MATH 31, LECTURE 16

PROF. MICHAEL VANVALKENBURGH

At the beginning of class, I passed back the quiz and talked about it.

I also talked about "removing the absolute values" (see the Lecture 15 notes).

Example. (Similar to #14 in the book.)

$$\int \frac{1}{u\sqrt{9-u^2}} \, du.$$

In this problem, we will need to know how to evaluate

$$\int \csc\theta \, d\theta.$$

The book makes a wacky substitution. I prefer to use "partial fractions"—foreshadowing Section 7.4 of the book. Each step should make sense, even though as a whole it seems magical:

$$\int \csc \theta \, d\theta = \int \frac{1}{\sin \theta} \, d\theta$$
$$= \int \frac{\sin \theta}{\sin^2 \theta} \, d\theta$$
$$= \int \frac{\sin \theta}{1 - \cos^2 \theta} \, d\theta.$$

But now we can make the substitution $x = \cos \theta$, $dx = -\sin \theta d\theta$ to get

$$-\int \frac{1}{1-x^2} \, dx.$$

For integrals like this, we use the algebraic identity

$$\frac{1}{1-x^2} = \frac{1}{2} \left(\frac{1}{1-x} + \frac{1}{1+x} \right).$$

(This is what is called "partial fractions.") Thus

$$-\int \frac{1}{1-x^2} dx = \frac{1}{2} \ln|1-x| - \frac{1}{2} \ln|1+x| + C.$$

Now substituting back, we get

$$\int \csc\theta \, d\theta = \frac{1}{2} \ln|1 - \cos\theta| - \frac{1}{2} \ln|1 + \cos\theta| + C$$

$$= \frac{1}{2} \ln\left|\frac{1 - \cos\theta}{1 + \cos\theta}\right| + C$$
(we used a property of logarithms)
$$= \frac{1}{2} \ln\left|\frac{(1 - \cos\theta)^2}{1 - \cos^2\theta}\right| + C$$
(we multiplied the top and bottom by $(1 - \cos\theta)$)
$$= \frac{1}{2} \ln\left|\frac{(1 - \cos\theta)^2}{\sin^2\theta}\right| + C$$

$$= \ln\left|\frac{1 - \cos\theta}{\sin\theta}\right| + C$$
(we used another property of logarithms)
$$= \ln|\csc\theta - \cot\theta| + C.$$

And this is the same formula as the book.

Example. Let a > 0 be a fixed positive constant. Evaluate

$$\int \frac{1}{\sqrt{x^2 - a^2}} \, dx.$$

This is similar to the above example. We will need to integrate sec, but this follows the same method as above. (Compare with the book's wacky substitution in §7.2.)