MATH 31, LECTURE 16

PROF. MICHAEL VANVALKENBURGH
At the beginning of class, I passed back the quiz and talked about it.
I also talked about “removing the absolute values” (see the Lecture 15 notes).

Example. (Similar to #14 in the book.)
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In this problem, we will need to know how to evaluate

/ cscfdo.

The book makes a wacky substitution. I prefer to use “partial fractions”—foreshadowing
Section 7.4 of the book. Each step should make sense, even though as a whole it seems

magical:
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But now we can make the substitution x = cosf, dr = —sinf df to get
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For integrals like this, we use the algebraic identity

11 1 N 1
1—22 2\1—2z 142/

(This is what is called “partial fractions.”) Thus
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Now substituting back, we get
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(we used another property of logarithms)
=In|csch — cotb| + C.

And this is the same formula as the book.

Example. Let a > 0 be a fixed positive constant. Evaluate

1
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This is similar to the above example. We will need to integrate sec, but this follows the
same method as above. (Compare with the book’s wacky substitution in §7.2.)



