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Last time we looked at Legendre’s equation

(1− x2)y′′ − 2xy′ + n(n + 1)y = 0

where n is a given constant. This differential equation comes up in science whenever we
want to solve “Laplace’s equation” in spherical coordinates. [We will do that later in the

semester.] It has the power series solution y(x) =

∞∑
m=0

amxm on −1 < x < 1. Here a0 and

a1 can be anything, but then all the following coefficients are determined by the recurrence
relation

am+2 = −(n−m)(n + m + 1)

(m + 2)(m + 1)
am for m ≥ 0.

The general solution is then of the form

y(x) = a0 yeven(x) + a1 yodd(x)

where yeven(x) has only even powers of x, and yodd(x) has only odd powers of x.

Note: If n is a nonnegative integer, then the recurrence relation gives an+2 = 0, and
therefore an+4 = 0, etc., so we end up with a polynomial solution of Legendre’s equation.

Example. If n = 2 and we take a0 = 1 and a1 = 0, then we get the solution y(x) = 1−3x2.
[Check that it solves Legendre’s equation in this case.]

Example. If n = 3 and we take a0 = 0 and a1 = 1, then we get the solution y(x) = x− 5
3x

3.
[Check that it solves Legendre’s equation with n = 3.]

It was decided that “Legendre polynomials” Pn(x) must all satisfy Pn(1) = 1, so we get

P2(x) = −1

2
(1− 3x2) and P3(x) = −3

2

(
x− 5

3
x3
)
, etc.
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We have the amazing and useful “Rodrigues’s formula” for Legendre polynomials (see
homework):

P0(x) = 1

Pn(x) =
1

2nn!

dn

dxn
[
(x2 − 1)n

]
.

Important: We can use linear algebra when studying these polynomials! Legendre
polynomials are orthogonal on the interval (−1, 1) with respect to the inner product

〈f, g〉 =

∫ 1

−1
f(x)g(x) dx.

This is a “dot product” for functions! The “length” of a function on (−1, 1) is:

||f || = 〈f, f〉1/2 =

√∫ 1

−1
f(x)2 dx.

And Legendre polynomials are orthogonal to each other in the sense that

〈Pn, Pm〉 = 0 if m 6= n.

(See §§ 11.5-6.) In fact, Pn(x) is orthogonal to all polynomials of lower degree:

Fact. Let 0 ≤ m < n be integers. Then

∫ 1

−1
xmPn(x) dx = 0.

Proof. Using Rodrigues’s formula, it suffices to show∫ 1

−1
xm

dn

dxn
[
(x2 − 1)n

]
dx = 0.

Step 1: If k < n, then note that
dk

dxk

∣∣∣∣
x=±1

(x2 − 1)n = 0.

Step 2: Now use integration by parts with:

u = xm dv =
dn

dxn
[
(x2 − 1)n

]
.

So we get (with no boundary terms because of Step 1)∫ 1

−1
xm

dn

dxn
[
(x2 − 1)n

]
dx = −

∫ 1

−1
mxm−1

dn−1

dxn−1
[
(x2 − 1)n

]
dx.

We repeat this process n times and get:

. . . = (−1)n
∫ 1

−1

[
dn

dxn
(xm)

]
(x2 − 1)n dx = 0.


