
MATH 105B: LAPLACE’S EQUATION IN SPHERICAL COORDINATES

PROF. MICHAEL VANVALKENBURGH

We investigate the two problems: the “interior problem”{
∆u = 0 inside the sphere of radius R

u = f on the boundary of the sphere.

and the “exterior problem”{
∆u = 0 outside the sphere of radius R

u = f on the boundary of the sphere.

Because we are looking at a boundary condition on a sphere, it is simplest to use spherical
coordinates.

Laplace’s equation ∆u = 0 in spherical coordinates is:
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As usual, we first look for solutions of the form

u(r, θ, φ) = G(r)W (θ)H(φ).

We plug this into Laplace’s equation and multiply by
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We see that the left side is independent of θ, and the right side is independent of (r, φ), so
this quantity is a constant, which we call β.
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In particular, we have the ODE

W ′′(θ) + βW (θ) = 0.

If β = 0, this has the general solution W (θ) = aθ + b. However, W must be a well-defined
function on the circle: W (θ+ 2π) = W (θ) for all θ. We can use this to show that W must
then be a constant. We can similarly look at the cases when β > 0 or β < 0. In the end,
the only nontrivial case is when

β = m2, m an integer.

So we get the solutions

Wm(θ) = C1 cos(mθ) + C2 sin(mθ).

(Note that when m = 0 we have that W0 is a constant.)

Returning to the equation (∗), we have
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Since the left side is independent of φ and the right side is independent of r, this quantity
is a constant, which we call n(n+ 1) for reasons that will be clear later.

Thus we have the two ODE:
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The equation for G is an “Euler-Cauchy equation” (see §2.5, §5.3, or Math 45) and has
the two linearly independent solutions

Gn(r) = rn and G∗n(r) =
1

rn+1
.

To solve the equation for H, we let w = cosφ. Then by the Chain Rule
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so we can rewrite the equation for H as:
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This is “the generalized Legendre equation,” and its solutions are “Legendre functions.”
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Our book only considers the special case when u is independent of θ (the case of “az-
imuthal symmetry”). Then we have m = 0, and the equation for H becomes the ordinary
Legendre equation of §5.2. When n = 0, 1, 2, . . ., one of its solutions is the “Legendre
polynomial”

H = Pn(w) = Pn(cosφ).

To summarize: If we have azimuthal symmetry, then we have special solutions of the
form

un(r, φ) = Anr
nPn(cosφ) and u∗n(r, φ) =
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Pn(cosφ).

To solve the “interior problem” stated at the beginning of the notes, we look for a
solution of the form
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To solve the “exterior problem,” we look for a solution of the form
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We can use the orthogonality of the Legendre polynomials (see §11.6) to satisfy the bound-
ary condition: we can find formulas for the coefficients An and Bn. See the book for
details.

The rest of the week: more examples and review.


