## MATH 31, LECTURE 10

## PROF. MICHAEL VANVALKENBURGH

For emphasis:

To calculate volumes:

- (1) Draw the picture (very important!!!!). Can you "fill the solid" with parallel discs/washers/(other cross-sections with easily-computable areas)? Can you "fill the solid" with cylindrical shells?
- (2) Washers: Find the inner radius and outer radius for each washer. (If the inner radius is zero, it's a disc.) Shells: Find the radius, circumference, and height.
- (3) Use the formula to set up the integral. (Hopefully you will get to the point where you don't have to memorize the formula—it just makes sense.)
- (4) Evaluate the integral.

**Example.** The region bounded by x = 0, y = 0,  $y = \cos x$  for  $0 \le x \le \frac{\pi}{2}$ , rotated about the y-axis. Set up the integral for the volume. Using Integration by Parts (§7.1) we find that, using the washer method or the shell method, the volume is  $\pi^2 - 2\pi$ .

Someone asked about the problem

$$\int_0^1 x \sqrt{1-x^4} \, dx$$

from Section 5.5.

Evil Test Question. Evaluate the integral

$$\int_0^1 (x+1)^{12} \, dx.$$

The easiest way is to use the Chain Rule/ the Substitution Rule.

I also answered other questions; I don't remember what exactly.