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CHAPTER 0

Introduction

This textbook covers the material for the undergraduate Differential Equations course
at California State University Sacramento. This presentation is based on several years of
searching ways which fit within the resources allowed. Although there might be issues related
just to a particular campus, I believe that the presentation shown here is useful to a general
audience.

First, let’s see the particular issues. This is a 3 unit class, taught 3 times 50 minutes

(or 2 times 75 minutes) per week for a semester of 15 weeks. Most of the students are
science majors, including mathematics, physics and engineering. Many of the students are
transfer students, who took the prerequisite classes - Precalculus, Calculus 1 and 2 - at other
campuses, so there is a wide range of mathematical knowledge and maturity levels. At the
beginning of every semester a week of review of calculus proved to be necessary.
The Linear Algebra course is not a prerequisite for this class, and within the time frame
allowed, there is no possibility to cover the basics regarding operations with matrices, eigen-
values and eigenvectors. Also, there is no extra time (unit) allowed for a computer lab
component for this course. These are not optimal starting points for this class and I hope
that the coming years will bring some changes.

Secondly, let’s talk about some general issues. Almost all of my students were used to
getting the 1000+ pages textbooks for their earlier courses, and therefore the habits of read-
ing every line, taking time to focus on the details and understanding the definitions and
theorems describing the main ideas, were lost.

I believe that mathematics is far more than just a collection of rules geared toward appli-
cations and the importance of building a logical assumption-conclusion based system in our
mind to support, as a mesh, the decision making process of a independent thinker cannot be
neglected. This is the reason why I tried to write this textbook in such a manner that the
learning process of the theory of differential equations forecasts the difficulties what real life
applications bring.

Differential Equations is a very important mathematical subject from both theoretical and
practical perspectives. The practical importance is given by the fact that the most important
time dependent scientific, social and economical problems are described by differential, par-
tial differential and stochastic differential equations. The bridge between Nature, Universe
and Mathematics is provided by mathematical modeling, which is the process of finding the
correct mathematical equations describing a certain problem. This process might start with
experimental measurements or theoretical analysis, which lead to certain equations, in our
case differential equations. Then these differential equations are solved and their solutions
tested for agreement to experimental results. In this process we generate some solutions,
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which have the role to predict the future behavior of the analyzed problem. Here comes
the other issue I encountered in my classes and which I consider a general one. Most of
my students are used to have solution manuals and automatically apply some rules to solve
a large number of exercises and check the answers from the solution manual. Differential
Equations is probably one of the best candidates to understand that Nature does not provide
us with a complete solution manual. We usually find some approximate answers, but we are
also left with the task of predicting how accurate these answers are, without knowing the
precise answer.

The structure of this book goes along with above ideas. Students are required to posses
a-priori information from algebra and calculus, and based on the knowledge learned in this
class, to be able to find solutions to the posted differential equation problems and test their
solutions for correctness. For this reason, there will be NO SOLUTION MANUAL posted.
I request the students to check the correctness of their answers by applying the theoretical
methods shown in class, but also by using a computer software in the campus computer labs.
The available software is Mathematica, which could be substituted off campus by Wolfram
Alpha. These are many mathematical softwares, like Maple, Matlab, Octave, and you are
free to use whichever is available to you. The most important thing is to actively participate
in the teaching-learning process and based on the information presented in class, create your
own way of understanding this material. The answers given by computers might be in a
different form than the ones obtained analytically, but it is a good challenge to compare
them. The students must develop intuition, theoretical and computer knowledge to be able
to test and decide whether a solution is correct or wrong.



CHAPTER 1

Calculus Review

1.1. Derivatives

DEFINITION 1.1.1. Consider a functiony : I — R, where I is an interval on the real line
R. We say that the function y has a derivative at ty € I if the limit

t) —y(t
b Y00 (i)
tel, t—to t— 1o

exists and it is finite. In the case when the derivative exists we use the notation

vy oY) = y(to)
y'(to) = te}}?—lﬁo t—ty

Other notations for the derivative of function y at to can be %(t,) or Ly(t,).

In case tg is one of the endpoints of the interval I, then the above limits become one sided
limits.

If the derivative exists at every ¢, € I, then y/(¢) is new function, called derivative function.
If y/(t) has a derivative function, then we call it second derivative of the function y and
denote it by y”(t).

For higher order derivatives we use the notations ¢ (¢), y™(t), ... , y™(t), or L=y(t).

Interpretations and applications of the derivative:

(1) y/(to) is the instantaneous rate of change of the function y at .
(2) y/(to) is the slope of the tangent line to the curve y = y(t), t € I at the point
(o, y(to)).

(3) If the function y has a local maximum (minimum) at ¢y, which is in the interior of
I, and y is differentiable at ¢y, then y/'(ty) = 0. However, y/(ty) might not be zero if
to is one of the endpoints.

4) If y/(t) > 0 for every t € I, then the function y is increasing on I.

5) If 4/ (t) <0 for every t € I, then the function y is decreasing on I.

6) If y”(t) > 0 for every t € I, then the function y is concave-up on I.

7) If y"(t) <0 for every t € I, then the function y is concave-down on I.

(
(
(
(
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Derivatives of the most used elementary functions:

(tn)/ — ntn—l
1
(@) =a"Ina, (') =€, (Int) = p
(sint)’ = cost, (cost) = —sint, (tant)’ =sec’t
1 —1 1
arcsint)’ = ., (arccost) = ——, (arctant) = .
( ) 1 t2 ( ) \/th ( ) 1 + t2

Differentiation Rules: In the following rules y and z are differentiable functions on an
interval I, ¢t € I and c € R.

1) ,

(v +2(0) =)+
@) ,

(c-v) =e-y)
(3) ,
(v0)-2(0) =y - 2(0) + () (1)
Y (0 _ v () — () - 2
(Z—t)) =¥ Z%if LA 2(t) £ 0

(5) ,

(v(=()) =o' (1) - 20
Examples:

(t* —3t+5)=2t—3

3 e”)l =3t2. e 17 2e*

! sint\’ cost-cost —sint- (—sint) 1
(tant) = = =

cost cos?t cos? t

/ 1 1 t
VIHP) = S(1+1) 72t =
2 V14
! 1 2t
2 _ _
(arctan(t )) = m -2t = m

Note: To define functions, calculate derivatives and plot graphs with Mathematica, see
Chapter 8.



Homework exercises:

(1) Find the derivatives of the following functions:

(a)
(b)
(c)
(d)

(e)
(f)

f(t) =2t +5t* -3t —4

Ft)=t2e”

f(t) =sint - cost
?—1

ft) = FER

ft)=v2t+1

f(t) = arcsin 3t .

(2) Graph the following functions. Find the domain, the horizontal and vertical asymptotes,
local minima and maxima and intervals where the following functions are decreasing or in-

creasing, convex or concave.

Check your answers by graphing the functions with Mathematica.

ft) =1t —4t.

2t —4
=615
f(t)=Int—2t.

€t

ft) = 7
)y =te®
f(t) = arctant.
f(t) =3sin(2t) + 1.



1.2. Antiderivatives and Indefinite Integrals

DEFINITION 1.2.1. Let y : I — R be a function. A differentiable function Y : I — R, is
called an antiderivative of y on I if

Y'(t) =y(t), forall tel.

The set (or collection) of all the antiderivatives of y we denote by

/ y(t) dt

and name it the indefinite integral of y.

Examples:
(a)
y(t) =2t, Y(t) =t*, /2tdt:t2+c, I=R.
(b)
(t) = ——— . Y(t) = axcsint
= , = arcsint,
Y V1—1¢2
1
dt = arcsint+c, [ =(—1,1).
| = 1)

Integration Rules:
(1)
/y(t) + () dt = /y(t) dt+/z(t) dt=Y(t)+ Z(t) +ec.
(2)
/a-y(t)dt = a/y(t)dt =aY(t)+c.

(3) Substitution rule : u = 2(t), du = 2/(t) dt,

(5) Trigonometric substitution:
(a) For integrals containing v/a? + t? use t = a - tan 6.
(b) For integrals containing v/a? — t2 use t = a - sin 6.

(c) For integrals containing v/t? — a? use t = a - sec .



(6) Trigonometric integrals:
(a) Integrals of the form [ sin”(¢) cos***1(¢) dt calculated with the substitution u = sin(t).
(b) Integrals of the form [ cos™(¢) sin®*™*(¢) dt calculated with the substitution u = cos(t).

(c) Integrals of the form [ sin®"(t) cos?*(t) dt calculated by using the double angle formu-
las

cos?(t) = %(1 + cos(2t)), sin’(t) = %(1 — cos(2t)).

(d) Integrals of the form [ tan"(t)sec?*(t) dt calculated with the substitution u = tan(t).
(e) Integrals of the form [ tan®*1(¢) sec™(¢) dt calculated with the substitution u = sec(t).

(7) Review the integration of rational functions with partial fraction decompositions similar
to the following:

2t+3 A N B
t—1)(t+2) t—1 t+2
t?+t+1 A B C
— =+ +
t(t+1)? t t+1  (t+1)?

1 A Bt+C

(13)Z+16) (43 £+16

Note: To calculate integrals with Mathematica, see Chapter 8.



Homework exercises: Calculate the following integrals. Check your answers by differ-
entiation and also by using Mathematica. For instructions, see Chapter 8.

(1) /(2t3 32 4 2t — 5) dt

t
(2) /1+t2dt

(3) / 2t dt

(4) /(t2 +t+1)edt
(5) /t sint dt

1
©) / 129 — t2 at
1

——dt
Va2 + 1
(8) /tan3 t-secttdt

cos* t dt

t2
t+1
t2+4t+3

/
s
[

1 [
[
/
/

Intdt

tintdt



1.3. Definite Integrals

DEFINITION 1.3.1. Consider a bounded function y : [a,b] — R. For a partition of the
interval |a, b]

P:{a:t0<t1<...<tn:b},

and sample points t,_1 <t} <tr, 1 <k <n, define the Riemann-sum

n

Sy, P) = Zy(t,:) (tr — o) -

k=1

The norm of the partition P is defined as the length of the largest subinterval [ty_q,tg].
If the Riemann-sums have a well-defined finite as the norm of the partition P tends to 0,
then we say that the function y is Riemann-integrable on [a,b] and we denote this definite

integral by
b
/ y(t) dt

The set of Riemann-integrable functions on [a, b] includes, among others, the continuous
functions and, also the bounded functions with finitely many jump discontinuities.
Geometrical interpretation of the definite integral:

fab y(t) dt is the net area bounded by the t-axis and the graph of the function y.

The Fundamental Theorem of Calculus (FTC):

THEOREM 1.3.1. Ify : [a,b] — R is a Riemann-integrable function on |a,b] and Y is an
antiderivative function of y on [a,b], then

/ y(t)dt = Y (b) — Y(a).

Corollary to the FTC:

COROLLARY 1.3.1. Ify is a continuous function on [a,b], then the function

1s an antiderivative of y, and hence

%(/aty(s)ds> —y(t), Y a<t<b.

Note. The integration rules for indefinite integrals apply for definite integrals. Just, we
have to take care of the lower and upper limits of integrations.
Examples. (a) We can use the substitution u = ¢* with du = 2tdt to calculate the

following definite integral:
2 4
/ 2te! dt:/ e du = e"
0 0

10
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3 3 ) )
/ sin®t - cos tdt:/ sin“t - cos“t - costdt
0

/ sin?t - (1 —sin?t) - cost dt
0

u=sint, du=costdt

1 1
/u 1—u duz/uQ—u4du:
0 0

Homework exercises: Calculate the following definite integrals. Check your answers
with Mathematica. For instructions, see Chapter 8.

S|
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CHAPTER 2

Introduction to Differential Equations

2.1. Definitions

DEFINITION 2.1.1. A differential equation (DE) is an equation in which an unknown
function y(t) appears together with some of its derivatives.

In general, a DE can be written as

F(t,yt),y'(t),....,y"™(t) =0, tel.

Examples:
(a)
y'(t) =2y (1) +y(t) —t* =0, t€(—1,1).
(b)
y D) -y () —y(t)=2t+1, t>0.
(c)
y't)
TR0 5,teR.

DEFINITION 2.1.2. The order of a DE is defined by the highest derivative present in
the equation.

Examples.
(a) The DE y"(t) — (v/(t))* + 53°(¢) = €' has order 2.
(b) The DE y™®(t) —¢/(t) = 0 has order 4.

Normal form of a DE. If the DE can be solved in the highest order derivative, then we
say that we obtained its normal form, which in general can be written as:

y () = f(tyt),y' (1), y" D), teEL.
Example.
(a) The DE
2y (t) —ty' () +y(t) =€, tell,2]
can be written in the following normal form:
Y1) = 19/ (0) — u0) + e e 19

This normal form was obtained by dividing the DE by #2. However, if we consider the interval
[—1, 1], dividing by #?, which becomes 0 for ¢ = 0, makes the right hand side not defined on
the entire interval [—1, 1].

(b) The DE

/O +y/ (1) = (t+ y(t)
13



cannot be solved in ¢/(t), so it cannot be written in normal form.

DEFINITION 2.1.3. A system of differential equations (SDEs) is formed by a number
of differential equations involving more than one unknown functions and their derivatives.

Example of a SDEs:
y'(t) = 2'(t) +y(t) = 0
{ 2'(t) —y'(t) + 2(t) =0.
Note. Every higher order DE or SDEs can be rewritten as a system of first order DEs with
a higher number of equations and unknown functions. This is very important for studying
the existence of solutions and their numerical approximations.

Example.
Consider the second order DE ¢"(t) = y(¢) and introduce the function z(t) = y/(t). Now we

can write the system
{ y'(t) = =(1)

Z() =y(t),
which has a pair of solutions (y(t), z(t)), in which the first component is the same as the

solution of the original second order DE and the second component is the derivative of it.
Solving the system associated to the DE is equivalent to solving the DE.

DEFINITION 2.1.4. A solution of a DE on an interval I is a function y = y(t) which,
when substituted in the DFE, satisfies the equation identically on the interval I.

Examples of solutions.
(a) y(t) = cost is a solution of y"(t) + y(t) = 0 on (—oo, +00). To verify this we have to
observe that y”(t) = — cost, and hence we get

—cost+cost =0, foreach t € (—o0,+00),

which means that the y(¢) = cost satisfies the DE identically on (—oo, +00).

But, observe also that it is not the only solution. y,(t) = sint is another solution. Moreover,
any function of the form y(t) = acost + bsint is a solution.

(b) y(t) = V1 —t? is a solution of the DE ¢/(¢) - y(t) +t = 0 on the interval (—1,1), but it
is not a solution on any interval larger than (—1,1).

