COMPLEX ANALYSIS REVIEW PROBLEMS

(1) Recall that a function u(x, y) is harmonic if

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)u(x,y) = 0.$$

Prove that u(x,y) = 2x(1-y) is harmonic, find v so that f(z) = u + iv is holomorphic, and write f(z) in terms of z. Now do the same for $u(x,y) = x^2 - y^2 - 2xy - 2x + 3y$.

- (2) Find a Möbius transformation that maps the circle |z-1|=2 onto the line x+y=1.
- (3) Describe what $f(z) = \frac{z+1}{z-1}$ does to the real axis, the imaginary axis, the line x = y, and a circle of radius r > 0 centered at $a \in \mathbb{R}$.
- (4) A mapping is called *involutory* if f(f(z)) = z. Find conditions on a, b, c, d so that $f(z) = \frac{az+b}{cz+d}$ is involutory.
- (5) Derive from scratch the formulas for stereographic projection.
- (6) Describe what $f(z) = 1/\overline{z}$ does to the Riemann sphere.
- (7) Find a Möbius transformation that maps the vertices 1+i, -i, 2-i of a triangle T of the z-plane into the points 0, 1, i of the w-plane. Sketch the image of the triangle T.
- (8) Let $f(z) = \frac{az+b}{cz+d}$, $ad-bc \neq 0$. Show that if $a, b, c, d \in \mathbb{R}$, then f maps the real axis onto the real axis. Conversely, if f maps the real axis onto the real axis, is it true that $a, b, c, d \in \mathbb{R}$?
- (9) Prove that for fixed $z_0 \in \mathbb{C}$ with $|z_0| \neq 1$ and fixed $\phi \in \mathbb{R}$,

$$f(z) = e^{i\phi} \frac{z - z_0}{1 - z\overline{z}_0}$$

is a Möbius transformation that maps the unit circle onto the unit circle. Find such a Möbius transformation that takes z=0 to $w=\frac{1}{2}(1+i)$.

(10) Prove that a Möbius transformation

$$f(z) = \frac{\alpha z + \overline{\gamma}}{\gamma z + \overline{\alpha}}$$

maps the unit circle onto the unit circle. What is the difference between $|\alpha|^2 - |\gamma|^2 = 1$ and $|\alpha|^2 - |\gamma|^2 = -1$? Find such a Möbius transformation that takes z = 0 to $w = \frac{1}{2}(1+i)$.