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Schellekens’ List

Holomorphic VOAs of Small Central Charge

Proposition (Consequence of [Zhu96])

Let V be a strongly rational, holomorphic VOA. Then the central
charge c of V is in 8Zx>0.

° c=8 Vg, c=16: Vi, Vi (only lattice theories) [DMO04]

Theorem ([Sch93, DM04, EMS15])

Let V be a strongly rational, holomorphic VOA of central charge

c = 24. Then the Lie algebra V1 is isomorphic to one of the 71 Lie
algebras on Schellekens’ list (V'%, 24 Niemeier lattice theories, etc.
with chy (1) = j(7) — 744 + dim(V4)).

@ ¢ = 32: already more than 1160000000 lattice theories



Schellekens’ List

Classification

@ Orbifold constructions give all 71 cases on Schellekens’ list.
[FLM88, DGM90, Don93, DGM96, Lam11, LS12, LS15,
Miy13, SS16, EMS15, M616, LS16b, LS16a, LL16]

Theorem (Classification 1)

There is a strongly rational, holomorphic VOA V of central charge
c = 24 with Lie algebra V4 if and only if Vi is isomorphic to one of
the 71 Lie algebras on Schellekens’ list.

v

Conjecture (Classification 1)

There are up to isomorphism exactly 71 strongly rational,
holomorphic VOAs V of central charge c = 24.

e Uniqueness proved for all cases except V°.
[DMO04, LS16¢c, KLL16, LS15, LL16, EMS17, LS17, LS18]
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Schellekens’ List

Schellekens’ List

RK 0 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 | 156 | 168 | 192 | 216 | 240 | 264 | 288 | 300 | 312 | 336 | 360 | 384 | 408 | 456 | 552 | 624 | 744 [1128
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Orbifold Construction and Dimension Formulae

Cyclic Orbifold Construction

@ Let V be a strongly rational, holomorphic VOA and let
G = (g) with g € Aut(V) of order n and type n{0}, i.e.
p(V(g)) € (1/n)Z.

@ The fusion algebra of V© is the group algebra of the finite
quadratic space Z, x Z, with q((i,j)) = ij/n+ Z.

o Assume that V€ satisfies the positivity condition. Then the
direct sum of irreducible V ®-modules

vorb(g) — @ V(gi)G
i€Zn

is again a strongly rational, holomorphic VOA.
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Orbifold Construction and Dimension Formulae

Dimension Formula |

Conjecture (Dimension Formula 1)

In the orbifold situation with ¢ = 24:

Z ¢ dd n//dcg)) (24 +— 7 dlm(Vg) —dim(V; Vorble? ))) =24+R

with

; (i)
i, J€ZLn
U k (mod n)

and d,"j,k € Z~o.

e Proved if n prime, g(l'o(n)\H*) = 0 [EMS17] or n = 14,. ..
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Orbifold Construction and Dimension Formulae

Dimension Formula Il

Conjecture (Dimension Formula II)
In the orbifold situation with ¢ = 24:

dim(Ve™®)) = 24+ 3" ¢ dim(VE") — R
d|n

with the cq determined by > g,(t, d)cq = n/t for all t | n and

f?:

d ;. dim( 15/11))

7J€Z"
U k (mod n)

with d; ; x € Z>o. Moreover, R > 24 if n prime and g(T'o(n)) # 0

e Proved if n prime, g(lo(n)\H*) =0o0r n=14,...



Orbifold Construction and Dimension Formulae

Extremal Orbifolds

Corollary (Upper Bound)
In the orbifold situation with ¢ = 24:

dim(Ve™®)) < 24+ 3" ¢y dim(VE").
d|n

Definition

We call g extremal if equality holds, i.e. if R = 0.

@ This is the case for example if p(V(g')) > 1 for all
i € Zn\ {0} (equivalence for n prime and g(lo(n)) = 0).
@ No extremal orbifolds for n prime and g(lo(n)) # 0.

Sven Moller A Uniform Construction of the 71 holomorphic VOAs of ¢ = 24



A Generalised Deep-Hole Construction

Deep-Hole Construction

e Construction of the 23 Niemeier lattices N(®) with & # ()
from the deep holes of the Leech lattice A [CS99].

o Inner automorphism of V) of the form g = e~ (2m)ho for
heh=AN®zC=(Vp); adeep hole (of order n = h", the
dual Coxeter number of ®, i.e. nh € N).

@ Then

p(Va(g)) = min (a,)/2=1

and g is extremal, i.e. dim((Vf\er(g))l) = 24+ 24n.

o Indeed, V/‘\)rb(g) = V(o) Where ® is the root system from the
deep-hole construction.

o (Note that V¥ = Vs with A" :={a € A| (a, h) € Z}.)
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A Generalised Deep-Hole Construction

Generalised Deep-Hole Construction

@ All finite-order automorphisms in Aut(Vj) are conjugate to
g = e~ (™ for v € Aut(A) = Cop and h € 7,(h) [DN9I].
@ The dimension formula yields for v with cycle shape Ht|m tP

dim(Vy™®) =24+ 0> b/t — R

@ Take v from list [H617] of 11 (12) conjugacy classes (v) in O(A)
arising from certain cyclic subgroups of the glue codes of the 23
Niemeier lattices with roots.

@ Search for h € m,(h) such that rk((V§)1) = rk((Vy )1) and g is
extremal, i.e. has large conformal weights

p(VA(g")) =p,i + min (o, a)/2.
acm,i(N)+ih

@ Expect that V,frb(g) = U for all U on Schellekens' list (observe that
n = (hY/k;)ord(¥) for simple components of Us).
@ (Note Vjvn C V¥ with AVM:={a € A |va = a,(a, h) € Z}.)
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A Generalised Deep-Hole Construction

Automorphisms

’ H cycl. shp. ‘ orders n ‘ # ‘ orb. rk. ‘ orb. dim.
A 124 1,2,...,25,30,46 | 24 24 24 +24n
B 1828 2,4,...,18,22,30 | 17 16 24 +12n
C 103° 3,6,9,12,18 6 12 24 +8n
D 212 2,6,10,...,22.46 | 9 12 24 + 6n
E | 1%224% 4,8,12,16 5 10 24 + 6n
F 145% 5,10 2 8 24 + (24/5)n
G || 12223262 6,12 2 8 24 + 4n
H 1373 7 1 6 24 + (24/7)n
||| 1224182 8 1 6 24 + 3n
J 2363 6,18 2 6 24 +2n
K| 22102 10 1 4 24+ (6/5)n
L || 172422 2 1 0 24 —12n
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Results and Outlook

@ Have candidate automorphism g for each of the 71 cases.

@ Status: Proof of orbifold construction from the Leech lattice
for 63 of the 71 cases.

o Application: Uniform proof of the uniqueness conjecture via
inverse orbifolds.

@ Related project with Gerald Hohn: Another uniform
construction of Schellekens' list with “same-order lifts" of
outer automorphisms of the 23 Niemeier lattices with roots
(again all extremal).
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Thank you for your attention!
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