
INTRODUCTION TO LINE INTEGRALS

PROF. MICHAEL VANVALKENBURGH

Last week we discussed triple integrals. This week we will study a new topic of great
importance in mathematics and physics: “line integrals.”

1. Line Integrals with Respect to Arclength

1.1. In the Plane. Let C be a curve in R2, parametrized by

~r(t) = 〈x(t), y(t)〉, a ≤ t ≤ b.
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The curve pictured is given by ~r(t) = 〈sin(t) + 1, e−t + sin(2t)〉, 0 ≤ t ≤ 3π/2.

Remember that the curve does not need to satisfy the vertical line test, because while
~r : [a, b]→ R2 is a function of t, the y value does not need to be a function of x.

Now let f(x, y) be a function defined on C.

Question: What is the area of the “red ribbon,” above the curve C and below the graph
of f?
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We set up the area as an integral, in the usual way. Split the “time” interval [a, b] into
n equal pieces. Then the curve C is split into n (possibly unequal) pieces. We then have
n “wavy rectangles,” with bases along the curve C.
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The height of a “wavy rectangle” is

height = f(~r(tj))

and the length of the base is

length ≈ ||~r ′(tj)||∆t.
After all, from the physics perspective, it is:

||~r ′(tj)||∆t = speed× time = distance traveled.

Adding up the areas of the rectangles, and taking the limit as n → ∞ as usual, we find
that the area of the red ribbon is

(∗)

∫
C
f(x, y) ds

def.
=

∫ b

a
f(~r(t)) ||~r ′(t)|| dt

=

∫ b

a
f(x(t), y(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

This is called “a line integral with respect to arclength.” After all, in the special case
when f ≡ 1, the integral is ∫

C
ds = length of the curve C.

You can think of it as the area of the ribbon with constant height 1 whose base is along
the curve C. So the area is

1× (length of C) = length of C.

The definition (∗) resembles the Substitution Rule from Calc II:∫ b

a
g(u(x)) dudx dx =

∫ u(b)

u(a)
g(u) du.

Important Fact. It is not too hard to prove that the integral
∫
C f(x, y) ds does not

depend on the way we parametrized the curve C. That is, the geometric area of the red
ribbon above does not depend on how “fast” the parametrization ~r(t) travels along the
curve. We illustrate this with the following example:

Example. Let C be the curve x2 + y2 = 1, and let f(x, y) = x2. [The graph of f is the
parabolic sheet z = x2.] Then

∫
C f(x, y) ds is the area of following red ribbon:
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What I drew in class:

Using Mathematica:
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To calculate the area of the ribbon, we parametrize the circle in the usual way:

~r(t) = 〈cos t, sin t〉, 0 ≤ t ≤ 2π.

Then we have
~r ′(t) = 〈− sin t, cos t〉, ||~r ′(t)|| = 1.

So the area is ∫
C
f(x, y) ds =

∫ 2π

0
f(~r(t)) ||~r ′(t)|| dt

=

∫ 2π

0
f(cos t, sin t) · 1 dt

=

∫ 2π

0
cos2 t dt

= π.

We could have also parametrized the circle by

~r(t) = 〈cos(2t), sin(2t)〉, 0 ≤ t ≤ π,
(tracing out the same curve, but twice as fast). Then we have

~r ′(t) = 〈−2 sin(2t), 2 cos(2t)〉, ||~r ′(t)|| = 2.

So the area is ∫
C
f(x, y) ds =

∫ π

0
f(~r(t)) ||~r ′(t)|| dt

=

∫ π

0
f(cos(2t), sin(2t)) · 2 dt

=

∫ π

0
cos2(2t) · 2 dt

=

∫ 2π

0
cos2 u du

= π,

where we did the substitution u = 2t. Thus, as we expected, the answer does not depend
on the particular way that we parametrized the curve.

Moral. We need the factor ||~r ′(t)|| in order to get the same answer no matter how we
choose to parametrize the curve. “If you travel faster, everything looks skinnier, and we
need to account for that.”
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As a cultural aside, In Ray Bradbury’s science fiction novel Fahrenheit 451, billboards
are 200 feet long:

To a passenger in a very-fast-moving car, the billboard would look shorter than it really
is. So again, if you’re measuring sizes of things from inside a fast-moving car, you need to
account for your speed.

Example. Find the length L of the curve given by

~r(t) = 〈et + e−t, 5− 2t〉, 0 ≤ t ≤ 3.