Explicit and implicit solutions. Functions can be defined explicitly or implicitly, There-
fore, solutions of DEs, which are functions, can be obtained explicitly or implicitly and we
can talk about explicit or implicit solutions. The above examples are all explicit solutions.

For an example of an implicit solution consider the equation

t* +y(t) +y°(t) =5,
which defines the function y(¢) implicitly. If we use implicit differentiation we get the DE
2t +y/'(t) + 3y*(t) y'(t) = 0,

which has the same function y(t), as an implicitly defined solution.

14



Indefinite integrals: When we calculate the indefinite integral [ 2z dx, we actually solve
the DE y/(z) = 2z. All the solutions are in the form z? + ¢, where the parameter ¢ can be
any real number. We can write this as y(z) = 22 + ¢, and the meaning is that we have a one-
parameter family of solutions, which is the same as the family of all the antiderivatives of 2x.

In general, DEs tend to have infinitely many solutions, but the situation is much more
complex.
Families of solutions:
Some solutions can depend on the parameters cq, ..., ¢, and we call them as a k-parameter
family of solutions.

Singular solutions of DE.
A solution of a DE, which is not part of any family of solutions is called singular solution.

Examples of solutions for DEs.

(a) ¥/ (t) — y(t) = 0 has solutions of the form y(t) = ce'. Therefore, we have a one-parameter
family of solutions and all solutions are part of this family.

(b) ¥”(t) — y(t) = 0 has a two-parameter family of solutions of the form y(t) = cie’ + ce™.

(¢) ¥'(t) = ty/y(t) has a one-parameter family of solutions y(t) = (1t* + 0)2, but also a
solution y(t) = 0, which is not part of this family.

(d) (¢'(t))* + (y(t))? = 0 has exactly one solution, the constant function y(t) = 0.
(e) (¥ (t)* + (y(t))* = —1 doesn’t have any solutions.

Solution curve of a DE.

The graph of a solution of a DE is called a solution curve.

For example, y(t) = €' is a solution of ¥/(t) — y(t) = 0, so its graph, which is the curve with
equation y = €', is a solution curve of the corresponding DE.

15



Homework exercises.

1. Find the order of the following DEs:

) y"() + Py () —y(t) ="

) W)+ () —y’(t) = 0.

¢) (L= (t)+ ey (t) — VI+ty(t) =4.
) Py (t) +y(t) = sint.

) y(e)

o0 e

(f) Vy'@t)+t2=y(1).

2. Find the normal form of the following DEs:

(a) (L+8)y'(t) +ty(t) —5y(t) =t>+4.
(b) y)y(t)+t=1.

() Vy(t)+4+yt)—t=0.

3. Rewrite the following DEs as systems of first order DEs.

(@) y'(t) +2y'(t) +y(t) =t.
(b) 39" (t) — 2% (t) + 3%/ (t) — 4t*y(t) = 0.
(c) y(t)—y"(t)=t.

4. Verify whether the indicated function is a solution of the given DE or not.

(a) ¥'(t)+4y/(t)+3y(t) =0, y(t) =, teR.

(B) (4—2)y/(t) + 2ty(t) = 0, y(t) = 4_## Co<t<a.
() (4—2)y(t) — 2ty(t) = 0, y(t) = ﬁ 9ct<a.
(@) Py'(0)~6y(t) =0, y(t) = 5, > 0.

16



5. Verify whether the indicated family of functions is a family of solutions of the given DE
or not. In case of solutions, plot three different integral curves.

(@) ¥'(t)+yt)=1, y(t) =ccost +dsint + 1.
b) y'(t)—yt)=2, y(t) =ce' +de " —2.

(c) y'(t)+6y'(t)+9y(t) =0, y(t) = ce® +dte™.
(d) y'(t) —6y'(t) +9y(t) =0, y(t) = ce3t +dte®
(©) 90~y + 20 =0, ylt) = oo

6. Verify that the equation

y =ty =5
forms a implicit solution of the DE
2ty(t)
/
)= —7"—.
AT ORT
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2.2. Initial value problems

Consider an n'"-order DE F(t,y(t), (), ...,y™(t)) =0, t € I, and a fixed t, € I.

A system of initial conditions is a system of the form
y(tO) = Yo, y/(tO) =Y, y(n_l)(tO) = Yn-1,
where yo, y1, ..., Yn_1 are n given numbers.

Initial Value Problems (IVP). The problem which combines a DE and a system of initial
conditions is called an Initial Value Problem:

Ft,y®t),y'(),...y™t) =0, tel
y(to) = ao
(IVP) y'(to) =

General solution of a DE: A n-parameter family of solutions of a n*"-order DE is called
a general solution if for every system of initial conditions a member of that family solves the
corresponding IVP.

Example. Consider the Initial Value Problem:

y'(t) —y(t) =0, —oco<t< oo
(IVP) y(0) =1
y'(0)=2.

The 2-parameter family of solutions
y(t) = ce' +de™?,
is a general solution of the DE. The initial conditions lead to the linear system of equations

c+d=1
c—d=2.

Solving this system of linear equations gives ¢ = 3/2 and d = —1/2. Therefore, this IVP has
a unique solution of the form

Homework exercises:

(1) Consider the general solution
y(t) = ccos(2t) + dsin(2t)
of the DE
y'(t)+4y(t) =0, teR.
18



Determine the values of the parameters using the following systems of initial conditions:
(a) y(0)=0, y'(0) =

(b)

(0)

(d)

(€)

(2) Consider the family of solutions
y(t) = tan(t* + c),
of the DE
y'(t) = 2t(1 + (1))
Determine the values of the parameters using the following systems of initial conditions and
determine the domain of the corresponding function. How many solutions do you have?

(a) y(0)=0.
(b) y(0)=1.
(©) y(1)=-1.
@ =2
() y(z)=-1.
(3) Consider the family of solutions
1
ylt) = Cttec

of the DE

Y (t) =12(t), —2<t<2.
Determine the values of the parameters using the following systems of initial conditions and
compare the domain of the corresponding function to the interval (—2,2).

(a) y(0) =

(b) y(0)=1

(c) y(1)=-1
(d) y(1.5)=3
(e) y(—0.5)=4

19



2.3. Classifications of DEs

We will use the following two classifications of DEs:

- By order: As we discussed in the previous section, the order of a DE is the order of the
highest derivative present in the equation. So, we can talk about DEs of order one, two,
three and so on.

- By linearity: A DE of the form
an(t)y™ (1) + an-1 () y" V(1) + o+ ar ()Y (1) +ao(t) y(t) = f(1)

where the functions a,(t), ..., ag(t), f(t) are given and act as coefficients of the derivatives of
the unknown function and as the right hand side, is called a linear DE of order n.
DEs in any other form are called non-linear.

Examples.
(1) The DE
>+ 1)y"(t) +sinty'(t) — by(t) = €
is a linear DE of order 2.
(2) The DE
y(t) +y*(t) =t +1
is of first-order and non-linear.

Homework exercises:
Determine whether the following DEs are linear or nonlinear.

u)vﬂ+4¢@ywyw+%mw:ﬁ+y

(2) y(t) (1) -2t =0.

@ =22
0=t

@) )= o

(5) ¥ -y =1

(6) y"(t) + 49/ () + 3y(t) = 2t + 1

(7)) Vy(t)+1—y(t)=0

(8) ¥/(1) +siny(t)) = 0.
y(

O T "
y'(t)

(10) EeTORe
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2.4. Examples of DEs modelling real-life phenomena

(1) Radioactive decay
It is known that a radioactive material decomposes at a rate proportional to the amount
present at the current time. This can be expressed as a DE

M'(t) = kM(t), 0<t,

where M (t) is the mass of the radioactive material present after time t.
As we will see later, the solutions of this first order, linear DE are of the form

M(t) = ceft.
The constant k is determined experimentally by the half-life of the radioactive material,
while the parameter c is determined by the initial condition

M(O) — MO 5

which describes the amount of the material present at time ¢ = 0.

(2) Population dynamics.

In 1798 the English economist Thomas Malthus proposed that a population grows at a rate

proportional to its size. This leads to the same DE as in the case of radioactive decay:
N'(t)=kN(t), t>0.

Notice that the radioactive decay has the same DE as this model of population dynamics.
However, in the case of the radioactive decay the solution is accurate on long time periods,
while in the case of the population dynamics only on a short term, except an idealistic situ-
ation of an isolated population with unlimited resources.

For a demonstration of this model see:
http://demonstrations.wolfram.com/ContinuousExponential Growth/

In a more realistic scenario, the growth rate depends on the size of the populations as
well as on external environmental factors, like limited resources. One possible scenario leads
to the logistic DE

N'(t) = aN () (8- N(1))

where [ > 0 is the carrying capacity of the environment.

For a demonstration of this model see:
http://demonstrations.wolfram.com/Logistic Equation/

If more than one species interact within the same environment, then we need systems
to describe their behavior. In case of two animal species, where the first species eats only
vegetation and the second species eats the first species, we are lead to the Lotka-Volterra

prey-predator model:
{ 2'(t) = —ax(t) + ba(t) y(t)
y'(t) = dy(t) — cx(t) y(t),
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where a, b, ¢, d are positive constants and the functions z(t), y(t) describe the number of the
population of the two species.

For a demonstration of the two species model check:
http://demonstrations.wolfram.com/PredatorPreyModel /

For a more realistic model see:
hitp://demonstrations.wolfram.com/Predator PreyEcosystemA Real TimeAgent BasedSimulation/

(3) Series RLC electric circuits.
The DE describing the state of an electric circuit comes from Kirchhoft’s second law of
electricity, which says that the sum of the voltage drops around the circuit must add up to
the electromotive force. In case of a circuit containing an inductor, a capacitor and a resistor,
we denote by L, R, C the inductance, resistance and capacitance. The DE describing this
circuit is 1

Lq"(t) + Rq'(t) + 7 alt) = E(t),
where ¢(t) is the charge on the capacitor and F(t) is the impressed voltage at time t.

For a demonstration of a series RLC circuit check:
http://demonstrations.wolfram.com/SeriesRLCCircuits/

(4) Mass-Spring systems.
The DE describing a vertical, free mass-spring system follows from Hooke’s law and has the
form

my'(t) + ky() = 0, >0,
where y(t) is the the vertical displacement measured from the natural length of the spring,
m is the mass attached to the spring and k is the proportionality constant of the spring.
However, if we assume that damping forces proportional to the velocity act on the mass-
spring system, then we have the DE

my(£) + 63/ (t) + ky() =0,
where § > 0 is the damping constant.

To have unique solutions, we have to give, as initial conditions, the initial height and the
initial velocity at which the spring is released.

For a demonstration on this problem check:
http://demonstrations.wolfram.com/Free VibrationsOfASpringMassDamperSystem/
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CHAPTER 3

First order differential equations solvable by analytical methods

In this chapter we present several types of first order DEs, which can be solved by
algebraic manipulations and integrations.

3.1. Differential equations with separable variables

DEs with separable variables have the form

y'(t) = ft) - gly(t)).

We simplify the way we write these equations in order to separate the variables:
y =ft)-gy).

d

Then replace y' by <

dy

AN AN

o = F()-9(y),
and get

W ptyar

9(y) '

Integrate the left side with respect to y and the right side with respect to ¢ to obtain an

equation of the form
Gly)=F(t)+c.

This is the solution in implicit form. Solving this equation in y gives the explicit solution.

Examples.
(1) Solve the DE

t
y=—, -b<t<h.

Y
Solution:
dy t
di y
ydy =tdt
y2 t2
22 7¢

y*> = t* 4+ ¢, solution in implicit form
y(t) = £Vt2 + ¢, two families of solutions.
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(2) Solve the IVP

First we solve the DE as in Example 1 and get
y(t) = V2 + c.

The initial condition shows that we have to use the family of solutions with negative sign
and get

which gives ¢ = 4. Therefore, the solution is
y(t) = =Vt +4.

DE solving using ”Mathematica”.

Let us solve the DE y/(t) = 2ty(t) analytically using the mathematical software Mathematica.
Start wit the input line:

DSolvel[y’ [t] == 2xtxy[t], y[t], t]

The answer given is

y[t] -> e C[1]

which means that the family of solutions is

y(t) = ce” .

If we want to solve the IVP

y'(t) =2ty(t), y(1) =2,
the we use the input line
DSolve[{y’ [t] == 2*txy[t],y[1]==2}, y[t], t].
The answer is
ylt] -> 2 1+
which means that the solution is

2

y(t) =277 = =
€

and hence ¢ = 2.

If we want to sglve and graph the solution of the IVP

then we use the lines:

sol = DSolve[{y’[t] == (y[t]1)"2 - 1, y[0] == 0.5}, y[t], t]
Plot[Evaluate[y[t] /. soll, {t, -1, 1}]

end get the graph:
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Homework Exercises.

1. Solve the following DEs and IVPs. For the IVPs, give the largest interval on which the
solution is defined and graph the solution curve.

a)y:%J>o
(2) v =ty, y(0)=1.
(3) ¥ =y*-9,teR.
4) y=ty/4—y?, teR
1
(5) ¥ +2ty* =0, y(1) = .
ty
(6) y’—t2_17t>1
127}
7 Y = 1<t<1
(7) TR
ty
(8) y’=t2 T ¥(2)=05
9) y:ytant,——<t<g.
2t
10) ¢ = —, y(2)=1.

2. Assume that an epidemic spreads in a city with population 100, 000 at a rate proportional
to the product of the number of people already infected and the number of people susceptible,
but not yet infected. This can be modeled by the logistic DE

y'(t) = 107y (t)(50,000 — y(t)) ,t > 0,

where y(t) is the number of people already infected and ¢ is the number of hours. Assuming
that at t = 0, the number of people already infected was 1,000, estimate the number of the
infected people after 10 hours. Graph the solution curve. What is lim; . y(¢)?
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3.2. First order linear differential equations
First order linear differential equations have the general form of
a(t)y'(t) +b(t)y(t) = f(t).

If the function f on the right hand side is constantly 0, then we say that the equation is
homogeneous. Otherwise, it is non-homogeneous.
The following steps are required to solve a first order linear DE:

Step 1.
Given a non-homogeneous equation, first we solve the corresponding homogeneous equation

a(t)y'(t) + b(t)y(t) = 0.
This is a DE with separable variables and has a solution of the form
yn(t) = cz(t).

