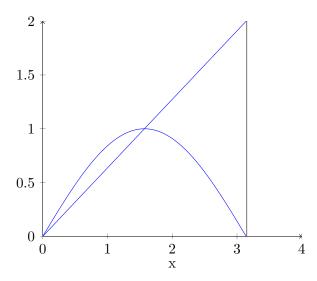

MATH 31, LECTURE 4

PROF. MICHAEL VANVALKENBURGH

We started class with a ten-minute quiz, with questions from your homework.

Example. Calculate the area between the curves y = x and $y = \sin x$, between x = 0 and $x = \frac{\pi}{2}$.


Answer. We have the picture:

$$A = \int_0^{\pi/2} |x - \sin x| \, dx$$
$$= \int_0^{\pi/2} (x - \sin x) \, dx$$
$$= \left[\frac{1}{2}x^2 + \cos x\right]_0^{\pi/2}$$
$$= \frac{\pi^2}{8} - 1.$$

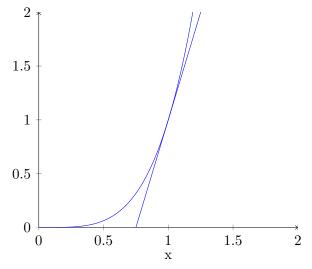
Example. Calculate the area between the curves $y = \frac{2}{\pi}x$ and $y = \sin x$, between x = 0 and $x = \pi$.

Answer. We have the picture:

To remove the absolute value in the integral, we need to break it into two parts:

$$A = \int_0^{\pi} |\sin x - \frac{2}{\pi}x| dx$$

$$= \int_0^{\pi/2} (\sin x - \frac{2}{\pi}x) dx + \int_{\pi/2}^{\pi} (\frac{2}{\pi}x - \sin x) dx$$


$$\vdots$$

$$= \frac{\pi}{2}.$$

Example. Find the area of the region bounded by the curve $y = x^4$, the tangent line to the curve at (1,1), and the x-axis.

Answer. [I gave you time to work on it, then I gave you time to talk to your neighbors.] From Calc. I, we know how to find the equation for the tangent line at (1,1). Let $f(x) = x^4$. Then $f'(x) = 4x^3$, and f'(1) = 4 is the *slope* of the tangent line at (1,1). Thus the equation of the tangent line through (1,1) is

$$y = 4x - 3.$$

One way to do it:

$$A = \int_0^{3/4} x^4 dx + \int_{3/4}^1 (x^4 - (4x - 3)) dx$$

$$\vdots$$

$$= \frac{3}{40}.$$

Another way to see it:

$$A = \int_0^1 x^4 dx - \int_{3/4}^1 (4x - 3) dx$$

$$\vdots$$

$$= \frac{3}{40}.$$

A different way to do it: In class, some of you had this smart idea: Integrate with respect to y! The curves, as graphs of functions of y, are $x = y^{1/4}$ and $x = \frac{1}{4}y + \frac{3}{4}$. Then the integral is:

$$\int_0^1 \left(\left(\frac{1}{4}y + \frac{3}{4} \right) - y^{1/4} \right) \, dy = \dots = \frac{3}{40}.$$

If you have extra time on an exam, it would be a good idea to solve a problem different ways, and make sure you get the same answer every time.