CPE166 Advanced Logic Design

Introduction
Professor Jing Pang

Advantage of Digital Devices

— Reproducibility of information

— Flexibility and functionality: easier to store, transmit and manipulate
information

— Economy: cheaper device and easier to design

— Moore’s law

* Transistor geometry

* Chips double its density (number of transistor) in every 18 months
* Devices become smaller, faster and cheaper

Two HDLs (Hardware Description Languages)
Used Today

— VHDL and Verilog
— Syntax and "appearance" of the two languages are very different
— Both are IEEE and industrial standards

Components of a Verilog Module

Module Name,

Port List, Port Declarations (if ports present)

Parameters (optional),

Declarations of wire
reg and other variables

Data flow statements
(assign)

Instantiation of lower
level modules

always and initial blocks.
All behavioral statements
go in these blocks.

Tasks and functions

endmodule statement

Nesting of Modules

In Verilog nesting of modules is not permitted i.e., one module definition
cannot contain another module definition within the module and
endmodule statements.

Example:

module counter(q, clk, reset);
output [3:0]q;
input clk, reset;

module T_FF(q, clock, reset) // lllegal

endmodule
endmodule

Structural Design

module half _adder (a,b,s,c);

output s,c;
input a, b;
wire s, C;

xor gl (s,a,b);
and g2(c,a,b);
endmodule

Inputs

QOutputs

a S
half adder

b C

A B S C
0 0 0 0
1 0 1 0
0 1 1 0
1 1 0 1

module ha(a,b,s,c); module ha_tb;

) 0. a=0, b=0, carry=0, sum=0
. rega, b, 2. a=1, b=0, carry=0, sum=1
output s,c; wires, c; 4. a=0, b=1, carry=0, sum=1
input a, b; ha hh(a,b,s,c); 6. a=1, b=1, carry=1, sum=0
) initial 8. a=0, b=0, carry=0, sum=0
wire s, C, begin 10. a=1, b=0@, carry=0, sum=1
P 12. a=0, b=1l, carry=0, sum=1
Xor gl(s'a'b); a;O, b=0; 14. a=1, b=1, carry=1, sum=0
en
. 16. a=0, b=0@, carry=0, sum=0
and g2(c,a,b); always 18. a=1, b=@, carry=0, sum=1
endmodule begin 20. a=0, b=1, carry=0, sum=1
#2 a=1; b=0; 22. a=1, b=1l, carry=1l, sum=0
#2 a=0; b=1;
bl > ﬂ #2 a=1; b=1;
? — >s _0- h=0-
al > —1] #2 a=0; b=0;
end

D_D . initial Smonitor(Stime, "'. a=%b, b=%b, carry=%b, sum=%b", a, b, c, s);
initial #24 Sstop;

endmodule

2_t0_4 DeCOder module dec2_4 tb; @ output a=0000, input b=00, input en=0

. 2 output a=0001, input b=00, input en=1
wire [3:0] a; 4 output a=0010, input b=01, input en=1
reg len b; 6 output a=0100, ?nput b=10, %nput en=1
8 output a=1000, input b=11, input en=1

module dec2_4(a, b,en);

output [3:0] a; €8 al

input [1:0] b; -de.*:.2|_4 uut(a, b, en); en

. Initia

input en; _ b[1] So- D a[0]
wire [1:0] bb; begin b[0] o

{b, en}=3'b000;

-
#2 {b, en } = 3'b001; HH O all]
|

not g1(bb[1], b[1]), (bb[0], bION); 4> 1 en)= 3b011,
and g2 (a[0], en, bb[1], bb[O]); 45 11 en=3b101, 1 D— a2]

and g3 (a[1], en, bb[1], b[0]); #2 {b,en}=3'b111; :)_“I — a[3
and g4 (a[2], en, b[1], bb[0]); end .
and g5 (a[3], en, b[1], b[0]); initial

endmodule Smonitor (Stime, " output a=%b, input b=%b, input en=%b", a, b, en);

endmodule

Data Flow Design

module half adder (a,b,s,c);
output s,c;

input a,b;

wire s,C;

assign s=a \b;

assign c=a & b;

endmodule

Behavioral Design

module ex (a,b,s,c);
output s,c;
input a,b;
regs,c;
always @(a or b)
begin
if (a==0 && b==0)
begin
s=1'b0; c=1"b0;
end

else if ((a==1 && b==0) | | (a==0 && b==1))
begin
s=1'b1; c=1'b0;
end
else
begin
s=1'b0; c=1'b1;
end
end

endmodule

Concurrency

In an electronic circuit all the units are to be active and functioning
concurrently.

a [o—
b D—_f’@‘:'_} e If (a, b, ¢ or d changes)
update e as
S
— e=ab+cd
d [>—_ ~

module test_and;
reg al, a2;
wire b;
initial
begin

al=0; a2=0;
#3 al=1;
#3 al=0;

a2=1;

#3 al =1;
#10 Sstop;
end
and gl(b, al, a2);
initial Smonitor(Stime, "al=%b, a2=%b, b=%b", al, a2, b);
initial #100 Sfinish;
endmodule

Verilog Constructs and Conventions

* Operators

— unary operators: operates on a single operand.
assign out =~ a;

— binary operators: operates on two operands.
assign out =a & b;

— ternary operators: operates on three operands.
assignout=s?a:b;

Comments

— single / one line comment example:

module d_ff (Q, dp, clk);
//This is the design description of a D flip-flop.