Step 2.
We need a so-called particular solution of the non-homogeneous linear DE, which will be
found by the variation of parameters method. We search for the particular solution as

up(t) = c(t)=(t) ,

where ¢(t) is an unknown function and z(t) is taken from Step 1.
Substitute y,(¢) into the non-homogeneous equation:

a(t) (c’(t)z(t) + c(t)z'(t)) +0(t)e(t)z(t) = f(t).
Rearrange this equation as
a(t)c'(t)z(t) + c(t) [a(t)Z'(t) +0(1)2(t)| = f(1),

and use the fact that z(t) is a solution of the homogeneous equation, which makes the
expression inside the square brackets be 0. Hence,

o SO
REANTORDE
f(t)

and c(t) is an antiderivative of = Once c(t) is determined, we immediately get y,(t).

Step 3.
Finally, the solution of the non-homogeneous linear DE looks like

y(t) = yn(t) + yp(1) -

Note. This method is not valid for non-linear differential equations. In particular, it cannot
be used to solve the DE

Yy 4ty =t.
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Example. Solve the DE

y — 2ty =t.
Step 1.
Yy — 2ty =0
dy
— =2t
at Y
d
Y~ orar
Y
Inlyl =t*+c
ly| = et
yn(t) = ce’”
Step 2.
yp(t) = c(t)e”
d(t)e” + c(t)2te” — 2nc(t)e’ =t
() =t
) =te”
1
c(t) = /tet dt = 56’#
1 2 0 1
= sttt — 2
Yp(t) 26 9
Step 3.
1
) =ce” — =
y(t) = ce” — 5

Homework Exercises.

1. Solve the following DEs and IVPs. For the IVPs, give the largest interval on which the
solution is defined and graph the solution curve.

(1) ¥ —4y=0,teR.

(2) ¥ =4y =0, y(0) =—1.
(3) Y +2y=c¢', teR.
(4)
()

(\V]

Y +3y=¢e", y(0)=>5.

2
"=y =3t,t>—1.
y+t+1y ’
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(6) y +tanty = 2sint cost, y(0) = 1.
(7) v +3t%y=t*, tcR.
(8) t*%/ +ty=1,1t<0.
(9) costy'+sinty:1,0<t<g.
(10) costy +sinty=1, y(%)zl.
(11) o +2ty=te ™, t eR.
(12) 1=ty —2ty=e"', t>1.
(13) (1—tH)y —2y=e¢", —1<t<1.
(14) o' +tanty = cost, y(0) =0.

2
(15) (1+)y +4ty = ——, y(0) =1.

1+1

2. The plutonium 239 disintegrates according to the DE:
Aty =k A(t),

where k = —0.0000286728, and A(t) is the amount of plutonium 239 present after t number
of years. If at the present time we have an amount of 10kg, then estimate the amount left
after 100 years.

3. The C-14 carbon isotope - which is used in carbon dating of fossils - disintegrates according
to

Al(t) =k A1),
where k = —0.00012378, and A(t) is the amount present after t number of years. If we
measure that 50% of the C' — 14 is left, how old is the fossil?

4. A population of bacteria in a culture grows according to the differential equation
N'(t) =k N(t),

where k = 0.5, and N(¢) is the number of bacteria present after t hours. If at present time
we approximately 5000 bacteria, estimate their number after 10 hours.

5. Consider the problem of a free falling object with mass M. Assume that only gravity and
air resistance act upon the object. Let us suppose that the air resistance is proportional to
the velocity v(t) of the object. Newton’s second law of motion gives the DE

Muv'(t) = Mg —kv(t), t >0.
More exactly, this is a first order linear DE with constant coefficients:
Mu'(t) + kv(t) = Mg, t > 0.

Suppose that 2 objects with mass M; = 10 kg and M, = 20kg are released from an altitude
of 3000 meters with initial vertical velocity 0. Suppose that the constant & = 0.5 for both
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objects. Answer the following questions:

(a) Calculate the velocities vy (t) and vq(t) of the two objects.
(b) What is their terminal (highest) velocity?

(¢) Which object is falling faster?

(d) What is their speed after 5 seconds?

6. Visit:
http://demonstrations.wolfram.com/LinearFirstOrderDifferential Equation/
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3.3. Bernoulli’s differential equations

Bernoulli’s differential equations have the form

y' + a(t)y = b(t)y"

where k # 0 and k # 1. This is a non-linear equation, which will be changed to a linear one.

Change of function.
Divide the equation by y* and get

y Ry +alt)y' T =0(t).

Introduce a new function

for which
)= (1—k)-y () -y(1).
Therefore, the non-linear Bernoulli’s DE is changed to
1
1—k
which is a first order linear DE in z.

2 +a(t)y =0b(t),

Solve the first order linear DE in z(t).
This is done according to the Steps 1, 2 and 3 from the previous section.

Return to y(t). Write

y(t) = 2(1) 7%,
which is the solution of the original equation.

Example. Solve the DE
1
y 4+ -y =t t>0.

t
Solution:
Change of function.
Divide the DE by 3%
1
y—2y/ + _y—l — t2 .

t
Introduce

2t) =y (1)
Then, 2’ = (—1)y 2y and the linear DE in z looks like

/ 1 2
—z + ;Z =17
Solve the first order linear DE in z(t).
Step 1.
-2+ lz =0
t
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dz_@

z t
In|z| =In|t|+ ¢
zp(t) = ct.

Step 2. Search the particular solution in the form z,(t) = ¢(t) - t.
By substituting z,(¢) into the DE of z(t) gives ¢/(t) = —t, which gives ¢(t) = —% and hence

t3
) =——.
zp(t) 5
Step 3.
t3
t)=ct — —.
z(t) =c 5
Return to y(t).
1
y(t) = t3
C —_ =

Homework Exercises. Solve the following DEs and IVPs. For the IVPs, give the largest
interval on which the solution is defined and graph the solution curve.

/ _ts
(1) ty—y=—, t>0.

y
(2) ty’—y—_y—z, y(1) =2
B v y= 90 =
(4) y’+y=%, y(0) = —4

N

ty +y=1t%* t<0.

1
vy =2ty =3y*, y(1) = 3.

(5)
(6)
(7) ty — (1 +t)y =ty*, t > 0.
(8)
(9)

8) 3yt + 28 =¢, —-1<t<l.
9) —2t% +ty =5y, t < 0.
—2t%y
10 +—==5,t>0.
(10) Y

(11) =282 +ty =5y, y(-1) = 0.
(12) ¢ —ty =t/y3, y(1) = 4.
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3.4. Non-linear homogeneous differential equations

The non-linear part of the title has the meaning to distinguish between the earlier studied
linear homogeneous DEs and the ones in this section. Note, that, while most of the DEs in
this section are non-linear, there are linear DEs which are homogeneous in this non-linear
sense.

The non-linear homogeneous differential equations have the form

r=1(2)

We can solve them by introducing a new function

y(t)

z(t) = T
Hence,

y(t) = tz(t)
and

y =2+t
The new DE in z is

z+t2 = f(2),

which is a DE with separable variable. After solving this DE in z, we can get y(¢) from the
equation y(t) = t z(t).

Example. Solve the DE
t2y —yP—yt=0, t>0.

Solution:
Dividing the equation by t? gives:
/ y) 2y
=(Z) +2
Y (t t
Then,
Yy
z ==
t
y=1tz
y =z+1t
24t =22 +2
tdz 9
— =z
dt
dz dt
—=—,2#0
22 t 7

Note: z(t) = 0 is excluded from the solutions, so we have to check, by substitution, whether
it is a solution or not. It turns out that it is a solution.

— =Int+c¢
z
—1
z =
Int+c
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z(t) = 0 is not part of this family, so it is a singular solution.
Therefore, the solutions of this problem can be organized in a one-parameter family of
solutions

ot
R
and a singular solution
y(t) =0.

Homework Exercises. Solve the following DEs and IVPs. For the IVPs, give the largest
interval on which the solution is defined and graph the solution curve.

(1) tyy —y+t=0,0<t<2.
(2) tyY —y+t=0, y(1) =2.
(3) ty —y+t=0, y(0)=2.
(4) (y—20)y +t=0, —1<t<1.
(5) Py +y*+yt=0,t<0.
(6) y':%,wo
(7) ty =y + V292, t>0
®) tyy' =y* —1t*, y(1)=3.
9) B +2%)y =ty, y(-1)=1.
(10) ty*y =y* +t*, t>0.

3 3
(11) o' = ! t;y , y(1) =3.
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3.5. Differential equations of the form y'(t) = f(at + by(t) + ¢).

In these equations a, b, ¢ are constant and we introduce the function
2(t) = at + by(t) +c.

Then
2 =a+by,

and in z we get a DE with separable variables:

Example.
Solve the DE

y = (4t +y+3)°.
Solution:

z=4t+y+3

Z/:4+y/

dz

Y 2
7t +z

dz

¥ _
2244

L rctan = — ¢ +
— arctan — = C
g Arctally

z
arctan 5 =2t +c

g = tan(2t + ¢)

z = 2tan(2t + ¢)
At +y+ 3 = 2tan(2t + ¢)
y = 2tan(2t +c) — 4t — 3
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Homework Exercises.

Solve the following DEs and IVPs. For the IVPs, give the largest interval on which the
solution is defined and graph the solution curve.

(1) v =cos(t+y), —m<t<m
2) ¥ =cos(t+y), y(0) =7
(B) ¥y =1+e" >0
1—-t—y
4) o = ,y(0) = —1
(4) vy r—— y(0)
1—-t—y
5) o = , -1
5) vy P y(1)
3t + 2y
!
— —1)=—1
(6) y 3t+2y+2° (=1)
3t + 2y
7 Y = 0 —1
My 3t +2y+ 2 (0)
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3.6. Second order differential equations reducible to first order differential
equations

We will solve second order differential equations with missing function y.

These equations have the form f(t,4/,y") = 0.

If we introduce the function z = 3/, then we get a first order DE in z: f(t, z,2') = 0. Once
we get z, the solution y is found by integration.

Example.
Solve the IVP:

y' +3y =e*, y(0)=1, 4/(0)=0.

Solution:
Introducing the function z = 3’ we get the DE in z:

2 43z =¢%.

Solving this equation in z gives:

Integrating z leads to

The initial conditions give the system

—c 1 _
{7+E+d_1

c+ % =0.
Solving this system in ¢ and d gives ¢ = —% and d = %.
Therefore, the solution is
1 1 5
t) = — —3t 2t h
v =3¢ T T
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Homework Exercises. Solve the following DEs and IVPs.

ty" + 3y =0, t>0.
ty'+3y =0, y(1)=1, ¢y (1) =2.

V=P b0 =1, () =~
th + 3y =4,t>0.
th +t3y =4,t<0.
y' + 3y =e*, y(0)=4, y/(0)=0.
20y =1+ ().

, 3ty

L+t3
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CHAPTER 4

General theory of differential equations of first order

4.1. Slope fields (or direction fields)

Consider a first order DE in normal form

y'(t) = f(ty(t)), tel.

If y : I — R is a solution to this DE, then at any point ¢y € I, the value of f(t,y(to)) is the
slope to the graph of the function y, which is a solution curve to the DE.

Therefore, if we show a rectangular grid in the ty-coordinate system and evaluate f(t,y) at
the points in the grid, then we have graphical information about where solution curves are
heading, without actually solving the DE.

DEFINITION 4.1.1. A slope field of a DE is a rectangular grid with slopes, as short line
segments, drawn at any point of the grid.

Example. This example shows how to draw a slope field manually. Consider the DE
vy =t—y.
Draw first a grid in the ty-coordinate system for ¢t = —2,—1,0,1,2 and y = —2,—1,0,1,2

The right hand side to the DE gives the function f(¢,y) = t — y. Evaluate this function
at each point of the grid and show the results as slopes at the corresponding points. For
example, f(2,1) = 1 gives a slope 1 at the point (2,1). Continuing in this way we get the
following slope field.
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Based on the slope field we can get graphical information about solution curves. If we choose
an initial point, then we can draw an approximative solution curve on the graph by following
the slopes in the slope field. The following graph shows the slope field and solution curve
for the IVP

Of course, if the slope field is filled with more slopes, our information about solution curves
is more complete.

Mathematica can graph this slope in the following way. The role of the cosine arctangent
and the sine arctangent is to restrict the length of each vector to one.

VectorPlot [{Cos[ArcTan[t - y]], Sin[ArcTan[t - yl1}, {t, -2, 2},

{y, -2, 2}, PlotRange->{{-2.5, 3}, {-2.5, 2.5}}, Axes -> True,
VectorStyle -> Arrowheads[0.02]]
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We can add to the slope field the solution curve starting at (—2, 1), which shows how solution

curves follow the slopes.

Show[VectorPlot [{Cos[ArcTan[t - y]], Sin[ArcTan[t - yl1}, {t, -2, 2},
{y, -2, 2}, PlotRange -> {{-2.5, 3}, {-2.5, 2.5}}, Axes->True,
VectorStyle -> Arrowheads[0.015]], Plot[4*Exp[-t - 2] + t - 1, {t, -2, 2},

PlotStyle -> Red]]
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I I
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More slope fields can be found at

I I
0 1 2

hitp://demonstrations.wolfram.com/SlopeFields/.
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4.1.1. Autonomous first order differential equations.

First order DEs in the form

or shortly

are called autonomous first order DEs. Their slope fields show equal slopes along horizontal
grid lines. For example, lets have a look at the slope field of

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

= N -
AN

OSSO

N

e S e — —

OO

NOOOOOONNY

SO LS
OO

;;;;;;;;

SO N O O O N
MO

S S

L

NN NIy
/ / /

/ / / / / / / / / / /

DEFINITION 4.1.2. A phase portrait for a a first order DE is a slope field with several
solution curves, showing the most important qualitative properties of solutions.

DEFINITION 4.1.3. Critical numbers (or points) for a autonomous first order DE are
numbers ¢ such that f(c) = 0.

DEFINITION 4.1.4. Equilibrium solutions are the constant functions y(t) = ¢ corre-
sponding to the critical numbers.

Example. Consider the DE
y =y -1

In this case f(y) = y? — 1 and the critical numbers correspond to the solutions of y?> —1 = 0,
which are +£1. Hence the critical numbers are ¢ = —1 and ¢ = 1, while the equilibrium

solutions are y(t) = —1 and y(¢) = 1. The phase portrait in this case looks like:
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Classifications of equilibr

(a) We call an equilibrium solution y(t) = ¢ attractor (or asymptotically stable) if for any
other solution z(t) which starts from a position sufficiently close to ¢, we have lim;_,, 2(t) =

(b) We call an equilibrium solution y(t) = ¢ repeller (or unstable) if any other solution z(t)

Lo
-2

ium solutions:

starting any close to ¢ moves away from it as t — co.

(c) We call an equilibrium solution y(t) = ¢ semi-stable if it is an attractor from one side

and repeller from the other side.

