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Introduction and
motivations



Modular Linear Differential Equation(MLDE)

Definition(MLDE) et T' c SLy(R): Vol(I'\H*) < +o0.

For a fixed k(€ Q), a (monic) ordinary linear differentail equation

on the complex upper-halt plane H

fUT) + an(n) () + -+ an(n) f(7) = 0

4 = qﬁ, q= exp(27r\/——17'))

(reH, J'= d(2my/—17) dq

is a modular linear differential equation of weight £ on I' if

the space of solutions is invariant under the slash action ‘ Y (Vy erln).

i.e. f(r):s0l. = flpy:= (CT—I_d)_kf(ZZ—_I—l_Z) :s0l. v = ((z Z) cT.

We assume a;(7)’s are holomorphic on H* = H U {cusps}.



Modular Linear Differential Equation(MLDE)

Kaneko-Zagier equation (I' = SL2(Z))

kE+1
6

k(k + 1)

By (7)f(r) = 0

f(7) Ex(7) f(7) -

where Ei(7) =1 — ¢ S: (S:dk_l)q" (co = 24, ¢4 = —240, cg = 504)
n=1 dl|n

V—1loo n(t)?%  dr

k=4 = Eyr), E4(T)/ e

modular mixed mock modular  (n(1) = ¢*/*[[,~,(1 — ¢"))

k=5 = Ey1) = EZ(T)E‘l(’;)_EG(T)’

guasimodular



Modular Linear Differential Equation(MLDE)

Kaneko-Zagier equation (I' = SLy(Z))

kE+1
6

k(k + 1)

By (7)f(r) = 0

f(7) Ex(7) f(7) -

where Ei(7) =1 — ¢ S: (S:dk_1>q" (co = 24, ¢4 = —240, cg = 504)
n=1 dl|n

k(k + 2
Va0 0V (f) = (1;1 )E4f . another expression
k

-the Serre-derivative 9 (f) := f' — EEQf . Mp(SLo(Z)) — My12(SLao(Z))

fork # 2 (mod 3), E; "k42 09y € End(Mj,(SLy(Z)))

. for ,lg =D — 1 (p . prime), eigenfunctions Of E4—119k_|_2 o ﬁk(f)

give supersingular j-polynomaials.



Modular Linear Differential Equation(MLDE)

Kaneko-Zagier equation (I' = SL2(Z))

kE+1

(7

g=f/n"

k(k + 2)
144

9" (1) — %Ez(T)gl(T) Ey(1)g(T) = 0

MMS-Classification in 2D conformal field theory(VOA)

[Mathur-Mukhi-Sen (1988), Kaneko-Nagatomo-S. (2013)]



Modular Linear Differential Equation(MLDE)

For I' = SLy(Z), the well-known “Serre”-form of MLDEs is

I () + 029" D (f) + -+ + by 106 (f) + buf = 0,

where 19,&”) = Upy2(n—1)© 0 Vg, g@ :a modular form of wt. 22 on I'.

By 9% (flkvy) = 96 (f)|k+27, the above eq. is a MLDE.
- This MLDE is used to construct the basis of VVMF by Prof. Mason.

— We want to know a general form of MLDESs in the standard forms.

f(r) +ar(r)f V() 4 an(n) f(r) = 0



Aim In this talk

- Find the transformation property of coefficient of modular
linear differential equations written in the standard form

FNT) +a(n) fU7 () + -+ an (1) (1) = 0

- Rewrite the modular linear differential equation in yet another
form using certain “arithmetic” differential operators
In both non-cocompact(I' C SL,(Z)) and cocompact cases.




Main results

(hon-cocompact case)



The general form of MLDEs(nhon-cocompact)

Suppose that eq. (£);. is a MLDE of wt. k(€ Q) on

[' C SLy(7Z) : non-cocomact gp.

FO (1) + ax(r)f () 4+ an(n)f(T) = 0 ()
We assume such a ¢ exists:

S(yr) = (cm + dP0(r) + (=) (et +d) (VY €T),

We introduce two differential operators:

n

(k-1 +e-1 i) (n—i
Rankin-Cohen bracket: [f,g]%g) = Z(—l)z<n . ) (n Z. ) F gln=1),

: n—1
1=0

The higher-Serre operator: @,in)(f) = — (k+n—1)[¢, f]gi’ﬂ).



The general form of MLDEs(nhon-cocompact)

Theorem A

Suppose ()i is a MLDE of wt. k on I' C SLy(Z) : non-cocompact gp..

