 6 (resp. 7,8) can be star
colored from lists of size 8 (resp. 7,6) assigned to each vertex. Bu, et al. [3] use
a partitioning approach to show that planar graphs of girth 7 (resp. 8) can be
star colored with 7 (resp. 6) colors. The results in the current paper have the
advantage of being list-coloring results.

We conclude this paper by giving an example of a girth 5 planar graph whose
star chromatic number is at least 6. This construction and weaker versions of
Theorems 4.1 and 5.1 can also be found in [9].

2 Preliminaries

A k-vertex is a vertex of degree k. A k−-vertex is a vertex of degree at most
k, and k+-vertex is a vertex of degree at least k. A k(d)-vertex is a k-vertex
adjacent to d 2-vertices. Cn and Pn denote a cycle and a path, respectively, on
n vertices. If H is a subgraph of G, then NH(v) is the set of neighbors of v in
H.

An in-coloring of a directed graph ~G is a proper coloring of the underlying
graph G such that any 2-colored P3 has its edges oriented towards the middle
vertex. We say that ~G is k-in-colorable if ~G has an in-coloring with at most k
colors. In-colorings were used implicitly by Nes̆etr̆il and Ossona de Mendez [7],
and explicitly by Albertson et al. [1], who formalized the connection to star
coloring in the following lemma. We include the proof for completeness.

Lemma 2.1 A coloring of the vertices of G is a star coloring if and only if it
is an in-coloring for some orientation ~G of G.

Proof. In a star coloring of G the subgraph induced by the union of any
two color classes is a star forest, and we simply orient each edge towards the
center of the 2-colored star containing it to obtain the desired orientation of G.
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Conversely, an in-coloring of ~G is a star coloring of G: Suppose xyzt is a path
in G, and that yz is oriented into z. Then three colors must appear on xyz so
that xyzt is not 2-colored.

In order to control the number of colors used in an in-coloring it is useful
to bound the maximum outdegree of the orientation ~G. For instance in [5], it
is shown that any bipartite planar graph G has a star-coloring with 14 colors
by using a specific orientation with maximum outdegree 2. Tarsi [8] showed
that a graph has an orientation with maximum outdegree at most d if and only
if mad(G) ≤ 2d, where mad(G) denotes the maximum possible average degree
over all subgraphs of G. A planar graph G of girth g has mad(G) < 2g

g−2 , so
it has an orientation of outdegree at most 2 as long as g ≥ 4. It is important
to note that in this paper all orientations have maximum outdegree at
most 2.

We say that a graph G is k-star-choosable, if for any assignment of lists of
size k to the vertices of G we can find a star-coloring of G where the color of
each vertex is chosen from its list. Similarly, a directed graph ~G is k-in-choosable
if for any assignment of lists of size k to the vertices of ~G we can find an in-
coloring of ~G in which the color of each vertex is chosen from its list. A graph
G is k-in-choosable if some orientation ~G of G with maximum outdegree 2 is
k-in-choosable.

3 Reducible Configurations

To prove the upper bounds, we use discharging. In this section we collect the
reducible configurations that we will need.

A graph G is a k-obstruction if every proper subgraph of G is k-in-choosable,
but G itself is not k-in-choosable. Observe that k-obstructions are always con-
nected. K2 is the only 1-obstruction, whereas the 2-obstructions are C3 and P4.
The graphs C+

n (with n not divisible by 3) and C5 are 3-obstructions.
A configuration is a connected graph H in which each vertex v has a label

l(v) ∈ {0, 1}. If l(v) = 0, then v is called an interior vertex, and if l(v) = 1,
then v is called a boundary vertex. We say that a graph G contains H, if H is an
induced subgraph of G with degG(v) = degH(v)+ l(v). A good orientation ~H of
H, is an orientation in which each vertex v has outdegree at most 2− l(v). We
say that H is k-reducible if it has a good orientation ~H, that is in-choosable when
each vertex has a list of size k −m(v), where m(v) = 3l(v) +

∑
w∈NH(v) l(w).