Example. Let us look at the phase portrait of 3 = y*(y* — 1).

/////

/ / / /

f/ / ff ‘//

/ / /

The y(t) = 1 is a repeller, y(¢) = 0 is semi-stable and y(t) = —1 is an attractor.
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Homework Exercises.

etch a slope field and approximate solution curves for the given s and initial con-
1) Sketch a sl field and imat luti for the gi DE d initial
ditions:

(b)

y,:t_ya y(—l)ZQ,y(O):_l
(c)

yzg,mszmm:—1

(d)

y/:|t|_|y‘7 y(—l):O, y(O)Zl
(e)

Y =y*—t,y(0)=0, y(0) =0.6, y(0) =08

(f)

y =tly+1), y(0)=0, y(1)=-1
(8)

y =ysint, y(0)=0, y(r)=1
(h) t

y/:t2+17 y(O):O,y(O):l
(i) 1

y/:m> y(l)zo,y(—l)zo
) 1

A E y(1)=0, y(-1)=0.
(k) 1

?/:m7 y(1) =0, y(—1)=0.

(2) For the following autonomous DEs sketch a phase-portrait, find the critical numbers,
equilibrium solutions and classify them:

y =y -y
(b)

y' = (y—1)°
(c) o

y =y —y.
(d)

y = siny.



y =ye V.

y =yl -y,

y =y — 8y + 12y.
v =y —3y* —2y+4.
"=yt —8y? + 16.

y =yt — 8y + 1647,
Yy =y*+5y+6.

y =y +1.
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4.2. Existence and uniqueness of solutions for initial value problems

4.2.1. Existence.
Counsider the IVP

{ y' = f(t,y)
y(to) = Yo,

where
(t7y) € [to _aatO —|—CL] X [yO - b7y0+b] = Ra,b-

By this we assume that the function f, as a function of two variables ¢t and y, is defined on
the rectangle R, .

A
Yo+b | ___
Yo | | ®
I
I
I
I
|
I
Yo-b | ___ |
I : I
i ! .
th-a t th+a

The question we can ask is under what conditions does the IVP have a solution curve
through the point (o, yo). The following two theorems give existence and uniqueness answers,
based on the properties of f(¢,y) inside the rectangle R, ;. We use the following numbers:

M = Maximum of |f(¢,y)| when (t,y) belongs to R,

and
h = min{ b }
' a7M ’

THEOREM 4.2.1. (Peano’s theorem)
If the function f(t,y) is continuous in both the t and y variables on Ry, then the IVP has
at least one solution y : [ty — h,to + h] — [yo — b, yo + b].

The following graph shows that, while we check the properties of the riga-hand side of the
DE inside the red rectangle, we can assure the existence of a solution curve inside a smaller
rectangle.
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Yo+b | ___

Yo

Yo-b L

Example. Consider first an easy IVP:
y =-4
t
y(1) =2
In this case, f(t,y) = —¥ which is continuous everywhere except the points for which ¢ = 0.

So, for a = 0.5 and b = 1, let use the rectangle
R()_571 = [05, 15} X [1,3] .

Then M = oi
solutions vy : [

6 and h = min{0.5, %} So, Peano’s theorem guarantees the existence of
| = 1,3

ol

)

30-------
251

20

I I

I I

I I

I I

I I

I I

B I I
05 ! !
I I

r I I

I I
I I
I I
I I

| |
L T B .|

P T R S TR R
05 5/6 1.0 7/6 15 2.0 725

Observation. As you can notice from the graph, the solution curve probably continues
outside of the interval [5/6,7/6], but still inside the red rectangle. This means that the
number h provided by the Peano’s theorem is not optimal. Let’s have glimpse on how a
more detailed analysis can extend the solution curve outside of this interval. The IVP of
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this example can be rewritten as

S

y(t):2—|—/1t —@ds.

If we want to check where does the solution curve exit the red rectangle we have to evaluate

ly(t) — 2| and see when it reaches 1.
3 t
/ —ﬁ ds| < / @ ds .
1 S 1 S

At this stage, in the proof of Peano’s theorem we check the maximum of ¢ over the red
rectangle, which means that we assume 0.5 < s < 1.5 and 1 < y(s) < 3, which gives

ly(t) — 2| =

3
t)—2|<—-h<1
y(t) =2 < o h< T

and this leads to h = % . However, it is enough to consider the maximum of ¥ over the blue
rectangle defined by a variable h, and this gives

3
-2/ <—-h<1
() 21 < 7= h <L,

which leads to h = }l, which is better, but still is not optimal.

I I I I I
0.0 0.5 1.0 15 2.0 25

It is a good exercise to find the optimal A, without solving the IVP.
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4.2.2. Existence and uniqueness.

Peano’s theorem shows that solutions exist, when the right side is a continuous functions.
However, it doesn’t say anything about uniqueness. To guarantee uniqueness we must add
another assumption to the theorem.

THEOREM 4.2.2. (Ezistence and uniqueness of solutions to IVP)
If the function f(t,y) and its partial derivative with respect to y, g—;(t,y), are continuous on

the rectangle Ry, then there exists a unique solution y : [to — h,to + h] — [yo — b, yo + b] of
the IVP.

Observation. As in the case of Peano’s theorem we can say that the interval [ty — h, to + h]
might not be maximal. However, on this interval we can start the numerical approximations
of solutions, even if we cannot solve the DE.

Examples.
(1) The example after Peano’s theorem can be included in this case, too. For f(t,y) = —¥4,
the partial derivative

of 1

dy  t’

is continuous over the rectangle Ros1 = [0.5,1.5] x [1, 3], so the solution y : [2, Z] — [1,3] is
unique.

(2) Consider the IVP

{y’:%W
—0.

y(0)
Then, f(t,y) = 2t/y? and g—i = 2t§y‘1/3. No matter how do we set up the rectangle
R, = [—a,a] x [=b,b] the function f is continuous, but g—i is not even defined at the center

of the rectangle. Hence we cannot apply, the existence and uniqueness theorem.
If we solve this DE, which is with separable variables, we see that y(t) = 0 and y(t) = 5-°
are both solutions through the initial point (0, 0).
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Homework Exercises.

(1) Check the existence and uniqueness of solutions for the following IVPs. Sketch a phase
portrait with the rectangle R,;. In case of existence and uniqueness of the solution draw an
approximate solution curve through the initial point.

(@) (t=1)y' =y*+t, y(0)=1.
b)) =1y =y*+t, y(1)=0.
(0 v =vy*—4, y(1)=2

(d) v =vy*—4, y(1)=3

() ¥ =Viy+y*, y(0)=3
(f) P+D)y =y+1, y(1)=1
(9) v =ty"+3, y(0) =

(h) y =52, y(0)=1

(i) %y +ty=1, y(3)=1.
() Y +ty=1, y(0)=1

(k) t?y =y°—t>, y(1)=1.

(2) Return to exercise (2) from Section 2.2. Do we have a unique solution for the IVPs?
Why?
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4.3. The method of successive approximations

This is a theoretical method, which is used to prove the existence and uniqueness theorem.
Although, practically not as useful as the numerical methods from the next section, it offers
great insight to the theory of initial value problems.

Start with the IVP
{ y = f(t,y)

y(to) = o,
and integrate both sides of the DE from ¢ to #:

Ky@@zéywmmw.

By the Fundamental Theorem of Calculus we get that
o) stto) = [ £Gs.0(6)) s,
and hence any solution of the IVP satisfies theoequation
o) = [ Fosal) ds +
0

We will use iteration, called the succesive approximation of the solution, on this last equation:

y1(t)=/t f(s,90) ds + yo

m@z[f@mw®+m

As n — oo the sequence of functions y,(t) converges uniformly to a function y(¢) on the
interval [ty — h,ty+ h]. Therefore, in the equation of v, (t) we can let n tend to oo under the
integral sign and get that

ywzlf@mm@+m,

which means that y(t) is a solution of the IVP.

{vals

The solution y(t) satsfies the integral equation

y(t) :/0 y(s)ds+1.
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The successive approximation looks like:

¢
yl(t):/ lds+1=t+1
0

t t2
y2(t)=/(s—|—1)ds+1=§—|—t+1
0

Yn(t) = 7l
k=0
y(t) = lim yn(t) 251~ e

(42}

4
— yi(f)
: — ¥a(f)
2 — ya(f)
— y(t)
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Homework Exercises.

Write the first 3 terms of the method of successive approximations. Try to find the formula
for y,(t) and then calculate the solution as

y(t) = lim y,(t).

(1) ¥ =-y, y(0)=2.

(2) ¥ =3y, y(0)=1.

3) v =2y, y(0)=1.

4) y=y—t,y0)=2.
(5) y'zﬁjj,y(m:z.
(6) v =9, y(0)=1.

(7) v +2ty* =0, y(0)=1.
(8) ¥ =y+t,y0)=0.
(9) ¥ =ty*—1, y(0)=1.
(10) yfzﬁiyj,y(m:z.
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4.4. Numerical methods for Differential equations

4.4.1. The Euler’s method. Consider again the IVP
{ y' = f(t.y)

y(to) = vo -

Suppose that, as in the statement of the existence and uniqueness theorem, f and g—i are
continuous on R,;. Hence, we have a unique solution defined on [ty — h,to + h]. Let us
approximate this solution by the follwing Euler’s method.
Choose a small step € > 0. We will determine approximate values of the solution at the
following points:

tl = to +e y

t2:t1+€:t0+25,

For each t¢,, we define a number y,, which approximates the exact value of the solution y(t,).
We write this approximation as y, ~ y(t,).

Let us start with
Y1 = Yo + f(to,yo)e -

By the fact that the slope of the solution curve at (tg,yo) is f(to,%0) we can use the linear
approximation of functions by their first order Taylor polynomial to conclude that y(¢;) = ;.
Continue the process by setting

Yo =y1 + f(t1, )¢
ys = Yo + f(ta, y)e

Ynt+1 = Yn + f(tm yn)g_

In this way we constructed points (¢g, yo), (t1,¥y(t1)), ... in the ty-coordinate system, which
connected by interpolation methods gives an approximation of the solution curve.

Example. Consider the IVP

{ y =4ty
y(0) =0.16,

and select a step size ¢ = 0.25. Then

fty) =4ty

and

(1o =0, yo = 0.16].
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Staring the first round of calculations, t; = 0.25 and y; = 0.16 + (4 - 0-+/0.16) - 0.25 = 0.16.

t, =025, y1 = 0.16].
| |

Continuing with the second round, t; = 0.5 and yo = 0.16 4 (4 - 0.25 - v/0.16) - 0.25 = 0.26.

t2 = 05, Yo = 0.26].
| |

In similar ways,

| |

and

(ts=1, ys = 1.053].

Answering the question,
y(1) ~ 1.053.

We can use Mathematica to generate these numbers:

f[t , v ] :=4xtxSqrt[y];
t0=0; y0=0.16; eps = 0.25; n = 4;
t=t0; y=y0;

Do[y =y + f[t, y] *eps;
t=t+eps;

Print[t, "...", ¥], {i, 1, n}]
0.25...0.16

0.5...0.26

0.75...0.514951

1....1.05315

For comparison, let us calculate the exact values using the solution y(t) = (t* + 0.4)%:

y(0) = 0.16, compared to yo = 16

y(0.25) = (0.25% + 0.4)> = 0.2139, compared to y; = 0.16

y(0.5) = (0.5? + 0.4)* = 0.4225, compared to y, = 0.26

y(0.75) = (0.75% + 0.4)* = 0.9264, compared to y; = 0.5149

y(1) = (1+0.4)*> = 1.96, compared to y4 = 1.053

This is not a very good approximation, which can be attributed to a large step size and a
not efficient approximation method. In the following graph the blue curve is the graph of

the exact solution y = (t* + 0.4)? and the red dots show the approximating values at the
intermediate points.
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An approximative solution curve can be given by connecting the points (¢;,y;) by line
segments. This method of connecting point by line segments, or curves is called interpolation.

0.0 0.2 0.4 0.6 0.8 10

Smoother interpolation curves are available, too:
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As y,, is just an approximation of the exact value y(t,), we call the quantity

errn, = |y(tn) — ynl

the error of the approximation. Let us try to estimate err,,.
Suppose that the partial derivatives of f(¢,y) are continuous on the rectangle R, ;. Therefore,
the unique solution y(t) of the IVP has a continuous second order derivative on [tg—h, to+ h]

and
V) = S (6 ule) + St u) v o).

Hence, |y”(t)| will have a finite maximum A > 0 over the interval [ty — h,to + h]. Using
Taylor’s theorem we get that

82

y(t1) = y(to) +y'(to)e + Z/”(t*)g ;

for some ty < t* < t;. But, by Euler’s method y; = y(to) + v/(t0)e, which gives

M
ly(t1) — | < 762-

This says that local error is of order £2. But we need % steps to cover the interval from
to to tyo + h, so we can expect that the global error to be of order one less than the local
error:

2
Zr22o
-5 ¢ £,

This means that
’y<tn) - yn‘ < Ce.

To improve the approximation of the solution we must use smaller steps or have better es-
timates for the slopes y/(¢,) at each step. Let us use a step of size 0.1.
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fl[t , vy ] :=4xtxSqrt[y];
t0=0; y0=0.16; eps =0.1; n = 10;
t =t0; y=1y0;

Do[y=y+£f[t, y] *eps;

=t +eps;

Print[t, "...", v], {i, 1, n}]
0.1...0.16

0.2...0.176

0.3...0.209562

0.4...0.264495

0.5...0.346782

0.6...0.464558

0.7...0.628139

0.8...0.850053

0.9...1.14509

1....1.53032

As we can see, y(1) =~ y;9 = 1.53032, which is much closer to the exact answer of 1.96 then
the earlier 1.053 which was calculated with a step size of 0.25.
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4.4.2. The improved Euler (or Heun) method.

The previously introduced Euler method tends to underestimate the exact values in a case
of a concave-up solution. To get a better approximation we will use an improved method
which is of a predictor-corrector type, which means that we approximate 1/(t,) by averaging
the slopes at the current and the following intermediate points.

To find 3,41 we will calculate first an intermediate value y;, ;:

y;+1:::yn'+’5' f(tnayn>7

and then ; ;
tn7 n) tn 7:1
oo — - L) T i)

For the same IVP as before, the approximate values at the intermediate points are:

]tozo, yozo.lﬁ\.

t7 =025, yy =0164+4-0-v0.16 - 0.25

4-0-/0.16 +4-0.25-0.16
y1 = 0.16 + 0.25 - +2 =0.21

[t =0.25, y; = 0.21].
ty =05, y5 =021+025-(4-0.25-0.21) = 0.3245

4-0.25-v0.21+4-0.5-v324
ya = 0.21 4+ 0.25 - 025 V0 ;L 05- V3 5:0.4096

(12 = 0.5, yo = 0.4096].
ts = 0.75, yi = 0.7296 , y5 = 0.8899
5 =0.75, ys = 0.8899 .
ty=1, yi =1.5974, y, = 1.8756
[t =1, ys = 1.8756].

