EEE 180 Signals & Systems Introduction

Prof. Pang

Continuous-Time and Discrete-Time Signals

Continuous-Time Signal: A continuous signal that is specified for every value of t.

Discrete-Time Signal: A signal that is sampled only at discrete time.

Analog and Digital Signals

- An analog signal is a continuous wave that changes over a time period.
- A digital signal is a discrete wave that carries information in binary form.

Periodic and Aperiodic Signals

• Periodic signal x(t) = x(t + T) for all t. T: period

Energy and Power Signals

- Energy Signal: t -> infinity, f(t) -> 0.
- When the above condition is not true, a more meaningful measure of the signal size would be the time average of the energy to get power, if it exists.

$$E = \int_{-\infty}^{\infty} \left| \mathbf{f}(t) \right|^{2} dt$$
Energy Signal
$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \left| \mathbf{f}(t) \right|^{2} dt$$
Energy Signal
$$P_{\text{over Signal}}$$
Now and the second se

Deterministic and Random Signals

Deterministic Signal:

No uncertainty with respect to its value at any instant of time.

Or, signals which can be defined exactly by a mathematical formula.

Exercise 1:

• Given the signal x(t) below, draw the waveform of x(-t).

Exercise 1 Solution:

lacksquare

Question 1:

What is the time reversal operation of x(t) ?

Answer 1:

•

• The time reversal operation of x(t) is:

Exercise 2:

Given the signal x(t) below, draw the waveform of x(t + 3).

Exercise 2 Solution:

Given the signal x(t) below, draw the waveform of x(t + 3).

	t= -4	t= -3	t= -2	
y = x(t+3)	y =x(-1)	y=x(0)	y=x(1)	
	= 0	= 1	= 0	

Question 2:

• What is the left shift by to signal for x(t) ?

Answer 2:

•

• The left shift by t0 signal for x(t) is:

Exercise 3:

Given the signal x(t) below, draw the waveform of x(t - 3).

Exercise 3 Solution:

Given the signal x(t) below, draw the waveform of x(t - 3).

	t= 2	t= 3	t= 4
y = x(t-3)	y =x(-1)	y=x(0)	y=x(1)
	= 0	= 1	= 0

Question 3:

What is the right shift by t0 signal for x(t) ?

Answer 3:

•

• The right shift by t0 signal for x(t) is:

Exercise 4:

Given the periodic signal x(t) below, draw the waveform of x(2t).

Exercise 4 Solution:

Given the periodic signal x(t) below, draw the waveform of x(2t).

	t= -0.5	t= 0	t= 0.5
y = x(2t)	y=x(-1)	y =x(0)	y=x(1)
	= 0	= 1	= 0

Question 4:

 What is the relationship between the signals x(t) and x(2t)?

Answer 4:

• The signal x(2t)

•

x(t) by half in the time scale.

Exercise 5:

Given the periodic signal x(t) below, draw the waveform of x(t/2).

Exercise 5 Solution:

Given the signal x(t) below, draw the waveform of x(t/2).

	t= -2	t= 0	t= 2	t=4	t= 6
y = x(2t)	y=x(-1)	y =x(0)	y=x(1)	y=x(2)	y=x(3)
	= 0	= 4	= 4	= 4	= 0

Question 5:

 What is the relationship between the signals x(t) and x(t/2)?

Answer 5:

• The signal x(t/2)

•

x(t) by 2 in the time scale.