MATH 31, LECTURE 9

PROF. MICHAEL VANVALKENBURGH

Example. [In class I drew a nice picture.] Find the volume of the solid consisting of discs
stuck between the z-axis and the curve y = 22 [It makes sense if I draw the figure.] I
wanted to give you an example of a solid that is not a solid of revolution. You can, however,
do a clever trick (look up “Cavalieri’s Principle”) to get a solid of revolution with the same
volume.
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For 0 < z < 2 the cross-section is a disc of radius %x

Example. Find the volume of the solid generated by rotating the graph of f(z) = |[x—2|+1,
0 < x <2, about the z-axis. [I drew the picture in class.]

For 0 < x < 2, the cross-section is a disc of radius 3 —z, so its area is A;(z) == )
For 2 < x < 3, the cross-section is a disc of radius x — 1, so its area is Az(z) = 7(z —1)%.
So the volume of the solid is
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= 11m.

Example. Consider the solid generated by rotating the region bounded by the curves
y — ex, xr = 07 y — 3

about the z-axis. Set up but do not evaluate the integral for the volume, using (a) the
washer method and (b) the shell method.

[We did it in class.] Exercise: Try to do a substitution showing that the integrals actually
do evaluate to the same number.