Lemma 3.1 A k-obstruction contains no k-reducible configuration.

Proof. Let G be a k-obstruction which contains a k-reducible configuration
H. We combine an orientation of G− V (H), which is k-in-choosable, together
with a good orientation of H to obtain an orientation ~G of G by orienting all
edges with exactly one endpoint in V (H) away from H. We claim that ~G is
k-in-choosable, so let an assignment of lists L(v) (with |L(v)| = k) to v ∈ V (G)
be given.
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Color G−V (H) from these lists. We now color V (H). Each vertex v ∈ V (H)
with l(v) = 1 has a unique neighbor v′ /∈ V (H) which is already colored, and we
remove the colors of v′ and its up to two outneighbors from L(v). Furthermore,
if a vertex v ∈ V (H) has a neighbor u with l(u) = 1, then we also remove the
color of u′ from L(v). Thus each v ∈ V (H) has a list of size at least k −m(v)
remaining, and ~H can be in-colored from these lists.

To see that we obtained an in-coloring of ~G, observe that every vertex re-
ceives a color different from its neighbors, so suppose that uvw is a 2-colored
path with at least one vertex in G− V (H), and another in V (H). If v ∈ V (H)
then, since ~H is in-colored, it suffices to consider u = v′ i.e. u ∈ G − V (H).
Then w ∈ V (H) and since vv′ is oriented into v′, w receives a color different
from v′. If u, v /∈ V (H) and w ∈ V (H), then w receives a color different from u
whenever uv is oriented into u. Finally, since edges are oriented away from H,
we observe that for u, w ∈ V (H) and v /∈ V (H), both uv and wv are directed
towards v.

We specify a configuration H as a graph and indicate which, if any, vertices
are interior. The remaining vertices may be assumed to be boundary vertices,
since that only makes reducing the configuration harder. If H has no interior
vertex, then m(v) = degH(v) + 3, and an orientation of H is good if and only
if each vertex has outdegree at most 1. Specifically, if H is a tree then a
good orientation is obtained by picking a root vertex u and orienting each edge
towards u. This leads to the following useful tool.

Lemma 3.2 Let k be a positive integer, and H be a configuration that is a tree.
If there is a vertex u such that m(u) ≤ k− 1, m(v) ≤ k− 2 for each v ∈ NH(u),
and m(w) ≤ k − 3 for each other vertex, then H is k-reducible.

Proof. Let ~H be obtained by orienting all edges towards u. We in-color ~H from
the given lists by coloring vertices in increasing order of their distance from u.
Since k − m(u) ≥ 1 we can first color u. Then we can color each neighbor v
using a color different from u, since k−m(v) ≥ 2. For each remaining vertex w
we must avoid the color of its parent, and its grandparent, which can be done
since k −m(w) ≥ 3.

Combining these results we immediately obtain.

Lemma 3.3 Let G be a k-obstruction.

1. If k ≥ 4, then G contains no 1-vertex.

2. If k ≥ 6, then G contains no d(d − 1)-vertex or d(d)-vertex for 2 ≤ d ≤
k − 3.

3. If k ≥ 7, then G contains no adjacent 3(1)-vertices.

4. If k ≥ 7, then G contains no 3-vertex adjacent to three 3(1)-vertices.

Proof. Given a k-obstruction G with such vertices we find a k-reducible con-
figuration H as an induced subgraph, a contradiction.
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1. If u is a 1-vertex, then V (H) = {u} satisfies m(u) = 3 ≤ k − 1.

2. If u, v are adjacent 2-vertices, then let V (H) = {u, v} and observe that
m(u) = m(v) = 4 ≤ k − 2. For d ≥ 3 let u be a d-vertex with 2-
vertex neighbors v1, v2, . . . , vd−1. Since we have no adjacent 2-vertices,
V (H) = {u, v1, . . . , vd−1} induces a star, and it suffices to observe that
m(u) = d + 2 ≤ k − 1 and m(vi) = 4 ≤ k − 2.