— multiple line / block comment Example:
/* this logic performs

even parity design of
multiple binary bits */

ldentifiers

* |dentifiers are used to define language constructs.
* |dentifiers refer objects to be referenced in the design.

* |dentifiers are made of alphabets (both cases), numbers, the
underscore ‘_’ and the dollar sign ‘S’.

* They start with an alphabetic character or underscore.

* They cannot start with a number or with ‘S’ which is reserved for
system tasks.

* |dentifiers are case sensitive i.e., identifiers differing in their case are
distinct.

* An identifier say count is different from COUNT, count and cOuNT.

ldentifiers

» name, _name. Name, namel, name_S, ... all these are allowed as
identifiers

» name aa not allowed as an identifier because of the blank (“name” and
“aa” are interpreted as two different identifiers)

» Sname not allowed as an identifier because of the presence of “S” as the
first character.

» 1 name not allowed as an identifier, since the numeral “1” is the first
character

» @name not allowed as an identifier because of the presence of the
character “@”.

» A+b not allowed as an identifier because of the presence of the character

o n

+

String

A string is a sequence of characters enclosed within double quotes.
A string must be contained on a single line.

Special characters are specified by proceding them with the
"\" character.

"This is a string"

"This string is one \t with a gap in between"
"This is called a \"string\""

Examples for Identifiers

Count
COUNT
_R2 D2
R56_68
FIVES

Scount

12six_b

lllegal
lllegal

Identifier used

>

for module
module @(a,b,y); name
lnpu > |dentifier used
outputy; in ports
assighy=a & b;
endmodule

Keywords

Verilog HDL is case-sensitive.
All the keywords in Verilog must be in lower case.

module -2 signifies the beginning of a module definition.
endmodule - signifies the end of a module definition.
begin = signifies the beginning of a block of statements.
end -2 signifies the end of a block of statements.

if = signifies a conditional activity to be checked

Number Specification

Sized numbers.
<size> ‘<base format> <number>

‘Unsized numbers.
‘<pase format> <number>

<size> in decimal
<base format> can be b or B, d or D, o or O and h or H.
Numbers without <base format> are decimal by default.

Logic Values

1: logic high

0: logic low

X: unknown or uninitialized

z: high impedance or left floating

Numbers

 Sized numbers :

4'b1111 // This is a 4-bit binary number

12'habc // This is a 12-bit hexadecimal number
16'd255 // This is a 16-bit decimal humber.

32 ’B z // this is a 32-bit high impedance number
6 'h x // this is a 6-bit hex number

e Unsized numbers :

23456 // This is a 32-bit decimal number by default
'hc3 // This is a 32-bit hexadecimal number

'021 // This is a 32-bit octal number

Numbers

5’037

4’D2
9’b11011x01
9012z

7"Hx

4’hz

4'd-4

-4’d7

8 ‘h 2A

3’ b001
10’b10
11'hb0

5’hza
3'h1001_0011

5-bit octal

4-bit decimal

x signifies the concerned bit to be of unknown value.
equivalent to 001 010 zzz

7-bit x (x extended), i.e.... XXXXXXX

4-bit z (z extended), i.e... zzzz

Not legal

Its value in 2’s complement formis 7.

Spaces allowed between size & ‘ character & between base and value
Not legal: no space allowed between ’ and base b
Padded with 0 to the left, 0000000010

equivalent value is 000 1011 0000.

A 5-bit hex number. Its value is taken as z 1010.

is same as 3’'b011

Scalars, Vectors & Parameters

wire m; // scalar wire type data m
reg n; // scalar reg type data n
wire [3:0] a; /* ais a 4-bit vector of wire type; the bits are designated as

a[3], a[2], a[1], and a[0] */

reg [2:0] b; /* b is a 3-bit vector of reg type; the bits are designated as
b[2], b[1], and b[0] */

wire signed [4:0] num; // num is a vector in the range -16 to +15
reg signed [3:0] num2; // num2 is a vector in the range -8 to 7

parameter m =3, n=5;

Strings & White Space

Strings

* Astring is a sequence of characters enclosed by double quotes.
* Spaces are not ignored in strings.

 Strings cannot be on multiple lines.

White Space

* Blank spaces --->\b

e Tabs --->\t

* New lines --->\n

* White space is not ignored in strings.

* Example: Sdisplay(“The value of a=%b, b=%b, y=%b \n”, a,b,y);

