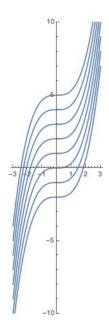
MATH 45, LECTURE 3

PROF. MICHAEL VANVALKENBURGH


There are infinitely many solutions of the differential equation

$$y'(t) = t^2,$$

but they only differ by adding constants. The general solution is the indefinite integral:

$$\int t^2 dt = \frac{1}{3}t^3 + C,$$

where C can be any constant. Pictured below are a few of the solutions.

But there is only one solution of the "initial value problem"

$$y'(t) = t^2, y(0) = 4.$$

It is the definite integral

$$y(t) = 4 + \int_0^t s^2 ds = \frac{1}{3}t^3 + 4.$$

Can you see it in the picture?