3. If u, v are adjacent 3(1)-vertices, with respective 2-vertex neighbors u′, v′,
then let H be induced by {u, v, u′, v′}. If v′ 6= u′, then H is a P4 (u′, v′

are non-adjacent by 3.3.2) with m(u) = 5 ≤ k − 1, m(v) = 5 ≤ k − 2,
m(u′) = 4 ≤ k − 2, and m(v′) = 4 ≤ k − 3. If v′ = u′, then H is a
K3 in which v′ is interior, and thus 7 −m(u) = 7 −m(v) = 3 colors are
available for u, v and 7 −m(v′) = 5 colors are available for v′. Orienting
K3 cyclically yields a good orientation, and each vertex can be colored
differently.

4. Let u be a 3-vertex, with 3-vertex neighbors v1, v2, v3, which in turn have 2-
vertex neighbors w1, w2, w3 respectively. We obtain H by letting V (H) =
{u, v1, v2, v3, w1, w2, w3} and observe that u is interior. By 3.3.3 there is
no edge vivj and by 3.3.2 there is no edge wiwj . Hence, if the wi are
distinct then H induces a subdivision of K1,3 with m(u) = 3 ≤ k − 1,
m(vi) = 4 ≤ k − 2 and m(wi) = 4 ≤ k − 3. If, say w1 = w2, then
w1 is interior and H contains the 4-cycle u, v1, w1, v2, u. We orient both
edges incident to w1 out of w1 and all edges towards u. Now, first color u
(k −m(u) ≥ 1), then vi (k −m(vi) ≥ 2) followed by w3 (k −m(w3) ≥ 3)
as before. For w1 we have k − m(w1) ≥ 5 colors available and we must
only avoid the colors given to u, v1, v2.

An induced path P = x1, x2, . . . , xm is called removable if m ≥ 4, x1, xm

are 2-vertices, and the remaining vertices are 3-vertices, except possibly one
4-vertex xi which is adjacent to a 2-vertex y with y 6= xi−1, xi+1.

Lemma 3.4 If k ≥ 8, then a k-obstruction contains no removable path.

Proof. Let P be a removable path. If P contains no 4-vertex, then let u = x2

and H = P . If P contains a 4-vertex xi, then let u = xi and include y in V (H)
as well.

If H is a tree, then we are done since m(u) ≤ 6 ≤ k − 1, and every other
vertex satisfies m(v) ≤ 5 ≤ k − 3. If H is not a tree, then H must con-
tain a cycle that passes through y as x1, x2, . . . , xm induces a path. Assume
that y is adjacent to some xt where, without loss of generality, t < i. Orient
xty towards xt and all other edges towards xi to obtain a good orientation of
~H. We in-color ~H from the given lists by coloring the vertices in the order
xi, xi−1, xi−2, . . . , x1, xi+1, . . . , xm, y. For each xj with 1 ≤ j ≤ m we must
avoid the color of its parent and grandparent in H (if they have been colored)
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along with the colors of the vertices defined by m(xj). We can color each xj ,
since k −m(xj) ≥ 8− 5 = 3. For y, we have m(y) = 1 and we need only avoid
the colors assigned to xt, xt+1, and xi so that y can be colored.

4 Graphs with mad(G) < 8
3

Theorem 4.1 Every graph G with mad(G) < 8
3 has an orientation of maximum

outdegree at most 2 which is 6-in-choosable.

Proof. Suppose, aiming for a contradiction, that there is a 6-obstruction G
with mad(G) < 8/3. Assign an initial charge of deg(v) to v. The charges are
now redistributed in such a way that the net charge assigned to G is preserved.
The rule for redistribution is:

1. Each 2(0)-vertex receives charge 1
3 from each neighbor.

The net charge on the vertices of G after the redistribution has taken place
is now calculated. Let v ∈ V (G). By Lemma 3.3.1, deg(v) ≥ 2.