Therefore,
y(1) ~ 1.8756.
Mathematica can be programmed in the following way:

f[t , v ] :=4*xtxSqrt[y];

t0=0; y0=0.16; eps = 0.25; n = 4;

t =t0; y=y0;

Do[y=y+0.5 (f[t, y] +f[t+eps, y+ f[t, Y] *eps]) *eps;
t=t +eps;

Print[t, "...", ¥], {i, 1, n}]

0.25...0.21

0.5...0.409709

0.75...0.890075

1....1.87586
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The local error for the improved Euler method is of order €3 and the global error is of order
2. The following graph shows how efficient this methods is. However, for practical purposes
this is still not enough.

20

15K

10K

0.0 0.2 0.4 0.6 0.8 10

4.4.3. The fourth order Runge-Kutta method.

This method uses a weighted average of slopes at four point near each (t,,y,). There are
various versions of the Runge-Kutta method and the one we present here is the classical one
with the average of four slopes. The general formula is the following.

Slzf(tnayn)
9 S
32:f<tn+§ayn+551>
£ S
53:f<tn+§ayn+552>

s4= f(tn +c, yn +es3)
81+ 259 + 253 + 84
6

Yntl = Yn + €

For the IVP studied earlier

—N
<
S
&
o<
— <
D



use a step twice as large as before: ¢ = 0.5. Remember that f(t,y) = 4t,/y.
Then for the first step we get the following results:

s; = £(0,0.16) = 0
sy = £(0.25,0.16) = 0.4

0.4
s3=f (0.25, 0.16 + 0.57) = 0.509902

sy = f£(0.5,0.16 + 0.5 - 0.509902) = 1.28833

0+2-04+2-0.509902 + 1.28833
y1 = 0.1640.5 il i 5 i = (0.419011

For the second step we get the following results:

s1 = f(0.5,0.419011) = 1.29452
1.29462

So = f (0.75, 0.419011 + 0.5 ) = 2.58534

2.58534

sg=f (0.75, 0.419011 + 0.5 ) = 3.09647

s4 = f(1,0.419011 4 0.5 - 0.309647) = 5.61034

1.29462 + 2 - 2.58534 + 2 - 0.3.09647 4 5.61034
y2 = 0.419011 + 0.5 il +6 i = 1.94138

We can see that with just 2 steps the Runge-Kutta method gives better approximation of
y(1) than the Heun method with 4 step and the Euler method with 10 steps.
The local error of the Runge-Kutta method is of order €%, while the global error is of order *.

To compare the approximation methods from this section watch the following demonstra-
tion:
http://demonstrations.wolfram.com/NumericalMethodsForDifferentialEquations/

4.4.4. NDSolve command in Mathematica.

We can use the NDSolve command to get a numerical solution to an IVP. The expressions
giving the solution looks as:

NDSolve[{y’ [t] == 4xt*Sqrt[y[t]], y[0] == 0.16}, y[t], {t, O, 1}]

If we want to get approximate values and graph of the solution then we assign a function to
the numerical solution in the follwing way:

sol = NDSolvel[y’[t] == 4xt*Sqrt[y[t]], y[0] == 0.16, y[t], t, O, 1]

qlt_] := Evaluatel[y[t] /. sol]

The function ¢[t] is the aproximate numerical solution of our problem. If we want to get the
the approximate value of the solution for the input ¢ = 0.75 then we just write

q[0.75]

which gives 0.926402, an answer very close to the exact one 0.962406. We can graph the
solution with the coomand line
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Plot[q[t],{t,0,1}1 .
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Homework Exercises.

(1) Use each of the Euler, Heun and Runge-Kutta methods to approximate y(¢) on the
interval [1, 2] using a step size € = 0.5, where y(t) is the solution of the IVP

{y’=t+y
y(1) =0.

(2) Use each of the Euler, Heun and Runge-Kutta methods to approximate y(0.5) after two
steps, where y(t) is the solution of the IVP

{ y =ty

y(0)=1.

(3) Use each of the Euler, Heun and Runge-Kutta methods to approximate y(1) after two
steps, where y(t) is the solution of the IVP

{ y=t—y
y(0)=1.
(4) Use the Heun method to approximate y(1) with step sizes ¢ = 0.25 and € = 0.1, where
y(t) is the solution of the IVP
I 2
{ Y =y
y(0) =2.

(5) Use the Euler method to approximate y(1.5) with step sizes ¢ = 0.25 and € = 0.1, where
y(t) is the solution of the IVP
{ y/ — 3y2/3

y(1)=0.

What are your conclusions?

What might go wrong and why?

(6) Use each of the Euler, Heun and Runge-Kutta methods to approximate y(2.2) using a
step size € = 0.4, where y(t) is the solution of the IVP

{y’=%+%
y(1) =4.

Note: Check your answers for the Homework Exercises with Mathematica by using both
the DSolve and the NDSolve.
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CHAPTER 5

Higher order linear differential equations

5.1. General theory
A n''-order linear DE has the form
an(t) Y™ (t) + ana () y" V(@) 4 a8 Y (1) +ao(t) y(t) = g(t), teT, (5.1.1)

where the unknown function is y(¢) and the coeflicients are the functions ax(t), 0 < k < n.

Example.
= 1)y () + VI +4y"(t) —sinty (1) +y(t) = €', 1<t < o0,
The general solution of a n*"-order linear DE has the form
y(t) = yn(t) + yp(1) ,
where y;,(t) is a n-parameter family of solutions of the linear and homogeneous DE
)y ) +an 1 () y" V@) 4+ a(t) Y (1) Faot)y(t) =0, teT, (5.1.2)

(
and y,(t) is a particular solution of the non-homogeneous DE (5.1.1). As a n-parameter
family of solutions, y;(t) has to be determined as

yn(t) = crya(t) + - + cayn(t),

where y1(t), -+ y,(t) are solutions of the linear and homogeneous DE (5.1.2).
However, not every choice of n functions is suitable. We must choose linearly independent
functions, which means that the only option to have

an

ayr(t) + -+ cuyn(t) =0, forevery t €l
is that each parameter must be 0:
cp=--=¢,=0.

To analytically check the linear independence of solutions, we must check the Wronskian
determinant:

Wyi(t), 92(t) - om(®)) = | - SR : #0,

for at least one t € I.
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Note: Determinants are calculated in the following way:

a b

Cd—ad—bc,
a b c
def:azi—b‘d{—i-c‘dfi'
g b g g

Higher order determinants are calculated in a similar way by expanding them using the first
row, and thus reducing the calculations to determinants of one size less.

Definition. The functions y;(t), - - , y,(¢) form a Fundamental Set of Solutions (shortly
F'SS) of the linear and homogeneous DE (5.1.2) if:

1. Each function is a solution.
2. They are linearly independent.

The following theorem gives us a method to check whether n functions form a FSS or not.

THEOREM b5.1.1. If the functions yi(t), - ,yn(t) are solutions of the linear and homoge-
neous DE (5.1.2) and W (y1(t), -+ ,yn(t)) # 0 for at least one t € I, then they are linearly
independent and form a FSS.

Examples:
(1) Let us show that the functions y;(t) =t and yo(t) = ¢3 form a FSS for the DE

t2y" =3ty +3y =0, t€(0,+00).

First, let us check that the two functions are solutions. By substituting y;(¢) = ¢ into the
DE we get

t2.0—-3t-1+3t=0,

which leads to 0 = 0. Repeat the process for the other function, too.
Then
t ot

W(tvtg) = 1 3t2

= 3t> — 17 = 27,

which is not zero for any (would be enough to check just for one) ¢ > 0. Therefore, y,(t) =t
and yy(t) = t3 form a FSS.

However, if we want to see whether z;(t) = ¢t and 2z, = 5t form a FSS, then we can check
that they are solutions, but

t 5t

wies-| !

‘ =5t—-5t=0,
which shows that they are not linearly independent. Therefore, they do not form a FSS.

Regarding the existence and uniqueness of solutions for IVPs corresponding to linear DEs
we have the following theorem.
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THEOREM 5.1.2. Consider the IVP
an ()Y (t) + an_1 (O)y ™I (E) + - + ao(t)y(t) = g(t), t € [a, ]

y(to) = vo, ¥ (to) = v, -+, ¥y V(L) = yn_1,

where ty € [a, B] is a fized point.
If the functions a,(t),--- ,ao(t), g(t) are continuous on the interval [, 5] and a,(t) # 0 for
any a <t < 3, then the IVP has a unique solution on the entire interval |cv, B].

Homework Exercises.
(1) Determine whether the given functions form a FSS of the corresponding linear and

homogeneous DE.

e’ cost,sint, ' —y'+y —y=0, teR.

(a) cosbt, sinbt, y"+25y=0, teR.
(b) e, e, ' +25 =0, tcR.
(c) e, e, o' —25y=0, tcR.
(d) %,t,t2, By + 2y — 2ty +2y=0,t>0.
(e) t*—t,t,t*, Yy +t*) —2ty +2y=0,t<0.
(f) e, te’, o' —6y +9y=0, teR.
(9) 1, cos2t,sin2t, y"+4y =0, teR.
(h) e ', e*, o' =3y —4y=0, teR.
)

(2) Determine the intervals on which IVPs corresponding to the given DEs have unique
solutions:

(a) (*—=9)y" +sinty’ —y=t.
(b) costy +3y=c¢"

(c) y”—l—\/thZy +Inty=0.

(d) y* =y =t3

(e) *y" =52y +ty —by=t+2.
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5.2. Linear and homogeneous DEs with constant coefficients

The linear and homogeneous DEs with constant coefficients have the form

an Y () + ana y" IO + -+ y () Fao y(t) =0, (5.2.1)
where the coefficients a,,, a,_1,--- ,a1,ag are real numbers and a,, # 0.
We would like to find which functions of the form y(t) = e are solutions of the DE (5.2.1).
Substituting y(t) = ¢ in the DE (5.2.1) gives

(anr"—l—an_l P 7"—1-&0) e =0.
Therefore, we have the following theorem:
THEOREM 5.2.1. If r is a solution of the polynomial equation
An ™"+ ap g ™ P a T+ ag=0, (5.2.2)

then y(t) = €™ is a solution of the DE (5.2.1).

Equation (5.2.2) is called the characteristic equation of the DE (5.2.1). Every n'-order
polynomial equation with real coefficients has n real or complex solutions.

We will assign to each solution r of the characteristic equation (5.2.2) a solution
of the DE (5.2.1).

Simple real solution: If r is a simple real solution of (5.2.2) then we assign to it the
function y(t) = .

Repeated real solutions: If r is a real solution repeated k times, then we assign to it a
number of k solutions:

ert7 tert’ . 7tk—lert )

Simple complex solution: If r = a + b is a complex solution of (5.2.2), then a —ib is also
a solutions, so we assign to r two solutions

e cos(bt), e sin(bt).

Repeated complex solutions: If r = a + ib is a complex solution of (5.2.2) repeated k
times then we assign to r the solutions

e cos(bt), e sin(bt), te™ cos(bt), te®sin(bt),---t* e cos(bt), t" e sin(bt).

We finalize the theory of this section by the following theorem.

THEOREM 5.2.2. If we assign to each solution of the characteristic equation a solution of
the linear and homogeneous DE (5.2.1) in the ways shown above, then we get a fundamental
set of solutions.
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Examples.

1. Solve the DE:
y' —9y=0.
The characteristic equation 72 — 9 = 0 has the solutions
r =3, 1ry=-3.
The functions assigned to them are
yi(t) = e, yo(t) = e .
These two functions form a FSS, so the general solution has the form

y(t) = c1e™ + coe".

2. Solve the DE:
y' 4+ 9y =0.
The characteristic equation 72 + 9 = 0 has the solutions
ry =231, rg = —31.
The functions assigned to them are
y1(t) = cos(3t), ya(t) = sin(3t) .
These two functions form a FSS, so the general solution has the form

y(t) = ¢y cos(3t) + cosin(3t) .

3. Solve the DE:
y" +4y" + 4y =0.
The characteristic equation 73 4 4r% + 4r = 0 has the solutions
ri=0,ro=r3=—-2.
The functions assigned to them are
yp(t) =1, plt) =e 2, ys3(t) =te

These three functions form a FSS, so the general solution has the form

y(t) = c1 + coe”? + cste .

4. Solve the IVP:
' —4y +13y =0, y(0) =0, ' (0) = 3.
The characteristic equation 72 — 47 + 13 = 0 has the solutions
r=2+3,r,=2—3.
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The functions assigned to them are
y1(t) = e* cos(3t), ya(t) = e* sin(3t).
These two functions form a FSS, so the general solution has the form
y(t) = c1e* cos(3t) + cpe* sin(3t) .

Using the initial conditions we get ¢; = 0 and ¢y = 1.

Homework Exercises.
Solve the following DEs and IVPs:

1. 2y’ — 5y = 0.

2.y +4y +3y=0,y(1) =0, ¥ (1) = 273.
3. y" +y=0.

4. yW — 16y = 0.

5. 94" 4+ 5y" =0.

6. v —y" +4y — 4y =0.

7. y" =5y +3y +y=0.

8.y — 8y + 16y = 0.

9. ¢"—y"+y —y=0,9(0)=0,y(0) =1, y"(0) = —1.
10. y™® —5y" 4 4y = 0.

11. y® + 5y" + 4y = 0.

12. y® — 50y" + 625y = 0.

13. y" +y"+y =0.

14. y" — 6y + 13y = 0.

15. ¢y —3y" + 4y — 2y = 0.
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5.3. Linear and non-homogeneous DEs with constant coefficients

The previous section provided methods to find ¥, so we are left to find a particular solution
Yp. T'wo methods will be presented.

5.3.1. Variation of parameters for second order linear equations.

Variation of parameters can be used for any linear DE, as long as we know a FSS of the
homogeneous equation. Here we will present it just for second order linear DEs.

Consider the DE
az y"'(t) + a1 y'(t) + ao y(t) = g(1),
where ay, a1, ag are real numbers, ay # 0 and g(t) is not a constantly zero function.
Let us assume that we already obtained the solution of the homogeneous DE
ayy’' +ary +agy=0,
and it has the form
Yn(t) = cr yi(t) + o ya(t) -

The variation of parameters method means that we are looking for the particular solution
in the form

Yp(t) = c1(t) y1(t) + ca(t) valt),

where the ¢;(t) and co(t) are unknown functions left to be determined. By requesting that
Yp be a solution of the non-homogeneous DE, we get the system

{ A (t) yi(t) + &4(t) y2(t) =0
) yh (1) + ch(t) () =42

Solving this system gives ¢} (t) and ¢ (t). Integrating them we get ¢1(¢) and c3(t) and by this
yp(t). The final solution is given by y(t) = yn(t) + y,(t).

