MATH 31, LECTURE 9

PROF. MICHAEL VANVALKENBURGH

Example. [In class I drew a nice picture.] Find the volume of the solid consisting of discs stuck between the x-axis and the curve $y = x^2$. [It makes sense if I draw the figure.] I wanted to give you an example of a solid that is not a solid of revolution. You can, however, do a clever trick (look up "Cavalieri's Principle") to get a solid of revolution with the same volume.

For $0 \le x \le 2$ the cross-section is a disc of radius $\frac{1}{2}x^2$, so its area is $A(x) = \frac{1}{4}\pi x^4$, and

$$V = \int_0^2 \frac{1}{4} \pi x^4 \, dx = \dots = \frac{8}{5} \pi.$$

Example. Find the volume of the solid generated by rotating the graph of f(x) = |x-2|+1, $0 \le x \le 2$, about the x-axis. [I drew the picture in class.]

For $0 \le x \le 2$, the cross-section is a disc of radius 3-x, so its area is $A_1(x) = \pi(3-x)^2$. For $2 \le x \le 3$, the cross-section is a disc of radius x-1, so its area is $A_2(x) = \pi(x-1)^2$. So the volume of the solid is

$$V = \int_0^2 A_1(x) dx + \int_2^3 A_2(x) dx$$
$$= \int_0^2 \pi (3 - x)^2 dx + \int_2^3 \pi (x - 1)^2 dx$$
$$= \int_1^3 \pi u^2 du + \int_1^2 \pi u^2 du$$
$$= 11\pi.$$

Example. Consider the solid generated by rotating the region bounded by the curves

$$y = e^x, \qquad x = 0, \qquad y = 3$$

about the x-axis. Set up but do not evaluate the integral for the volume, using (a) the washer method and (b) the shell method.

[We did it in class.] Exercise: Try to do a substitution showing that the integrals actually do evaluate to the same number.