We have

~r ′(t) = 〈et − e−t ,−2〉, and ||~r ′(t)|| = et + e−t.

Thus

L =

∫
C
ds =

∫ 3

0
||~r ′(t)|| dt

=

∫ 3

0
(et + e−t) dt

= e3 − e−3.
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1.2. In Three-Dimensional Space. It works the same way for curves in R3. Let C be
a curve in R3 parametrized by

~r(t) = 〈x(t), y(t), z(t)〉, a ≤ t ≤ b.
Then ∫

C
f(x, y, z) ds

def.
=

∫ b

a
f(~r(t)) ||~r ′(t)|| dt.

2. Line Integrals of Vector Fields

2.1. Vector Fields. A vector field is a function ~F that assigns a vector to every point
in its domain. To visualize a vector field, at every point P we draw the assigned vector
(arrow) with its base at P .

Example. ~F (x, y) = 〈−y, x〉 is a vector field on R2.
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You can think of it as the velocity vector field of a whirlpool, or a tornado. . .
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Example. ~F (x, y, z) = 〈y, z cos(yz) + x, y cos(yz)〉 is a vector field on R3. I didn’t draw
it in class, but here it is, using Mathematica:
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It’s easy to plot using Mathematica! Here’s the code for this example:



INTRODUCTION TO LINE INTEGRALS 9

Example. If f is a real-valued function, then its gradient ~F = ∇f is a vector field. For
example, if

f(x, y, z) = xy + sin(yz),

then

∇f(x, y, z) = 〈y, z cos(yz) + x, y cos(yz)〉

is a gradient vector field.

Example. Here is a wind vector field, courtesy of NASA:
http://disc.sci.gsfc.nasa.gov/featured-items/airs-monitors-cold-weather

Example. And here is a vector field coming from fluid flow:
http://math.unice.fr/~rpas/
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Note that it contains a little copy of the “tornado” vector field from earlier (but going
clockwise this time).

2.2. Line Integrals of Vector Fields. We start with a basic fact from §2.3 of OpenStax
(§12.3 of Stewart):

Basic Fact. The component of ~b in the direction of ~a is

comp~a
~b =

~b · ~a
||~a||

= ||~b|| cos θ,

where θ is the angle between ~a and ~b. The quantity comp~a
~b is a scalar which may be

positive or negative.
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Now let ~F be a vector field on R3 and let C be an oriented curve (direction matters!) in
R3 parametrized by

~r(t) = 〈x(t), y(t), z(t)〉, a ≤ t ≤ b.

Then the component of ~F in the direction of ~r ′(t) (that is, in the direction tangent to the
curve) at ~r(t) is:

(∗∗)
~F (~r(t)) · ~r ′(t)
||~r ′(t)||

.

In physics, ~F might represent a force field ; then (∗∗) represents “how much ~F is pushing
along C at the point ~r(t).”

In some places, ~F might push forwards (a positive amount) along the curve. In other

places, ~F might push backwards (a negative amount) along the curve. In other places, ~F
might push orthogonal to the curve (hence pushing a zero amount along the curve).
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Imagine yourself enclosed inside a greased-up glass tube in outer space. If the gravita-
tional force is orthogonal to the tube, it will pull you against the glass. Otherwise, the
gravitational force will have some component along the tube, forcing you to slide in that
direction.
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Question. What is the total (net) amount of work that ~F does, in pushing along C?

Definition. The line integral of ~F along C is defined to be∫
C

~F · d~r def.
=

∫ b

a
(~F (~r(t)) · ~r ′(t)) dt

=

∫ b

a

(
~F (~r(t)) · ~r ′(t)
||~r ′(t)||

)
||~r ′(t)|| dt.

We wrote it the second way to emphasize that it is the line integral with respect to arclength

of the component of ~F in the direction of the curve. (See §1 of these notes.) In physics, it

represents the work done by ~F along the curve.

Example. Let ~F (x, y, z) = 〈x, y, z〉. Evaluate the integral of ~F along each of the following
curves:

(a) ~r(t) = 〈t, t, t〉, 0 ≤ t ≤ 1.
(b) ~r(t) = 〈cos t, sin t, 0〉, 0 ≤ t ≤ 2π.
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(c) ~r(t) = 〈t2, 3t, 2t3〉, −1 ≤ t ≤ 2.
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[It should really go all the way up to z = 16, but I decided to cut off the picture.]