Example: Solve the DE
y// o 33/ + 2y — €5t'

Step 1. The homogeneous equation

y' =3y +2y=0
has the characteristic equation

r?—=3r+2=0,

which has the solutions r; = 1 and ro = 2. The FSS assigned to them is formed by the
functions y;(t) = €' and y5(t) = e*. Therefore,
yn(t) = c1 €' + ¢y e
Step 2. We search the particular solution in the form
yo(t) = c1(t) e + ca(t) e*',
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and this leads to the system

A(t) et +ch(t) e =0
ch(t) et + dh(t) 2% = e,

Subtracting the first equation from the second gives

dy(t)e* = e

and hence ¢(t) = €* and c,(t) = 3€*. Substituting e¥ for ¢}(¢) in the first equation gives
¢ (t) = —e* and hence ¢ () = —1e.
Therefore,
1 1 1
yp(t) — __€4tet + _€3t€2t _ _6575 )

4 3 12
Step 3. The complete solution is

1
y(t) =c1 e +cy e + Ee‘“.

5.3.2. The undetermined coefficients method and the superposition principle.

The undetermined coefficients method applies if the function g(¢) on the right hand side of
the DE has one of the following forms:

1. If g(¢t) = P(t)e™, where P(t) is a polynomial of degree n and « is not a solution of the
characteristic equation, then we search y, in the following form

Yp(t) = (bpt™ + -+ + byt + by)e™
where the unknown coefficients b, - - - , by, by are determined by substituting y,() in the non-

homogeneous DE.

2. If g(t) = P(t)e*, where P(t) is a polynomial of degree n and « is a solution of the
characteristic equation repeated k-times, then we search y, in the following form

Yp(t) =t (bt™ 4 - + byt + by)e™

where the unknown coefficients b, - - - , by, by are determined by substituting y, () in the non-
homogeneous DE.

3. If g(t) = P(t)e* cos(ft) + Q(t)e* sin(ft), where P(t) and Q(t) are a polynomials of
degree at most n and « + ¢ is not a solution of the characteristic equation, then we search
Yp in the following form

Yp(t) = (bt™ + -+ + byt + by)e™ cos(Bt) + (dpt™ + -+ - dit + dp)e* sin(Bt),
where the unknown coefficients b,,,--- , b1, bo, d,, -+ ,dy,dy are determined by substituting

Yp(t) in the non-homogeneous DE.
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4. If g(t) = P(t)e* cos(ft) + Q(t)e* sin(ft), where P(t) and Q(t) are a polynomials of
degree at most n and a + i3 is a solution of the characteristic equation repeated k-times,
then we search y, in the following form

Yp(t) = tH(bt™ 4 - 4 byt + bg)e™ cos(Bt) + t*(dpt™ + - - - dit + do)e™ sin(Bt),

where the unknown coefficients b, --- ,b1,bo, d,, -+ ,dy,dy are determined by substituting
Yp(t) in the non-homogeneous DE.

In the following examples we focus just on finding v, and ask the reader to complete the
details of finding ;.

Examples.

1. Solve the DE
y'—y —2y=2t+3.
Step 1. We get y,(t) = c1e® + coe™.
Step 2. In this exercise g(t) = (2t + 3)e’" and o = 0, which is not a solution of the
characteristic equation r* —r — 2 = 0. So, we search for y, in the form
yp(t) = (blt + bo)@Ot = blt + bo .

Substituting y,(¢) into the DE leads to

—bl —let—2b0 :2t+3,
which can be rearranged as

byt — 2y — by = 2t + 3.

The two sides must be identically the same, so we have —2b; = 2 and —2by — b; = 3, which
gives by = —1 and by = —1, and hence y,(t) = —t — 1.
Step 3.

y(t) = cre* + et —t —1.

2. Solve the DE
y'—y =2t+3.

Step 1. We obtain y,(t) = ¢1 + co€’.
Step 2. In this exercise g(t) = (2t + 3)e’® and « = 0, which is a simple (k = 1) solution of
the characteristic equation 72 —r = 0. So, we search for y, in the form

Yp(t) = t(byt + bo)e®" = byt? + byt .
Substituting y,(t) into the DE leads to
2by — 201t — by = 2t + 3,

which can be rearranged as
—2b1t +2by — by =2t + 3.
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The two sides must be identically the same, so we have —2b; = 2 and 2b; — by = 3, which
gives by = —1 and by = —5 and hence y,(t) = —t* — 5t.
Step 3.

y(t) = c; + coe’ — 12 — 5t

3. Solve the DE

"

y" +y" —y —y=4cost.
Step 1. We obtain y,(t) = cie! + coe™ + czte™.
Step 2. In this exercise, g(t) = 4e% cost and « + i3 = i, which is not a solution of the the
characteristic equation. So, we search y, in the form

Yp(t) = acost + bsint.
By substituting y, into the DE and grouping the similar terms we get that
(2a — 2b) sint 4 (—2a — 2b) cost = 4 cost,
which leads to the system

2a —2b =0
—2a—2b =4.
This gives a = b = —1 and therefore y, = — cost — sint.

Step 3.
y(t) = cre’ + coe™ + cste™ — cost —sint.

The superposition principle:
This method is connected just to linear DEs. If the right hand side is the sum of £ functions,

9(t) = g1(t) + -+ ge(t)
then we search the particular solution as
yp(t) = ypl(t) Tt Ypk s

where each function is a particular solution of the corresponding term of the right hand side.

Example.. Consider the linear DE:
y" 4 dy = te! — 24e*" .

Step 1. Solving the homogeneous equation gives yy(t) = ¢1 cos(2t) 4 co sin(2t) .
Step 2. We search the particular solution in the form yj,(t) = (at+b)e'+de? . By substituting
yp into the DE we get

(5at + 5b + 2a)e’ + 8de* = te' — 24"

which gives the system

5a =1
5 +2a =0
8d = —-24.
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b=—=2,d=—3and y,(t) = (3t — =)e’ — 3e?".

1 2
y(t) = c1 cos(2t) + cosin(2t) + (St — 2—5)et — 3e*.

5.3.3. Use Mathematica to solve higher order DEs.

n1]= DSolve[y " '[t] +4+y[t] ==t +*Exp[t] - 24 «Exp[2+t], v[t], t]

z z

e 1 . R .
ouffil= {1y¥[t] =2 C[l]Cos[2+] +C[2) 8in[2 t] Ee" iZ-?Ee‘ 5':..; iCos 2+ +8in[2t] .:"

n#= FullSimplify [DSolve[y " '[t] + 4 +y[t] =t +*Exp[t] -24«Exp[2+t], ¥v[Et], 1]

e ) . ) -
oufzl= {1y [t] = Ee‘ :E-TSE" 5tl;-C l]Cos[2+] +C[2)] 8in[2+] }+

The FullSimplify command can be really useful in simplifying the solutions to a form similar
to what we get without the use of computers.

Homework exercises.

1. Solve the following DEs and IVPs:
1. ¢y — 3y =6.
2.y — 4y’ + 3y = e'sin(2t), y(0) = 0, ¥'(0) = 1.
3.y +y=t+e 2
4. y@W — 16y = 12 + t.
5. 9" + 5y =t + 3.
6. v —y" + 4y — 4y = sin(2t).
7.4y 4+ 5y +y =%
8. y' +y = tant.
9. y" +y = cost.

10. ¢ +y = te 2,

1L "+ 9y = sin%3t)'
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_ 1
12. y//+3y,+2y—m

13 y// + Sy/ _|_ 2y — 1+et '

et

4. y' + 3y +2y =t2.
15. y® — 5y" 4+ 4y = et
16. y@ — 5y + 4y = 3.
17. y® + 5y" + 4y = cos(2t) — sin(2t).
18. y™ — 50y" + 625y = 125.
19. '+ 2y +y = 5.
2. The vertical displacement from its natural length of a spring-mass system is described by
y'(t) + 24/ (t) + 10y(t) = 0,
where the time ¢ is measured in seconds.
Describe the position of the mass after 20 seconds if the initial position is 0 and initial ve-
locity is —1 m/s.

3. Find the charge ¢(¢) on the capacitor in a series RLC circuit which is modeled by the
IVP

1
éq” +5¢ +500¢ =0V, q(0)=0C, ¢(0)=20A.
Find the charge after 3 seconds.

4. Find the charge ¢(t) on the capacitor in a series RLC circuit which is modeled by the
IVP

5
50" +10¢' +30g =110V, ¢(0) =0C, ¢'(0) =2A.

What is the charge after 1 second? What is the long term behavior of ¢(t)?

5. (a) Find the charge ¢(¢) on the capacitor in a series RLC circuit which is modeled by the
IVP

1
Eq” +2¢' 4+ 100g = cos(10t) + sin(10t)V, q(0) =0C', ¢'(0) =0 A.

(b) Use DSolve to find ¢(t), plot it and estimate the maximum charge during the first second.
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6. Consider the problem of a free falling object with mass M. Assume that only gravity
and air resistance act upon the object.

(a) As a first model, let us suppose that the air resistance is proportional to the velocity v(t)
of the object. Newton’s second law of motion gives the DE

MV'(t) = Mg —kv(t), t >0.
More exactly, this is a first order linear DE with constant coefficients:

Mu'(t) + kv(t) = Mg, t > 0.

Suppose that 2 objects with mass M; = 10 kg and M, = 20kg are released from an altitude
of 3000 meters with initial vertical velocity 0. Suppose that the constant k£ = 0.5 for both
objects. Answer the following questions:

(i) Calculate the velocities vy (t) and vy(t) of the two objects.

(ii) What is their terminal (highest) velocity?

(iii) Which object is falling faster?

(iv) What is their speed after 5 seconds?

(b) (Optional) The role of this exercise is to show that another mathematical model might
lead to a much more difficult DE. In certain cases, the air resistance can be modeled as
Fur=C-05-p-v(t)* A,

where C' is the drag coefficient, p is the air density, and A is the reference area of the object.
C and A are constants, but the air density depends on air temperature and pressure which
vary with altitude. A simple function modeling air density is the following

p(y) = 1.2 —0.00011y,

where y is the elevation above see level. This function is obtained by supposing that the air is
dry, the temperature at see level is 20°C' and is dropping at a rate of 6°C' per 1000 meters. If
an object of with mass of 10kg is released at 3000 meters and we denote by s(¢) = 3000 —y(¢)
the distance the object dropped until time ¢, then we get the a DE of the form

10s"(t) + C - A - (0.87 +0.00011s()) - (s'(t))* = 100,

which is a second order non-linear differential equation.
Use DSolve and NDSolve to estimate the altitude and velocity of the object after 10 seconds.
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5.4. The Cauchy-Euler DE
The Cauchy-Euler DE has the form
ay, - tn . y(n) + Ap_1 tn_l . y(n_l) + e _I_ ai - t . y/ + ag - y — g(t) , (541)

which has to be solved for ¢ < 0 or ¢t > 0. This is a linear DE with non-constant coefficients
and we will reduce it to a linear DE with constant coefficients. In order to achieve this we
use the substitutions
t=¢€" or x=Int, if t>0,

and

t=—e" or x=1In(—t), if t<0.
Let us consider the ¢t > 0 case.
We have to substitute the derivatives in ¢ with derivatives in x. Using the chain rule we get
that

—T

dt  dr dt  dz t dzx
d?y d (dy\ d (dy A d*y B dy 020
a2 dt \dt ) dx \dx - \dz?2  dx ’

d? d (d? d d> d d? d? d
a3 dt \ dt? dr \ \dz? dx dx3 dx? dz
If we continue in this way we can express any derivative in ¢ in terms of derivatives in x and

by substituting them into the equation (5.4.1) we obtain a linear differential equation with
constant coefficients.

dy dy dx dy 1 dy
— = — = =—c

Furthermore,

and

Example Solve the following DE:
t3y" + 5t%" + Tty + 8y =2Int, t>0.

Let us use the substitution t = e* and get

dy Py dy d’y dy dy
3z -7 _ 327 A -3z 5 2z - Jg g —2z 7e% 2L o7 8y =2
c (dm3 dx? * ) © e dz?  dz) © e dz © oy = e

The exponential functions are canceling each other, so we get

Py Py dy
—2 4+ 2—2 4+ 4= 4+ 8y =2x.
dx3 + dx? + dx + oy .
Solving this DE according to the methods from the previous sections gives

1 1
y(l') = Cle_Qx —+ C2 COS(Q(L’) + c3 SIH(Q[L’) + Zl‘ — g .

We get the final solution by substituting x = Int in the previous line:

1 1
y(t) = c1t ™2 + ¢y cos(2Int) + cysin(21Int) + 1 Int — 3
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Homework Exercises.

Solve the following DEs and IVPs.

1.

2.

t2y" —ty' +y =sin(Int), ¢ > 0.

By —6y=2t+3,t>0.

2y +ty +y=0,y(1)=1, y(1) =2.

Py +ty —y=1,t>0.

By — 6ty +12y =12, t > 0.
2y —ty +5y=2Int+t, t>0.
3y —3t2y=1,t>0.

tB3y" — 6ty + 12y =12, t < 0.
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CHAPTER 6

Solving linear differential equations with the Laplace transform

6.1. Definition and properties of the Laplace transform

The Laplace transform changes a linear DE into an algebraical equation which can be solved
by methods from algebra and then the algebraical solution is transformed back into a solution
of the original DE.

As an addition to the methods presented in the previous chapter, the Laplace transform will
help us to solve linear DEs with discontinuous right hand sides.

DEFINITION 6.1.1. We say that a function y : [0,+00) — R is piecewise continuous
on [0,00) if limy_,o+ y(t) exists and y(t) is continuous on every interval of finite length [0, b],
except maybe a finite number of points, where the function has jump discontinuities.

DEFINITION 6.1.2. We say the function y : [0,+00) — R is of exponential order c if
there are positive constants M and T such that

ly(t)| < Me®, forall t >T.

DEFINITION 6.1.3. Consider a function y : [0, +00) — R, which is piecewise continuous

on [0,+00) and is of exponential order c. The Laplace transform of the function y(t) is
defined as

Lly(®)](s) = /Ooo ety(t)dt, s> . (6.1.1)

Properties of the Laplace transform:

Existence: The Laplace transform is an improper integral, which could converge or diverge
depending on the value of s.