1) If we put go(7) = a1(7) + n(k +n — 1)¢(7),

<n—m+z> <k+n—’;n+i—1> (Qmi—2> - o ()

for 2 < m <n,

;_x

T —

92m Z
=0

1

then go,, (7) (1 < m < n) is a modular form of wt. 2m on T,

—1
. n Z 1 2’&]{5)

d (1)} be writt () +E & S ( =r

and (f); can be written as . (2@' . | 924, ](n iy =0

2) Conversely, let gs,, be modular forms of wt. 2m on T.

Set a(r) =1 () (“ 1) e = om0

m . —1 . .
(n+7—1 n+7—1 k+n—]—1 (m—7)
E:_lmﬂ n—j
=R (21—1> <m+4—4>( m—j )%
for 1 <m <n.

Then ();, becomes a MLDE of wt. k on T.




The key to prove

(the transformation property of coefficients)




The transformation property of coefficients

Suppose that eq. (£);. is a MLDE of wt. k(€ Q) on

[' C SLy(7Z) : non-cocomact gp.

FOT) +ar () fOD () o+ an()f() = 0 ()

By using followings :

. Substituting f|ry (y € T') into f in (§);.

n

62 (100) 55 (s v

1=0

where (o), = ala+1)---(a+n—-1)if n >0, (o), =1if n=0.

n

1=1



The transformation property of coefficients

Proposition

Coefficients of the MLDE (f); satisfy the following transformation law:

anrr) = 32 (") (- grm) e+ o

(

B ——

Form =1, a1(y7) = (et +d)?a1 (1) —n(k +n — 1)( (et +d).

27T\C/jl)

More general, a,,(7) has “quasi modularity” of depth m and weight 2m.

For k = 0, a,(7) of a MLDE (#){ have the modularlity of wt. 2n.



The structure of the space of quasimodular forms

- The space of modular forms of weight k£ on I':

My(T) = {f : hol. on H*, flxy(r) = f(7) (v €T)}

- The space of quasimodular forms of Welght k and depth r on I":

QM (1) = {f : hol. on ", fli(r Zfz D) Crven)

qua81modular1ty

- The following is hold:
Mi(D) = QM (D) c QM(D) € -~ c QM (T)  (r<k/2)

d
2w/ —17) )

DM, (T) € QM () (=4



The structure of the space of guasimodular forms

Theorem[Kaneko-Zagier(1995)]

For I' C SLy(Z) : non-cocompact gp. of finite index,

[k/2]

Any quasimodular form has a unique representation
as a sum of derivatives of MFs and QMFs.

—> characterize a,,(7) by a sum of derivatives of a;(7)’s.



Derivatives of coefficients

| emma

For any s > 1, the derivative of coefficients of (#); is given by

™m

=3 (") -

[/

1=0
—~ (s C 1+) S
X . — ) — 9 —s+1). + d 2(m4s)—i—j (s J)
jz_% <]> ( 27'('\/ —1) (Z m 5 )] (CT ) Qpp—g (T)

(1 <m <n)

") induction on s and a previous Proposition.

By using this lemma,

we show the modularity of a sum of derivatives of a;(7)’s.




Modularity

Theorem B

Let a;(7)’s be coefficients of the MLDE ()} .

For 2 < Vm < n, we put

m—1 . ! —1

—_—_ _—

S)—Z(T) of a previous slide, and

the Chu-Vandermonde identity o F}(—n,b;c;1) = (¢ — b)n/(C)p .

") The lemma of a



Modularity

By Theorem(Kaneko-Zagier), a hol. func. ¢(7) exists s.t.

O(yT) = (er + d)* (1) + ( ct+d) (Vyel).

ZW\C/TI)(

Let ®(7) be a modular form of weight £ on T.

For example, ®'(7)/{{®(7)} satisfies the above transformation-law.
If ®'(7)/{¢P(7)} is holomorphic, we can take ¢(7) = ®'(7)/{{D(T)}.

Recall a1 (y7) = (em + d)?a1(7) — n(k +n — 1)( )(CT + d).

C
2mv/ —1

m) Setting g(7) == a1 (7) + n(k +n— 1)o(7).

g2(y7) = (e +d)?g2(1) (v €T).



Modularity

Similarly for 2 < m < n, we set
m—1 : : —1
B n—m+i\(k+n—m-4+i—1\/2m —2 (i)
i B (T e

By Theorem B, we have gom|omY(7) = gom(7) (1 <m < n,yeT).