If v is a 2-vertex, then by Lemma 3.3.2, v must be a 2(0)-vertex. The charge
of v after redistribution is 2+2

(
1
3

)
= 8

3 . If v is a 3-vertex, then by Lemma 3.3.2,
v is a 3(1)-vertex or a 3(0)-vertex. Then v sends out at most charge 1

3 to a
2-vertex. The charge of v after redistribution is at least 3 − 1

3 = 8
3 . If v is a

4+-vertex, then the charge of v after redistribution is at least deg(v)− 1
3deg(v) =

2
3deg(v) ≥ 8

3 .
This implies mad(G) ≥ 8

3 , which gives the needed contradiction.

Using mad(G) < 2g
g−2 we obtain

Corollary 4.2 Every planar graph of girth at least 8 is 6-star choosable.

Since C+
8 requires 4 colors to star color, the star chromatic number for the

family of planar graphs of girth 8 is between 4 and 6.

5 Graphs with mad(G) < 14
5

Theorem 5.1 Every graph G with mad(G) < 14
5 has an orientation of maxi-

mum outdegree at most 2 which is 7-in-choosable.

Proof. Suppose, aiming for a contradiction, that there is a 7-obstruction G
with mad(G) < 14/5. Assign an initial charge of deg(v) to v. The charges are
now redistributed in such a way that the net charge assigned to G is preserved.
The rules for redistribution are:

1. Each 2-vertex receives charge 2
5 from each neighbor.

6



2. Each 3(1)-vertex receives charge 1
10 from each neighbor that is a 3+-vertex.

The net charge on the vertices of G after the redistribution has taken place
is now calculated. Let v ∈ V (G). By Lemma 3.3.1, deg(v) ≥ 2.

If v is a 2-vertex, then by Lemma 3.3.2, v is a 2(0)-vertex. The charge of v
after redistribution is 2 + 2

(
2
5

)
= 14

5 . If v is a 3-vertex, then by Lemma 3.3.2,
v is a 3(1)-vertex or a 3(0)-vertex. If v is a 3(1)-vertex, then by Lemma 3.3.3,
v is not adjacent to any other 3(1)-vertex. The charge of v after redistribution
is 3− 2

5 + 2
(

1
10

)
= 14

5 . If v is a 3(0)-vertex, then by Lemma 3.3.4, v is adjacent
to at most two 3(1)-vertices. The charge of v after redistribution is at least
3−2

(
1
10

)
= 14

5 . If v is a 4-vertex, then by Lemma 3.3.2, v is adjacent to at most
two 2-vertices. The charge of v after redistribution is at least 4−2

(
2
5

)
−2

(
1
10

)
=

15
5 . If v is a 5+-vertex, then the charge of v after redistribution is at least
deg(v)− 2

5deg(v) = 3
5deg(v) ≥ 15

5 .
This implies mad(G) ≥ 14

5 , which gives the needed contradiction.

Corollary 5.2 Every planar graph of girth at least 7 is 7-star choosable.

An example of a planar graph of girth 7 that requires 5 colors to star color is
given in [10], so that the star chromatic number for the family of planar graphs
of girth 7 is between 5 and 7.

6 Planar graphs of girth 6

Theorem 6.1 Every planar graph of girth at least 6 has an orientation of max-
imum outdegree at most 2 which is 8-in-choosable.

Proof. Suppose there is a planar 8-obstruction G of girth at least 6. By
Lemma 3.3.1, G has no 1-vertex so that G has minimum degree 2 and must
contain a cycle. Observe that Euler’s Formula implies that a planar graph on
n vertices of girth g with 6 ≤ g < ∞ has at most 3

2 (n− 2) edges.
For each vertex v in G, we assign an initial charge of degG(v)−3 to v. Then

∑
v∈V

(degG(v)− 3) = −3n +
∑
v∈V

degG(v) ≤ −3n + 3n− 6 = −6.

so that the total charge is at most −6. Let H be the subgraph of G induced
by all 3−-vertices.