However, if the function y(t) is piecewise continuous on [0, +00) and of exponential order c,
then the improper integral converges for s > ¢, so L]y(t)](s) exists and is finite.

Linearity: Suppose that A € R and the functions y(t) and z(t) are piecewise continuous on
[0, +00) and of exponential order ¢. Then for all s > ¢ we have:

The linearity of the Laplace transform makes it compatible with linear differential equations.

81



Laplace transforms of elementary functions |

Let us prove these these formulas.

(1) If s > 0 then

L[t](s) = /O h e S ttdt =

[ee] fts
/ e tdt =
0

t2 —ts

o0

0

By mathematical induction, if n > 2,

C)(s) = /0 Tty = —

(3) If s > a, then

Lle™](s) = / e etdt = / et gt = —
0 0

n,—ts 0o

S 0
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(1) |21)(s) = % s> 0.
@2) |£[t"](s) = S% s>0, neN.
(3) |L[e™](s) = . i —, 5> a

. b
(4) | Llsin(bt)](s) = EENrE > 0.
(5) | L[cos(bt)](s) = EENrR > 0.
(6) L[sinh(bt)](s) = g 57 |b].
(7) Llcosh(bt)](s) = %bQ s> [b].
el = [ etar= -7

c© 1
_/ —tsdt
S

2
—/ e B tdt =
S

N

gﬁ[t 1(s) = g
e_t(s_a) o0 1
s—alo s—a



(4) If s > 0, then

L[sin(bt)](s) = /000 e~ " sin(bt) dt

—ts &3 00 o8}
M’ + 9/ e " cos(bt) dt
S 0 S Jo
—ts 00 2 00
M‘ _ b_2/ e—ts Sln(bt) dt
0 S Jo

52
b b )
=22 L[sin(bt)](s) .
Therefore,
. b
L[Sln(bt)](S) = m .

(5) It is similar to (4).

(6) If s > |b], then

— €

Clsimh(b)](s) = £ {%} (5) = 5 (£"](s) — £le™](5))

1/ 1 1\ b
2\s—b s+b) s2—0b2"

(7) If s > |b|, then

Homework Exercises.

1. Which of the following functions are of exponential order ¢? Find ¢, if the answer is yes.

(a)
y(t) =5t + 2t + 1.
(b)
y(t) = sin(3t) .

(c)

y(t) =4e*.
(d)

y(t) = e .
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(a)
y(t) =t2e".
(b) f
0 i t=4
wo={% & 171
(© )
0= i p3s
(d)
0 if t=0
y<t>:{sin% if t>0.
(e)

y(t) = |t], the integer part of t.

3. Which of the functions from exercises 1 and 2 are both of exponential order ¢ and piece-
wise continuous on [0, +00)?

4. Find the Laplace transforms of the following functions and give the interval on which the
Laplace transforms are defined:

(a)

y(t) =2t + 3.
(b)

y(t) =t*+2t+1.
(c)
y(t) = (cost +sint)?.

()

y(t) =1* + e
(e)

y(t) = (1 + e3t)2 .
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y(t) = sinh?¢.

P45t +6

y(t) t+2

y(t) = sin(bt) + cos(5t) .
y(t) = e 2 + 3e*.
y(t) = cos?(t).

0 if 0<t<l
Mﬂ:{t it t>1.
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6.2. Further properties of the Laplace transform. Transforms of the Heaviside
function and the Dirac Delta function

6.2.1. Translation on the s-axis.

If the function y is piecewise continuous on [0, 400) and of exponential order ¢, then
Lle”y)](s) = Lyt)] (s —a), if s>a+c. (6.2.2)
We can prove this formula in the following way:
et y(#)](s) = / et ety (1) di — / et (1) dt
0 0
= Lly(®)l(s —a).

Examples:

ﬁ[ezttB](s)zﬁ[t?’}(s—Q):j—i :(3—62)4’ if s>2.
(2) S—S8
s s s+1 )
Lle™" cos(2t)](s) = L]cos(2t)] (s + 1) = 2 = Gr1rid’ it s>0.
s—s+1

6.2.2. Derivatives of the Laplace transform.

For simplcity of notations, the Laplace transform of a function denoted by a lower case letter
will be denoted by the same upper case letter. For example:

Lly®)] (s) =Y (s) .
To find a formula for Y™ (s) we start with Y’(s) and give some explanations.

/ d - —ts < d —ts
Y(s):%/o ety(t)dt:/o gety(t)dt

Hence,
Llty(#)](s) = =Y"(s),

and continuing this process, by mathematical induction we get that for any n € N we have

Lt"y(t)] = (=1)" YW(s). (6.2.3)

As you can see, the process of calculating the derivatives of Y'(s) involves differentiating un-
der the integral sign, which requires the use of uniform convergence of the improper integrals
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J, e S y(t)dt in s for s > ¢+ e, where e > 0 symbolizes any small positive number.

Examples.

(1)
CIP)(s) = L[ 1)(s) = % <1> _ 2

(2)

L[] (s) = —j—; (;2) - (8_62)3.
(3)

Lltsint)(s) = —% (ﬁ) _ (322+—S1)2

6.2.3. The Laplace transform of the unit step function and of piecewise con-
tinuous functions.

The unit step function is frequently used to model the turning "off” and "on” of external
forces and it is defined by:

0 if 0<t<a
“40:{1 it t>a.

ib0r

0 if0=st<2

uz() = {1 iftz2

L L L " L Il 1 L L 1 1 1 L 1 1 1 Il 1 L 1 1
1 2 3 q 5

With the aid of the unit step function we can rewrite the piecewise continuous functions
in a form suitable for the Laplace transform. Let’s see two examples:

Consider

0, if 0<t<?
t—3, if t>2.



0 f0<fe?
rm"'{r-s ift=2

We can write

Consider now

2, if 0<t<1
“”:{0, if >,

20

£ if0 st<i

gﬂ%={ﬂ =1

Then,
g(t) =t* —t* uy(t).

For another piecewise continuous function consider

0, if 0<t<1
fy=4{ 3, if 1<t<2
0, if t>2
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we have

F(£) = 3u(t) — 3us(t).

Let’s continue by calculating the Laplace transforms of these piecewise continuous functions.

t (e e}
—1s 6—@5

Llug(t)] (s) = /OO e dt = — . =—

a

In general,

Lf(t —a)u(t)] (s) = /OO e f(r—a)dr

t=717—a, dt=dr

o

—(t+a)s dt = > —as _—ts dt = e - —ts d
e f(t) dt / e e ft)ydt=e /0 e " f(t) dt

0 0

= o LIF(D)(s).

Therefore,
LIf(t —a)ua(t)] (s) = e * L[f(1)](s)- (6.2.4)

Examples.
(1) N

LIt = 2ua(0)] (5) = 7 LIf] (5) =
(2) N

L[ 3uz(1)] (s) = e73° L[e!] (s) = 86_ .
(3)

L[(t = 3) ua(D)] (s) = LIt = 2) ua(t) — ua(t)] (s)
= L[(t = 2) uz(t)] (5) — L[ua(1)] (s)

—2s —2s —2s 1 —
—e B L (s) - =S C 2T s

S 52 S 52




LI +1) (b)) (s)
— L[t 12420t — 1) +2) w(8)] (s)
= L[(t = 1w ()] () + 2£[(t — ) er (1)) () + 2L[os (1)) (s)

—S8

e

=e* L[tY] (s) +2e7° L[t] (s) +2 .
2

2 2 s
= —3+ + -] e ’.
S S S

6.2.4. The Dirac Delta function. The Dirac Delta function describes forces of large
magnitude acting only for a very short time. Actually it is not a function, it is a distribution,
or generalized function, but a description of the distributions theory is beyond the level of
this course. Hence, we will just define the Dirac function in an elementary way and give its
Laplace transform.

For @ > 0 define

(5a(75)={ +oo, if t=a

0, if t#a,

/Zéa(t)dtzl.

We will use the notation d(¢) instead of do(?).

and formally require

The Laplace transform of the Dirac Delta function is given by

L[6.(1)] (s) = e (6.2.5)

Hence,

LI5)] (s) = 1. (6.2.6)

Homework Exercises.
Find the Laplace transforms of the following functions:
(1) e'sint

(2) e tcost

90



e3tt?

tcosht

2 — 3tet

203t

e~ sin 4t + 3t

(t —3)us(t)

(t — 3)? us()
sin(t — ) ur(t)
sin? ¢
cos?(3t)
1003(t)
sint + 6,()

(t — 2)3 ug(t) + 2(t)
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6.3. The inverse Laplace transform

By Lerch’s theorem if two piecewise continuous functions have the same Laplace transform,
then they can differ just at the discontinuity points. By assuming that at discontinuity
points we consider the right hand side limit as the value of the function at that point, we
find that the Laplace transform is a one-to-one transformation. Therefore, we can define its
inverse transformation, which reverses the effect of the Laplace transform.

DEFINITION 6.3.1. If Y(s) = L[y(t)] (s) then define

Note: The inverse Laplace transform is linear, which means that
LY (s) + Z(s)] () = LY ()] (8) + L7 [Z(5)] (1),

and

LMY (s)] (t) = a LY (s)] (1)

Examples:

(1)




) 0= [oiaeal ©
=L {(355214_ (s—f—??)Z—FKJ (¥

_ o {%} () g L {m] (t)

3
= e % cos(2t) — 5 e 3 sin(2t) .

(7)
-1 1 5t
L {(5—5)2} (t) =te
(8)
£ {688} (1) = us(t)
(9)
ﬁ_l |:6—258 i 5:| (t) _ 65(t_2) u (t)
(10)
L7H1] (1) =0(t)
(11)

L7 [e7] (t) = d3(t) -

For the next exercise regarding the inverse Laplace transform we have to use partial fraction
decomposition.

(12)

£ L’c‘ij T ;12} 1) =2~ {(3251;(;122)} ®)

:L‘l[ SRR }(t)

s+1 s24+2

— L%] 1)+ £ L?i 2} (t
— et 4 cos(V/2t) .
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6.3.1. Calculate the Laplace transform and inverse Laplace transform using
Mathematica.

To calculate the Laplace transform we can use the following commands:
LaplaceTransform[Sin[t], t, s]

For the inverse Laplace transform we can use:
InverselLaplaceTransform[1/(1 + s), s, tl]

Homework Exercises.

Find the inverse Laplace transforms of the following functions:

Y(s) = 57
(2)
y(s) = ;53)2
) 2
o= (21
(4) ;
V()= —.
(5) '
Y(s) = 2s+1°
(6) -
V()= g
(7) .
Yis) = s2+1°
(8) )
V()= 5
©) 2s +4
V()= 5
(10) )
YO = ST
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9= e
Y(s) =G +5152 +6°
V()= g
5)=5 f 1)2
Yis) = s(s j— 1)2
Y(s) = ‘;S
Y{s) = sij—ss ’

(5)= 5
O
Y(s)= "
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6.4. Solving IVPs of linear DEs with the Laplace transform

Laplace transforms of the derivatives.

If y(t),y'(t),--- ,y" "V (t) are continuous on [0, +00), are of exponential order ¢ and y™(t)
is piecewise continuous on [0, 400), then

LIy™®)](s) = s"Lly(t)](s) —s" " y(0) — "2/ (0) — -+ — s y"2(0) — y"1(0).

To see how this works, let us start calculating L[y'(¢)](s) using integration by parts. For
simplicity, let us work with these improper integrals as with the usual definite integrals, but
we should not forget that this is possible, because our assumptions make these improper
integrals convergent. Also, by the exponential order ¢ of the function y(¢) we know that for
s > ¢ we have limy_,,, e *'y(t) = 0.

cwamg=iﬁwa“det

= e’tsy(t)‘zo +s /000 e " y(t)dt
= —y(0) + s Ly(1)](s) -

We can continue to evaluate higher order derivatives in the following way:

zwwmgzlmawwww

= e_tsy'(t)’oo + S/ e "y (t)dt
0

= —y/(0) — sy(0) + s> L[y(1)](s) .

You should pay close attention to Example 1. This is an easy exercise, but the more com-
plicated ones follow exactly the same steps.

Example 1.

Solve the IVP
vy —2y=6, y0)=1.

This is a linear DE with constant coefficients, so we can apply the Laplace transform to both
sides of the equation:

Ly (t) =2y (t)] (s) = L[6] (s)
By the linearity of the Laplace transform we get

LIy (1)] (s) = 2L[y(1)] (s) = L[6] (s).
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We use the notation Y (s) = L[y(t)] (s) and by the formula for the transformation of deriva-

tives we get

sY(s) —1—2Y(s) = g .

Solving this equation in Y (s) gives:
5+6
s(s—2)°
The partial fraction decomposition of the right hand side gives:
4 3
Y(s) = TG
Now we use the inverse Laplace transform to both sides:

el =t 252 o)

s—2 s

Y(s) =

The linearity of the inverse transform gives:

y(t):4/fl[ 12} (1) — 327! H (t).

S — S

Hence, we get the solution
y(t) = de* — 3.

Example 2.

Solve the IVP
y' =2y +2y=0,y(0)=1, y(0) =2.
Using the Laplace transform we get that

PV (s) — s —2— 2<3Y(s) - 1) +2Y(s) = 0.
Solving this equation in Y'(s) gives

s

Y($)= ——7—.
() §2 —2s5+2

The denominator cannot be factored, so we have to complete the square and then find the

inverse Laplace transform.

v =7 || 0= [ | ©
- ] 0 [ 0

=elcost + e'sint
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Example 3.

Let’s see what is happening when we solve the same DE, but without the initial conditions.
The DE is:

y' =2y +2y=0.
For the unspecified initial conditions we use undetermined numbers y(0) = a and y'(0) = b.
Applying the Laplace transform to the DE leads to

s%Y(s) —as — b — 2<8Y(s) — a) +2Y(s) =0.

Solving this equation in Y'(s) gives

as+b—2a
Y = F 972
Therefore,
. |as+b—2a
yl) = £ [52—23—{—2} (®)
o as —a 4 b—a
=L {(3—1)241} t)+ L {(5—1)2“} (¥

= ae'cost + (b — a)e' sint

Renaming a = ¢; and b — a = ¢, we get the general solution

y(t) = c1 €' cost + cye'sint.

Example 4.

Solve the IVPy"” — 4y’ + 4y = t3¢* | y(0) =6, 3/(0) = —2.
Using the Laplace transform we get that

s*Y (5) — 65+ 2 — 4sY (s) +24 +4Y (s) =

(s —2)*

Therefore,

(s> =45 +4)Y(s) = 65 — 26 + oo

Hence,
6s — 26 6
Y =t ooy
_ 6(s —2) B 14 n 6
(s—=2)* (s—2)* (s—2)°
6 14 6

s—2 (s—2¢ (s-28°
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By the inverse Laplace transform we get that

1
y(t) = 6e* — 14te* + 2—0t5€2t :

Example 5.