» Thus g9, (7) is a modular form of weight 2m on T.

Example
For I' = SLy(Z), we have

O(7) = n()**, (1) = E2(7)/12, g2(7) = 0 and gan(7) € Moy ().

In egeneral. the choice of &(7) and 7) 1S not unique.




Modularity

Proposition

Let ¢(7) be a quasimodular form of weight 2 and depth 1 on I
(1) = (et + d)?¢(7) ( )(CT +d) (Vyel).

C
2w/ —1
Let gom(7) (1 <m < n) be a modular form of weight 2m on I.

Then a,,(7)’s of a MLDE (#);. can be written as

) by using the definition of ¢(7) and ¢o,,(7) of a previous slide.



Modularity

Now we recall the “Rankin-Cohen bracket”

i | L — / — | |
1l =S (M) (7 oo

i=0
- Bi-linear differential operator on My (I") ® My(I') — Mgyp10n(T).

Tt is also on QM (T) @ QM™ (T) — QM"Y (T)

by [ f. glny """ (Choie-Lee[2010]).



Modularity

We also recall the “higher-Serre operator”

0, (f) = £ = (k+n—1)[o, f1;5).

-For n =1, @,(:)(f) = 9% (f) : the Serre-operator.

- Differential operator on Mg (') — Mgio,(I).

- It is also on QM,ET) (') — QM,ET)QR( ') by @(n> (f)-

(Kaneko-Koike|2006] for I' = SLy(Z), S.[2018]for ' C SLs(Z))




The general form of MLDEs

Algorithm = T' ¢ SLy(Z) : non-cocomact gp.

Take ¢(7) a quasimodular form of weight 2 and depth 1 on I':
o(y7) = (et + d)?¢(7) + ( )(CT +d) (Vyel).

C
21/ —1

and gom, (7) (1 < m < n) modular forms of weight 2m on T

n

: —1
P o0+ (") e 2 =0

is a MLDE of weight k on T'.



The general form of MLDEs

Example 1
For I' = SLy(Z) and n = 2, we have

o(1) = Eo(7)/12, go(7) = 0 and g4(7) = aly(7) (a € C).
Then the MLDE (#);, has the form

kE+1
6

k(k + 1)
12

" E2f/+( E§+04E4>f:()-

If this MLDE has g¢-series solution s.t. f =1+ O(q),

we have a = 0, whose MLDE is Kaneko-Zagier equation.



The general form of MLDEs

Example 2
For I' = SLy(Z) and n = 3, we have

¢(7) = Eo(71)/12, go(7) = 0, g4(7) = aF4 and gg(7) = BFg (o, 8 € C).

Then the MLDE (#);, has the form

k k k
f/// ZQEQJUI_I_{( —I_]‘)ZJ:( —|_2 }f/
k(k+1)(k+2)_, B
{ 24 =h ﬁE6}f_

02(7) = 3 gtV () =g () = Y (— 1)

nez nez nez



The general form of MLDEs

Example 3 For I' =T'((2) and n = 2,

M, (T'g(2)) = C[Ha, Ag].  Hy(r) =2E:(27) — Ea(r), Aa(r) = {6a2(7)/2)°.
The choice of ¢(7) is not unique. - ) QMQ(I)(FO(Q)) = CE» 69 CHo.

If ®(7) = As(7), then ¢(7) = {Eo(7) + 2H5(7) }/12.
If (1) = Ao(7)(Ho(7)? — 64A5(7)), then ¢(7) = {2F5(7) + Ho(7)}/24.

Then the MLDE (#); has the form

f(7) = (2(k+1)¢(7) — ga(7)) f'(7) + (k(k+ ' (1) — ggé(r) +g4(7))f =0

g2 (1) = C1Ho(7), ga(T) = CoHa(7)? + C3A45(7) (C; € C).

Putting ¢(7) = {2FE5(7) + Ha(7)}/24 for C; =0 (i = 1,2, 3),

we have Kaneko-Zagier equation for the Fricke gp. of level 2.



Main results

(cocompact case)



The ring structure of (cocompact)guasimodular forms

Theorem[N. O. Azaiez(2005)]

[' : cocomapct group (which has no cusps.)
[k/2]

e

- Any quasimodular forms has a representation
as a sum of derivatives of MFs.

- There are no hol. qguasimodular forms of wt.2 and depthl.