A component of H is called weak if it contains a 2-vertex, and the vertices
of a weak component are called weak vertices. By Lemmas 3.3.2 (with d = 2, 3)
and 3.4, every weak component of H contains precisely one 2-vertex.

Now we redistribute the charges according to the following rules:

1. Each 4(1)-vertex adjacent to three weak 3-vertices that are all in the same
weak component C sends charge 1/2 to its own 2-vertex neighbor, and
charge 1/2 to the 2-vertex in C.
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2. Each other 4+-vertex v sends charge 1/2 to each adjacent 2-vertex, and for
each of its weak 3-vertex w neighbors v sends charge 1/4 to the 2-vertex
in the weak component containing w.

Let µ∗(v) denote the charge of vertex v after the redistribution. Observe that
only 2-vertices receive additional charges, and only 4+-vertices send charges. We
will show that the 2-vertices and 4+-vertices now have non-negative charge, so
that the total charge of G is non-negative, a contradiction.

Consider the 2-vertex v in the weak component C of H. If |C| = 1, then v
receives charge 1/2 from each neighbor, and so µ∗(v) = 0. If |C| = 2, then the
second vertex of C is a weak 3(1)-vertex w, and v receives charge 1/2 from its
other neighbor. Also, v receives charge 2

(
1
4

)
via w by Rule 2, so that µ∗(v) = 0.

For |C| = m ≥ 3 we have

3(m− 1) + 2 =
∑
u∈C

degG(u) =
∑
u∈C

(degG(u)− degH(u)) +
∑
u∈C

degH(u)

≤
∑
u∈C

(degG(u)− degH(u)) + 2(m− 1),

where the last step follows since C has at least m−1 edges. Thus the number
of edges going from V (G)−C to C is

∑
u∈C(degG(u)− degH(u)) ≥ m + 1 ≥ 4.

So v receives a charge of at least 4(1
4 ) unless (by Rule 1) there is a 4(1)-vertex

w with three 3-vertex neighbors in C. If there are two such vertices w, then v
receives charge 2( 1

2 ). If there is one such vertex w, then m ≥ 4 and v receives
a charge of 1

2 + (m + 1− 3) 1
4 ≥ 1. Either way µ∗(v) ≥ 0.

Thus each 2-vertex has non-negative charge and it remains to check µ∗(v) ≥
0 for all 4+ vertices v. If v is a 6+-vertex, then µ∗(v) ≥ (degG(v) − 3) −
degG(v)/2 = (degG(v) − 6)/2 ≥ 0. If v is a 5-vertex, then by Lemma 3.3.2,
v is not a 5(4)- or 5(5)-vertex, and thus µ∗(v) ≥ (5 − 3) − 3

(
1
2

)
− 2

(
1
4

)
= 0.

Suppose v is a 4-vertex. By Lemma 3.3.2, v is not a 4(3)- or 4(4)-vertex. If v
is a 4(2)-vertex, then v can’t be adjacent to a 3-vertex u in a weak component
C, since otherwise there is a removable path starting at the 2-vertex w in C
via u, v and ending at a 2-vertex neighbor of v different from w, and thus
µ∗(v) = (4−3)−2

(
1
2

)
= 0. If v is a 4(0)-vertex, then µ∗(v) ≥ (4−3)−4

(
1
4

)
= 0.

If v is a 4(1)-vertex adjacent to at most three weak vertices, then µ∗(v) ≥
(4 − 3) − 1

2 − 2
(

1
4

)
= 0. So suppose v is a 4(1)-vertex adjacent to 4 weak

vertices. If v is as in Rule 1, then µ∗(v) = (4−3)−1 = 0, so suppose not. Thus
v has weak 3-vertex neighbors x, y from different weak components Cx, Cy. But
in that case we obtain a removable path starting at the 2-vertex in Cx via x, v, y
and ending at the 2-vertex in Cy, a contradiction.