Hints for each curve:
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(a) The curve is going exactly along the flow (of ~F ), but ~F is weak near the origin, so the

total work of ~F along the curve is positive and approximately 2 (?).

(b) The curve is always orthogonal to the flow, so ~F does not ever push along the curve.
The answer is 0.

(c) The curve starts off going against the flow (but ~F is weak there). But then the curve

goes along the flow when ~F is strong. So the total amount of work of ~F along the
curve is positive and LARGE.

Solution. In all cases, we need to calculate∫
C

~F · d~r =

∫ b

a
(~F (~r(t)) · ~r ′(t)) dt.

(a) We have ~r(t) = 〈t, t, t〉, so ~r ′(t) = 〈1, 1, 1〉, and

~F (~r(t)) · ~r ′(t) = 3t,

Thus ∫
C

~F · d~r =

∫ 1

0
3t dt

=
3

2
.

(b) For this curve, we have ~F (~r(t)) · ~r ′(t) = 0 for all t, so∫
C

~F · d~r = 0.

(c) For this curve, we have ~F (~r(t)) · ~r ′(t) = 2t3 + 9t+ 12t5, so∫
C

~F · d~r = 147.

Next up: conservative vector fields and then Green’s theorem!
(Please come to class.)
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Problems taken from Marsden and Weinstein’s Calculus, III. The text is available
free online: http://authors.library.caltech.edu/25043/

For the following problems, evaluate the line integral of the given function along the given
curve.

(1) f(x, y, z) = x+ y + yz, where ~r(t) = 〈sin t, cos t, t〉, 0 ≤ t ≤ 2π.

(2) f(x, y, z) = x+ cos2 z, where ~r(t) = 〈sin t, cos t, t〉, 0 ≤ t ≤ 2π.

(3) f(x, y, z) = x cos z, where ~r(t) = 〈t, t2, 0〉, 0 ≤ t ≤ 1.

(4) f(x, y, z) = e
√
z, ~r(t) = 〈1, 2, t2〉, 0 ≤ t ≤ 1.

(5) f(x, y, z) = yz, where ~r(t) = 〈t, 3t, 2t〉, 1 ≤ t ≤ 3.

(6) f(x, y, z) = (x+ y)/(y + z), where ~r(t) = 〈t, 23 t
3/2, t〉, 1 ≤ t ≤ 2.

For the following problems, evaluate the integral of the given vector field ~F along the given
path.

(7) ~r(t) = 〈sin t, cos t, t〉, 0 ≤ t ≤ 2π, ~F (x, y, z) = 〈x, y, z〉.

(8) ~r(t) = 〈t, t, t〉, 0 ≤ t ≤ 1, ~F (x, y, z) = 〈x,−y, z〉.

(9) ~r(t) = 〈cos t, sin t, 0〉, 0 ≤ t ≤ π/2, ~F (x, y, z) = 〈x,−y, z〉.

(10) ~r(t) = 〈cos t, sin t, 0〉, 0 ≤ t ≤ π/2, ~F (x, y, z) = 〈x,−y, 2〉.

(11) ~r(t) = 〈sin t, t2, t〉, 0 ≤ t ≤ 2π, ~F (x, y, z) = 〈sin z, cos
√
y, x3〉.
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(12) ~r(t) = 〈cos t, sec t, tan t〉, −π/4 ≤ t ≤ π/4, ~F (x, y, z) = 〈xz, xy, yz〉.

(13) ~r(t) = 〈(1 + t2)2, 1, t〉, 0 ≤ t ≤ 1, ~F (x, y, z) = 〈1/(z2 + 1), x(1 + y2), ey〉.

(14) ~r(t) = 〈3t, t− 1, t2〉, 0 ≤ t ≤ 1, ~F (x, y, z) = 〈x2 + x, x−yx+y , z − z
3〉.

Let ~F (x, y, z) = 〈x2,−xy, 1〉. Evaluate the line integral of ~F along each of the curves in
Exercises 15–18.

(15) The straight line joining (0, 0, 0) to (1, 1, 1).

(16) The circle of radius 1, centered at the origin and lying in the yz plane, traversed
counterclockwise as viewed from the positive x-axis.

(17) The parabola z = x2, y = 0, between (−1, 0, 1) and (1, 0, 1).

(18) The straight line between (−1, 0, 1) and (1, 0, 1).

And remember that you can find even more practice problems by looking in
other calculus books.