The a1(7) of the MLDE (f);, is a meromorphic QMF of wt.2 and depthl.



The ring structure of (cocompact)guasimodular forms

Theorem[N. O. Azaiez(2005)]

[' : cocomapct group (which has no cusps.)

- Any quasimodular forms has a representation
as a sum of derivatives of MFs.

- There are no hol. qguasimodular forms of wt.2 and depthl.

—>  We have to multiply a MF K (1) of wt. £ to a,,(7)’s
s.t. K(7)aq(7) is holomorphic.



The MLDEs for cocompact case

We now set a (non-monic)MLDE (b);.:

bo(T) N (7) + bi(T) D (T) -+ bu(T)f(T) =0 (o)}

(bo(T) = K(7), bi(1) = K(1)a;(7))

By similar discussions to the MLDE (f);., we have :

Proposition

Coefficients of the MLDE (b);. satisfy the following transformation law:

bm(77)22<n_T+i) (—QW\(;?)'(IC—I-H m);(er + d)E2m=ip, (1)




The general form of MLDEs(nhon-cocompact)

Theorem A’

Suppose (b); is a MLDE of wt. k on I" C SLy(R) : cocompact gp..

1)Ifweput for 2 < m <n,
m—m+i\[(k+n—m+i—1\[/E+2m —2 - (i)
(7)) = b~ (1),
=3 (7)) () o

then po,, (7) (1 < m < n) is a modular form of wt. 2m + £ on T,

. " n+E—i—1 Z-
and (b)l,; can be written as Z (n c ; )[pzi,f]gijf)’k) —0.

i=0 L
2) Conversely, let ps,, be a modular form of wt. 2m + & on T.

m . . N —1
s - S () (1) ()

j=
for 1 <m <n.

Then (b); becomes a MLDE of wt. k on T




The general form of MLDEs




Summary(non-cocompact case)

fUUT) +ar(T) (1) 4 an(T)f(T) = 0 (D)
- a;(7)’s of a MLDE (#); have the quasimodularlity of wt. 2 and depth 3.
. For k =0, a,(7) of a MLDE (#){ have the modularlity of wt. 23.

- For ¢(7) and g2, (7) (1 < m < n) s.t.
b(v7) = (cr + d)? + (%h) (c7 + d),
g2(7) := a1(7) + n(k +n - 1)o(7),

dor () i i (n - T + z) (k +n— T +i— 1) <2mi— 2) _1af7?_z-(7)

0 (2 <m < n).

n o m+i—1\"" ;
werave o +3 (") o1 =0
1=1



Summary(cocompact case)

bo(T)f" (7)) + bi(T) f () + -+ b (T)f(T) =0 (D)},

- b;(7)’s of a MLDE (b);, have the quasimodualrlity of wt. 2i+¢ and depth i.

. For k =0, b,(7) of a MLDE (b){ have the modularity of wt. 2i + £.

- We take po,, (7)’s (1 <m < n) s.t.

m

pam(7) =3 (n—Zzﬂ) (k+n—’;n+7j—1> <£+22n_2>_1b§?_¢(7)~

1=0

- n —+ —7—1 i
we have Z ( : . >[p22,f]gijf)k) = (.



Thank you for your attention.
Happy birthday  Professor Mason !!



Appendix(The MLDEs for cocompact case)

L emma

For any s > 1, the derivative of coefficients of the MLDE (b);, is given by

m

bé?(w)=2(n_m+i>(k+n—m)i

: 1
1=0

5 S C 1+7 o -
> E . _ € —9m —s+1). 4 d §+2(m+8)—z—3b(3 7) .
par <J)( 2my/—1 ) i-g-2most (et mi (7)

') induction on s.

By using this lemma,

we show the modularity of a sum of derivatives of b;(7)’s.




Appendix(The MLDEs for cocompact case)

Theorem B’ Let b;(7)’s be coefficients of the MLDE (b);..
For 1 < Vm < n, we put

m

P (7) :Z <n—7;1+i> (l{:+n—2n+i—1> <§+2:;n_2)1bf??_i(’r).

1=0

We have  po,, (”}/7‘) — (CT d)2m+§p2m (’7‘) (\V/’y < F).

Proposition

Let pon (7) (1 <m < n) be a modular form of weight 2m + £ on T

Then b,,(7)’s of the MLDE (b); can be written as

m

b (7) = 3 (—1)™H (:l—_:?) (k +:l—j.— 1) <€ +Z:j +j>1pg;zj)(7).

j=0