Corollary 6.2 Every planar graph of girth at least 6 is 8-star choosable.

Thus we have that the star chromatic number for the family of planar graphs
of girth 6 is between 5 and 8. The planar graph of girth 7 constructed in [10]
provides the lower bound here.
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In general it seems difficult to construct high girth planar graphs requiring
many colors to star color. The next section suggests a way of constructing such
graphs. This “cluster method” was introduced in [9], and was used in [5] and
[10].

7 A girth 5 planar graph requiring 6 colors

In this section we give an example of a planar graph of girth 5 that requires 6
colors to star color. We begin with two definitions that play a key role in the
construction.

Definition 7.1 A k-cluster with center v is a graph C together with a star
coloring c such that:

1. C has vertex set {v, u1, u2, . . . , uk, u′1, u
′
2, . . . , u

′
k} where the u′i’s need not

be distinct

2. v has k distinct neighbors u1, u2, . . . , uk

3. each neighbor ui of v is adjacent to a vertex u′i 6= v with c(u′i) = c(v)

Call the k neighbors u1, u2, . . . , uk of v the special neighbors of v. The edge
uiu

′
i is said to be a leg of the k-cluster.

r r
r r r

r
�
�
�
�

�
�
�
�
@
@

@
@

1 1

2 3 4

1 v

u′1 u′2 = u′3

u1 u2 u3

Figure 1: A 3-cluster with center v and legs u1u
′
1, u2u

′
2, and u3u

′
3

The main idea of the construction is to build a sequence of girth 5 planar
graphs G1, G2, G3, and G4 such that every 5-star coloring of Gk contains a
k-cluster (1 ≤ k ≤ 3), whereas G4 can’t be 5-star colored at all. Set G1 = K1,5.

Lemma 7.2 Every 5-star coloring of G1 contains a 1-cluster.

Proof. In any proper coloring of K1,5 with 5 colors, at least one color must be
used twice on the 1-vertices, say on v and u′. Then v is the center of a 1-cluster
with leg uu′ where u is the 5-vertex in K1,5.
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To construct Gk (2 ≤ k ≤ 4) we will attach a separate copy Hk(v) of a graph
Hk to every vertex v in Gk−1, and use Hk(v) to show that the (k − 1)-cluster
C centered at v in Gk−1 forces a k-cluster in the subgraph Hk(v) ∪ C of Gk.

First we construct G2. Let y1 . . . y13 be a path on 13 vertices and make
vertex z adjacent to each vertex on the path. For 1 ≤ i ≤ 13, subdivide zyi

with xi, and add edges y1y5, y5y9, and y9y13. Let this be H2. For every vertex
v in G1, attach a copy of H2 to v by identifying z in H2 with v in G1. Let H2(v)
be the copy of H2 attached to v in G1. This completes the construction of G2.

It is easy to see that a 5-cycle is not 3-star colorable. This fact will be used
in the proofs of Lemmas 7.3 and 7.4, and Theorem 7.5.

Lemma 7.3 Every 5-star coloring of G2 contains a 2-cluster.

Proof. Suppose c is a 5-star coloring of G2 such that there is no 2-cluster in
G2. By Lemma 7.2, there is a 1-cluster, say with center v, in the subgraph G1

of G2. Suppose c(v) = 1 and c(u1) = 2, where u1 is the special neighbor of v
(see Figure 2).
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Figure 2: H2(v) in G2 with 1-cluster centered at v

Observe that c(xi) /∈ {1, 2} for 1 ≤ i ≤ 13. If c(yi) = 1, then v is the center
of a 2-cluster with legs xiyi and u1u

′
1; so c(yi) 6= 1 for 1 ≤ i ≤ 13. One of the

colors 2, 3, 4, or 5 must be used twice on the 5-cycle yiyi+1yi+2yi+3yi+4yi where
i ∈ {1, 5, 9}. First suppose color 3 is repeated on two vertices of such a 5-cycle.
Two cases are considered depending on where the color 2 appears on this cycle.
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Case 1: Color 2 is assigned to the vertex that is adjacent to the two vertices
on the 5-cycle that have been assigned color 3.