Solve the DE
if 0<t<l1

0,
y”“/:f(t):{?, i >
with initial conditions y(0) = 0 and y'(0) = 1.

We can write f(t) = 3u;(t) and then apply the Laplace transform to the differential
equation. We get

which leads to

Partial fraction decomposition gives

1 s 1
Y(s) =3¢ (= —
(s) = 3e (s 32+1)+32+1

el _ges S 1
=3¢ - —3e )
S s2+1  s24+1

The inverse Laplace transform provides now the answer

y(t) = 3uy(t) — 3cos(t — 1) uy(t) + sint.

Example 6.

Solve the IVP
y'+3y +2y=e" +05(t), y(0) =1, y(0) =0.
Applying the Laplace transform gives

s*Y(s) — s +3Y(s) —3+2Y(s) = + e,

s—1
Hence,
1 e o8 s+3
G-+ 0)612) Gr)6+2) Grlet2)
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Y(s) =




The partial fraction decompositions give
1/6 1/2 1/3

Y = —
<S) s—1 s+1 s+2
6—55 6_58
+s—i—1_s—|—2
2 1
s+ 1 s+ 2

Hence,

1/6 3/2 2/3 e o e
s—1 s+1 s+2+s+1 s+2°
The inverse Laplace transform gives

1, 3 2
y(s) = '+ Je ge e Dus(t) — e Pus(h).

Y(s) =

6.4.1. Solving differential equations using Mathematica and the Laplace trans-
form.

Let us solve the following IVP:
y' + 3y + 2y =e* cost, y(0) =1, y'(0) = —1.
First let’s give a name the DE:

diffeq = y?’ [t] + 3xy’[t] + 2xy[t] == Exp[2xt]*Cos[t]
Then, we transform this equation with the Laplace transform:

transeq = LaplaceTransform[diffeq, t, s] /. {y[0] -> 1, y’[0] -> -1,
LaplaceTransform[y[t], t, s] -> Y}

Now we solve the transformed equation
sol = Solve[transeq, Y]
and name the solution as
Z=Y/. sol
The inverse Laplace transform gives now the final solution. The FullSimplify is needed to
change the complex exponential form into a real expression.

The solution function can be defined with

DEsol[t_]: = FullSimplify[InverselLaplaceTransform[Z, s, t]]
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Homework Exercises:

1. Use the Laplace transform to solve the following IVPs:

1.

10.

11.

12.

13.

14.

15.

16.

y —2y=6, y(0)=1.
y" + 5y +6y=0, 50)=0, y(0)=2.
y" +y =cos(2t), y(0) =1, y'(0) = 0.
y' — 6y +8y =0, y(0)=0, ¢ (0) =-3.
y'+4y=e", y(0)=0, y(0)=0.
y'+3y +2y=¢"+e", y(0)=0, y/(0)=0.

v' =2y +2y=0, y(0)=1, ¥ (0) =2.
y”—yz{gj iSO =0,y =1,
y" +3y"+9y =13y =0, y(0) =0, y'(0) =2, y"(0) = 10.
y" +2y" —y — 2y =sin(3t), y(0) =0, y'(0) =0, y"(0) = 1.
y" — 8y + 16y = t?e* | y(0) =1, y'(0) = 0.

y" =5y +6y =u(t), y(0)=0, ¥ (0)=1.

1/ o 0, lf t<7T _ / _
y+9y_{smt, 1f tZﬂ', 7y<0)—17y(0>_07

y' =3y +2y=4(t), y(0)=0, y'(0)=1.
y' + 5y = 061(t), y(0) =2.

y'—2y =e +03(t), y(0) =0, y(0)=0.

2. The vertical displacement from its natural length of a spring-mass system is described by

y" (1) + 3y (t) + 2y(t) = 505(t) ,

where the time ¢ is measured in seconds and the right hand side models a sharp downward
blow on the mass of magnitude 5 at t = 3 seconds.
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Describe the position of the mass after 10 seconds if the mass is released 0.2m above the
equilibrium position.

3. The charge ¢(t) on the capacitor in an series RLC circuit is given by the DE

1

where
0 if 0<t< 107w

E(t) = { 100(sin(50t) + cos(50t)), if ¢ > 107
Find ¢(40).
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6.5. Solving systems of first order linear differential equations with the Laplace
transform

With the Laplace transform we can solve systems of linear differential equations with con-
stant coefficients in the same way as we solved the linear differential equations. No special
preparation is needed.

Let’s solve the following system of differential equations:

"(t) = 2y(t) +3z(t
{28 = 2%145) (6.5.7)

with the initial conditions y(0) = 1, 2(0) = 4.
We apply the Laplace transform to the DEs and for simplicity we write Y and Z instead of
Y (s) and Z(s).

sY -1 = 2Y+3Z7
s/ —4 = 2Y + 7.

By rearranging the terms we get that

{ (s=2)Y =32 =1 (6.5.8)

—2Y +(s—=1)Z = 4.

We can eliminate Z by multiplying the first equation by (s — 1), the second equation by 3
and the n adding them.In this way we get that

s+ 11
Y(s)= ———.
() (s—4)(s+1)
The partial fraction decomposition leads to
3 2
Y(s) = -
() s—4 s+1’7

and therefore, by the inverse Laplace transform, we obtain that
y(t) = et —2e7".

Solving the first equation of the system (6.5.8) in Z leads to

, =Y 1 so2 2s-2 1
3 3 s—4 3s+1 3
I
s — 3 s+ 1 3
2 2
_s—4+5+1'

So, by the inverse Laplace transform we get that

2(t) = 2e* 27",
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Therefore, system (6.5.7) has the following pair of solutions
y(t) = 3e* —2¢e7"
2(t) = 2e* 4 2¢7"

6.5.1. Use Mathematica to solve systems of DEs.
infi]= DBelve[{y '[t] =2ay[t] +3+z[t], =2 '[t] =2+y[t] +=[t], ¥[0] =1, =[0] =4},

{y[t]l, =[£]}, £]

oult {{y(t] »e ™ (-2+3e*%), z(t] »2e " (1+e°%)}}

Homework Exercises.

1. Solve the following IVPs associated to systems of DEs.

1.
") = t) — 2z(t
{518 = ggt;+4zgt§ . y(0) =3, 2(0) = -1
] (1) () + =2(¢)
t) = y(t) +z(t
{Z,(t) = Ziy(t)jtz(t) , y(0)=2, 2(0)=3
) (t) (t) + =(t)
't) = y(t) +=2(t
{g/(t) = Zy(t)+z(t) , y(0)=6, 2(0)=0
' () 3y(t) (t)
t) = t) — z(t
{ZZJ,@) = 4z(t)—z(t) , y(0)=0, 2(0)=1
' (t) (t) + 2(t) + 2
"t) = y(t)+=2(t) +
{g'(t) = y-?y(t)—z(t)_l , y(0)=1, 2(0) = —1.
6. ) e
(t) = —y(t)+22(t) + ¢
{Z'@) = —z(t)+z(t)—et , ¥(0)=0, 2(0) =0.
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(t) = + 2z(t) +sint
{ Z'Et; = —2(y)(t) z((g) , y(0)=0, 2(0)=1.
) (t) 2y(t) — z(t)
/ - —z(t) + €
{ z/(t) = 35@) — 22(t) + 4t y(0) =1, 2(0) =2.
' () — 2:(t)+2
/ — P +
{ Z'(t) = y(t)+32(t)+et y(0) =0, 2(0)=0.
10.

{ y'(t) = 2y(t) +22(t) + €
Z(t) = y(t)+32(t) + 4t

2. Suppose that we have two tanks with salt water. Fresh water flows into the first tank
and is stirred with the existing salt water. The mixture flows into the second tank and after
well-stirred, part of the outflow flows back into the first tank. We denote by y(t) and z(t)
the amount of salt in the two tanks. Knowing the rate of flows, measured in gallon/hour,
suppose that we obtained the following system of DEs:

{ () = —yt) +42(0)
Z(t) = y(t)—2(t)

Find out the salt present in the two tanks after 3 hours, if the initial amounts were y(0) = 100
and z(0) = 200 pounds.
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CHAPTER 7

Appendix: Mathematica files
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Derivatives and plotswith Mathematica
Define the function:
= fIt_1:=t /7 (t"2-1)
Two optionsto calcul ate the derivative:
nep= f 'Ot ]
2t2 1

Out[2]= - +

(-14t2)% -1+t2

In[3]:= D[f [t ], t]

2t? 1
Out[3]= - +

((1+12)% -1+t2

Simplify the expression if needed:
= Ful T'Simplify[f' [t]]
1+1t2
(-1+t2)?

Out[4]l= -

Graph the function f(t) on the interval [-5,5]:
ns= Plot [f[t], {t, -5, 5}]

Out[5]= . . | . . . | . . | . . 1 . . . 1
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In[1]:=

Out[1]=

In[2]:=

Out[2]=

In[3]:=

Out[3]=

In[4]:=

Out[4]=

I ntegration with Mathematica

Calculate theindefiniteintegral [(t?+ 1)sin(t) d't
Integrate[(t"2+1) *Sin[t], t]

~Cos[t] - (-2+t?) Cos[t]+2t Sin[t]

Simplify the expression

Full Sinplify[Integrate[(t"2+1) *Sin[t], t]]
Cos[t]-t2Cos[t]+2t Sinft]

You have to realize that this is the same as (1-t2) cos(t) + 2t sin(t).

The answer we expect to get for the indefinite integral is (1-t%) cos(t) + 2t sin(t) + c.
Calculate adefiniteintegral [7(t% + 1) sin(t) dt :

Integrate[(t*2+1) *Sin[t], {t, O, Pi}]

-2+ 72

If we want a decimal number answer than we can use
Nintegrate[(t~2+1) *Sin[t], {t, O, Pi}]

7. 8696
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In[1]:=

Out[1]=

In[2]:=

Out[2]=

In[3]:=

Out[3]=

In[4]:=

In[6]:=

Out[6]=

In[7]:=

Out[7]=

Analytical solutions of Differential Equations
We will use “DSolve” to get an analytical solutitmthe DE y'(t) = 2ty(t).
DSolve [y' [t]1==2%t*y[t],y [t].t ]

{{yrt1 »e*cray}}

The answer corresponds to the one patrameter farhdglutions y(t) = e
Let's solve noe the IVP y'(t)=2ty(t), y(1)=2.
DSolve [{y' [t] =2t «y[t],y [1] ==2},y [t],t ]

[yt »2ett*}}

The answer corresponds to the solution y(t)e=12"= fe‘z.

If we want to plot the solution, first we have tefitie the solution as a function:
sol =DSolve [{y' [t] =2t *xy[t],y [1] ==2},y [t],t ]

{{y t] -2 e’l*tz}}

z[t_ ]1:=Evaluate [y[t] /.sol ]

Now, z(t) is the solution function and we can udeii evaluation and graphing:
z[0.1]

{0. 743153}

Plot [z[t], {t -1,11}]

2'0f
1.8}
1.6}
1.4}
1.2}

1.0+
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Numerical Solutions of Differential Equations with Mathematica

We will solve numerically the IVP y'(t)=4tV y(t) , y(0)=0.16.
nzr= SOl = NDSolve[{y"[t] ==4xt*Sqrt[y[t]], y[O] ==0.16}, y[t], {t, O, 1}]
oupi= {{y[t] - InterpolatingFunction[{{0., 1.}}, <>][t]1}}

= q[t_] := Evaluate[y[t] /. sol]

nar= q[0-75]
oua= {0. 926402}

we- PlOt[q[t], {t, 0, 1}]
20
1.57

outs}= 1.0

0.5

0.2 0.4 0.6 0.8 10
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In[23]:=

Out[23]=

In[25]:=

Out[25]=

In[27]:=

Out[27]=

In[28]:=

out[28]=

In[29]:=

Out[29]=

In[30]:=

Out[30]=

In[31]:=

Out[31]=

The Laplace transform and inverse Laplace transform of functions.
LaplaceTransform[Sin[t], t, S]
1

1+s2

LaplaceTransform[t"2 * Exp[3*t] +t, t, S]
2 1

s =
(-3+s)% g2

InverseLaplaceTransform[1/ (1+S), S, t]

(e—t

InverseLaplaceTransform[Exp[-S] /S, S, t]
Heavi si deTheta[-1 +t ]

HeavisideTheta is the unit step function, so HeavisideTheta[-1+t]=u,(t).

Plot[HeavisideTheta[-1+t], {t, 0, 3}]

1.0+

06

0.4

T S Y O RS S H S SR
0.5 1.0 15 20 25 3.0

InverseLaplaceTransform[l, s, t]

DiracDeltalt ]

InverseLaplaceTransform[Exp[-3 *sS], S, t]
DiracDelta[-3+1]

With our notations DiracDelta[-3+t]=u5(t).
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In[8]:=

Out[8]=

In[9]:=

Out[9]=

In[10]:=

Out[10]

In[11]:=

Out[11]=

In[12]:=

out[12]=

In[13]

out[13]=

In[16]:=

In[18]:=

Out[18]=

Solving IVPs with the Laplace transform.

Let's solve the IVP y"+3y'+2y=e?'+cos(t), y(0)=1, y'(0)=-1.
diffeq=y""[t] +3*xy"[t] + 2*xy[t] == EXp[2 %= t] * Cos[t]
2y[t]+3y [t]+y”'[t] =e?! Cos|t]

transeq = LaplaceTransform[diffeq, t, s] /-
{y[0] »1,y"[0] » -1, LaplaceTransform[y[t], t, S] » Y}
-2+S
1-s+2Y+s8?Y+3 (-1+8Y) = —
1+ (-2+8)2

sol = Solve[transeq, Y]

8-2s-2s?+5s?
{{Y% (5-4s+s?) (2+3s+5?) }}

Z=Y/.sol
8-2s-2s2+s8

{(5—4s+32> (2+3s+52)}

InverseLaplaceTransform[Z, s, t]

4 2t 7et
+

1 i
{ 17 10

340 340

+

e@ P ((2+914) + (9+21) ez“)}

FullSimplify[InverseLaplaceTransform([Z, s, t]]

1
{7@2‘ (40+119 ' +e*' (11 Cos[t ] +7Sin[t]))}
170

DEsol[t_] := FullSimplify[InverseLaplaceTransform[Z, s, t]]

N[DEsol[1]]
{0. 803708}
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