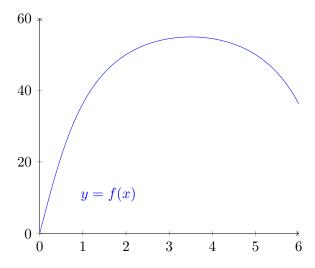
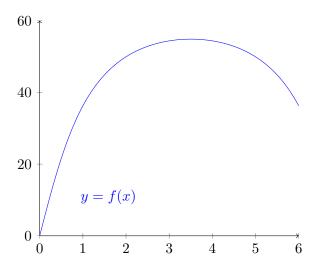
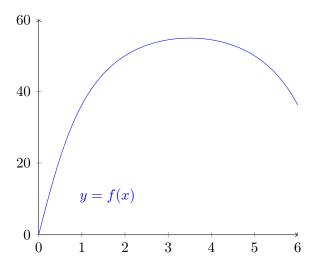

MATH 31, LECTURE 26

PROF. MICHAEL VANVALKENBURGH


I passed out exams and gave you the following handout to work on:

[In hind sight, perhaps I should have given you an example where $\Delta x \neq 1.]$ Sketch an approximation for $\int_0^6 f(x) dx$, with $f(x) = \frac{1}{100} \arctan(7-x) \arctan(x)$, by splitting the interval [0,6] into n=6 equal subintervals, using each of the four methods from Friday. Write a formula (using the letter f) for each of the methods.


Left endpoint approximation:


Right endpoint approximation:

Midpoint Rule:

Trapezoidal Rule:

In each of the methods, in the limit as $n \to \infty$ we get the *exact* value of the integral. (See §5.2.) But what if we stop at a finite n (e.g. n = 6 in the handout)? Which method is best?

First of all, how do we measure how "good" an approximation is?

Using the left endpoint approximation, last time I wrote

$$\int_{a}^{b} f(x) dx \approx I_{\text{left}}.$$

It is more precise to write instead

$$\int_{a}^{b} f(x) dx = I_{\text{left}} + E_{\text{left}},$$

where E_{left} is the *error*. Similarly,

$$\int_{a}^{b} f(x) dx = I_{\text{right}} + E_{\text{right}},$$

$$\int_{a}^{b} f(x) dx = I_{\text{midpt}} + E_{\text{midpt}}, \text{ and}$$

$$\int_{a}^{b} f(x) dx = I_{\text{trap}} + E_{\text{trap}}.$$

For a given integral, which method has the smallest error?

Example (from last time). When approximating $\int_0^2 x^2 dx$ with n = 4, we found

$$I_{
m left}=rac{7}{4}$$
 $I_{
m right}=rac{15}{4}$ $I_{
m midpt}=rac{21}{8}, \quad {
m and}$ $I_{
m exact}=rac{8}{3}.$

And today we figured out:

$$I_{\text{trap}} = \frac{11}{4}.$$

Now which method is the best? That is, which method has the smallest error?

$$E_{\text{exact}} = \frac{8}{3} - \frac{8}{3} = 0. \quad :)$$

$$E_{\text{left}} = \frac{8}{3} - \frac{7}{4} = \frac{11}{12}$$

$$E_{\text{right}} = \frac{8}{3} - \frac{15}{4} = -\frac{13}{12}$$

$$E_{\text{midpt}} = \frac{8}{3} - \frac{21}{8} = \frac{1}{24}$$

$$E_{\text{trap}} = \frac{8}{3} - \frac{11}{4} = -\frac{1}{12}.$$

So for this example the Midpoint Rule gives the best approximation.