Relabel the vertices on the cycle so that c(yj) = c(yj+2) = 3, c(yj+1) =
2 and yj+3 and yj+4 are the other vertices on the 5-cycle. Without loss of
generality, assume c(yj+3) = 4 and c(yj+4) = 5. If c(xj+3) = 3, then yj+2 is the
center of a 2-cluster with legs yj+3xj+3 and yj+1yj ; so c(xj+3) 6= 3. Similarly,
c(xj+4) 6= 3. Clearly c(xj+3) 6= 4 and c(xj+4) 6= 5, so we must have c(xj+3) = 5
and c(xj+4) = 4; but then xj+3yj+3yj+4xj+4 is 2-colored.

Case 2: Color 2 is assigned to a vertex adjacent to exactly one of the vertices
on the 5-cycle that has been assigned color 3.

Relabel the vertices on the 5-cycle so that c(yj) = c(yj+2) = 3, c(yj+3) = 2
and the other two vertices on the 5-cycle are yj+1 and yj+4. Without loss of
generality, assume c(yj+1) = 4 and c(yj+4) = 5. If c(xj) = 4, then xjyjyj+1yj+2

is 2-colored; so c(xj) = 5. Similarly c(xj+2) = 5. Then xj is the center of a
2-cluster with legs vxj+2 and yjyj+4, a contradiction.

We conclude that color 3 may not be assigned to two vertices on any 5-
cycle of the form yiyi+1yi+2yi+3yi+4yi, where i ∈ {1, 5, 9}. A similar argument
applies to colors 4 and 5. Hence color 2 must be used on twice on each one of
these cycles.

Consider the cycle y5y6y7y8y9y5, and suppose c(y5) = 2. One of y2 or y3 must
be assigned color 2, and one of y7 or y8 must be assigned color 2. Regardless of
where color 2 is assigned, y5 is the center of a 2-cluster since each of y2, y3, y7

and y8 are second neighbors of y5. This shows that color 2 may not be assigned
to y5. Similarly c(y9) 6= 2, so we must have c(y6) = c(y8) = 2.

If c(y1) = 2, then y6 is the center of a 2-cluster with legs y5y1 and y7y8. If
c(y4) = 2, then y6 is the center of a 2-cluster with legs y5y4 and y7y8. Thus the
only vertices in the cycle y1y2y3y4y5y1 that can be assigned color 2 are y2 and
y3, a contradiction.

We now construct G3. Let x and y be the two 8-vertices in K2,8, and let
b1, . . . , b8 be the 2-vertices. For 1 ≤ i ≤ 7, add edge bibi+1, and for 1 ≤ i ≤ 8,
subdivide edges xbi and ybi with ai and di respectively. Add edge xy. Call this
graph H(x, y). Denote a copy of H(x, y) between x and y by a double edge (see
Figure 3).

Let y1y2y3y4y5y1 be a 5-cycle and make each yi adjacent to vertex xi. For
1 ≤ i ≤ 5, add H(z, xi) between z and xi. Call this graph H3 (see Figure 4).

For every vertex v in G2, attach a copy of H3 to v by identifying z in H3

with v in G2. Let H3(v) be the copy of H3 attached to v in G2. This completes
the construction of G3

Lemma 7.4 Every 5-star coloring of G3 contains a 3-cluster.

