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Last time: For f(x) = x2 on [0, 2], with n = 4 subintervals of equal length, we have the
following errors for the four different methods:

Eleft =
11

12

Eright = −13

12

Emidpt =
1

24

Etrap = − 1

12
.

So for this example the Midpoint Rule gives the best approximation.

The above example is a bit silly because we can easily find the exact value of the inte-
gral, using the Fundamental Theorem of Calculus. The only reason we did approximation
methods for this example was to illustrate the techniques, to compute everything by hand.
In real-world problems (likely using a computer to implement the Midpoint Rule or Trape-
zoidal Rule), we probably don’t know the exact error because we probably don’t know the
exact value of the integral! It is, however, always possible to estimate the error, given a
bound on the second derivative:

Error Bounds. Suppose |f ′′(x)| ≤ K for a ≤ x ≤ b. Then, dividing [a, b] into n equal
subintervals,

|Etrap| ≤
K(b− a)3

12n2
, and

|Emidpt| ≤
K(b− a)3

24n2
.

These error bounds are valid for any (twice-differentiable) function f . If you take Math
130AB (Real Analysis) you will learn the skills needed to prove these error bounds.
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Again, these error bounds are valid for any (twice-differentiable) function f . But for
fun let’s see what they say for a special case: our simple example f(x) = x2 on [0, 2] with
n = 4 subintervals. For this example, f ′′(x) = 2, so the best (smallest) K is K = 2. Then
the error bounds say:

|Etrap| ≤
1

12
, and

|Emidpt| ≤
1

24
.

Ok, that agrees with what we got before!

Now let’s look at a more complicated example:

Application. Suppose we want to approximate the integral∫ 3

0
e−x

2
dx

using the Midpoint Rule, with an error less than 10−6. That is, we want an n so that

|Emidpt| ≤ 10−6.

Using the error bound, with a = 0, b = 3, and f(x) = e−x
2
, we have

f(x) = e−x
2

f ′(x) = −2xe−x
2

f ′′(x) = 2(2x2 − 1)e−x
2
.

To find the best (smallest) K so that |f ′′(x)| ≤ K for all 0 ≤ x ≤ 3, we can use optimization
techniques from Calc. I (remember “find the absolute maximum,” etc.?). But let’s be lazy
and make the computer do the work. We use the crude estimate

|f ′′(x)| ≤ 2 · 17 · 1 = 34 for all 0 ≤ x ≤ 3,

which shows that we can take K = 34. (We can likely find a better (smaller) K, but this
one is ok.) we then choose n so that

K(b− a)3

24n2
=

34 · 27

24n2
=

17 · 9
4n2

≤ 10−6.

That is, we take √
17 · 9 · 106

4
= 1500

√
17 ≤ n.

So we can take, for example, n = 6185 to guarantee that the error is less than 10−6.
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(See what I mean by making the computer do the work? Now the computer needs to
split the interval into 6185 equal subintervals and then needs to use the Midpoint Rule.)

There is a fifth approximation method, “Simpson’s Rule,” which uses parabolas to ap-
proximate the graph of f . And we have the following error bound:

Error Bound for Simpson’s Rule: If |f (4)(x)| ≤ K for all a ≤ x ≤ b, then

|ESimp| ≤
K(b− a)5

180n4
.

For large n this is the best method we’ve seen. Also, for fun, note that for f(x) = x2 we
can take K = 0, which says that Simpson’s Rule gives the exact answer for that function.
(This makes sense from what I said above: it is possible to approximate a parabola by a
parabola and have no error!)

§7.8. Improper Integrals.
We ended class with a preliminary discussion of improper integrals.