Proof. Suppose c is a 5-star coloring of G3 such that G3 has no 3-cluster. By
Lemma 7.3, there is a 2-cluster in the subgraph G2 of G3. Let v be the center of
this 2-cluster and assume v has been assigned color 1, and the special neighbors
u1 and u2 of v have been assigned colors 2 and 3 respectively.
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Figure 3: H(x, y)

Consider H3(v). Observe c(xi) /∈ {1, 2, 3} and c(yi) 6= 1 for 1 ≤ i ≤ 5.
Furthermore, each of the colors 2, 3, 4, and 5 must be used on the cycle
y1y2y3y4y5y1. If c(xi) = 4 for 1 ≤ i ≤ 5, then only colors 2, 3, and 5 can
be used on the cycle y1y2y3y4y5y1. Therefore, not all of the xi’s may be as-
signed the same color and so we assume c(x1) = c(x2) = 4 and c(x3) = 5. Two
cases are now considered depending on how x4 is colored.

Case 1: c(x4) = 4
Since color 4 must be used on the cycle y1y2y3y4y5y1, we may assume that

c(y3) = 4 for if c(y5) = 4, then c(x5) = 5 and by symmetry we can argue
similarly. If c(y2) = 5, then x2y2y3x3 is 2-colored, so assume c(y2) = 2 and
consider H(x2, v) (see Figure 5).

If c(di) = 1 or c(di) = 2, then dix2vx1 or dix2y2y3, respectively, is 2-colored.
If c(bi) = 1, then v is the center of a 3-cluster with legs aibi, u1u

′
1, and u2u

′
2.

If c(bi) = 4, then x2 is the center of a 3-cluster with legs dibi, y2y3, and vx1.
Thus for 1 ≤ i ≤ 8, c(ai) ∈ {4, 5}, c(bi) ∈ {2, 3, 5}, and c(di) ∈ {3, 5}.

Color 3 must be used on at least one of the vertices b2, b3, b4, or b5; so
assume c(bi) = 3 where i ∈ {2, 3, 4, 5}. This forces c(di) = 5. If c(bi+1) = 5, then
c(di+1) = 3 and dibibi+1di+1 is 2-colored; so we must have c(bi−1) = c(bi+1) = 2.
This forces c(di+1) = c(bi+2) = 5, which then forces c(bi+3) = 3. But then
c(di+2) = 3 and c(di+3) = 5 and di+3bi+3bi+2di+2 is 2-colored.

Case 2: c(x4) = 5
Without loss of generality, assume c(x5) = 5. Color 5 must be assigned to

at least one vertex on the cycle y1y2y3y4y5y1, so assume c(y2) = 5. If c(y3) = 4,
then x3y3y2x2 is 2-colored; so assume c(y3) = 2 and consider H(x3, v). By
a similar argument as used in Subcase 1.1 with the roles of colors 4 and 5
interchanged, H(x3, v) cannot be colored without creating a 3-cluster or a 2-
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Figure 4: H3

colored P4.

We now construct G4. Let y1y2y3y4y5y1 be a 5-cycle and make a vertex z
adjacent to each vertex on the cycle. For 1 ≤ i ≤ 5, subdivide zyi with xi. Call
this graph H4. For every vertex v in G3, attach a copy of H4 to v by identifying
z in H4 with v in G3. Let H4(v) be the copy of H4 attached to v in G3. This
completes the construction of G4.

Theorem 7.5 G4 is a planar graph of girth 5 that is not 5-star colorable.

Proof. Suppose c is a 5-star coloring of G4. By Lemma 7.4, there is a 3-cluster
in the subgraph of G4. Let v be the center of this 3-cluster and assume v has
been assigned color 1, and the special neighbors of v have been assigned colors
2, 3, and 4. Consider H4(v). To avoid a 2-colored P4, we must have c(xi) = 5
for all i. Then color 5 cannot be used on any vertex of the 5-cycle y1y2y3y4y5y1.
If c(yi) = 1 for some i, then yixivxi+1 is 2-colored. This implies that the 5-cycle
y1y2y3y4y5y1 can be star colored with just 3 colors, a contradiction.

In [1] it is shown that planar graphs of girth 5 are star colorable with 16
colors, so that the maximum star chromatic number for the family of planar
graphs of girth 5 is between 6 and 16. We believe the lower bound is much
closer to the truth.
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