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Introduction

The hypergeometric function :Fi(a,bjecsz) is con-
sidered to be a function rarely used in physics and
engineering. It would be desirable to know to what uses
it is put in these fields. The properties of the hyper-
geometric function are discussed at some length in the
standard treatises on the theory of functions, gnd it
is of important theoretical interest in mathematics.

But is it important for the physicist and engineer to

~be familiar with the function? The answer seems to be

yes. The apolications of the function are so diverse,
that it appears desirable for prysicists and electrical
engineers to be familiar with the properties of the
hypergeometric function in general, and in particular,
with those cases in which it can be expressed as simpler
functions. In some of the applications herein discussed,
it is necessary to notice that in the final result, the
hypergeometric function becoméi’;he elliptic function,
and numerical answers may be obtained easily. In other
examples the hypergeometric series terminates, and so

it is necessary to consider Jacobi polynomials. In any

case, the fundamental properties of the function should

be familiar, and one should be able to recognize the

particular cases in which the function can be expressed

in a simpler form which is tabulated.
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In the following examples, most of the intermed-

iate steps have been removed, with the exception of the
examples dealing with the rolling of a hoop, md waves
on the surface of a fluid in a circular dish. In the
first example, the final solution contains the hyper-
geometrie function in a form which cannot be reduced.

In the second example, the hypergeometric series is re-
quired to terminate, and this fact determines the al-
lowable frequencies of oscillation of the fluid. In the
last example the equation to be solved is Legendre's
equation, but the solution is expressed in terms of the
hypergeometric function, presumably for reasons of sym-
metry. In the examples concerned with solving Schf&ding-
er's equation, a factor not evident is that the solut-
ions were selected from the twenty-four possible solut-
ions of the hypergeometric equation. Here it is import-
ant for'the physicist to be familiar with these solutionms,
as it enables him to obtain a solution which is finite
over the range of the independent variable concerned in
the problem.

In the examples dealing with acousties and with
electric currents, the hypergeometric functions arise
from the evaluation‘ofvintegrals of Bessel functions. An
integral of particular importance is the Weber-Schaft-
heitlin integral, and it is used in the acoustical prob-

lems and the problem on modulation products. In over
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half the cases, the hypergeometric function arises from

a differential equation, and in the rest, from the eval-
uation of integrals.

l. As a first example, we will consider the general
treatment of the motion of a body, bounded by a surface
of revolution, and dynamically symmetrical about the
axis of revolution, rolling without sliding on a rough
horizontal platnefL Let us take as axes, with origin at
tle center of mass of the body, a set of moving axes
turning about themsalves with angular velocities Do
qys and r,» of which the Z axis is the axis of rev-
olution, the Y axis the horizontal in the equator of
the body, and the X axis directed toward the ground in
the vertical plkane contaiping the Z axis.

We have, for the Euler's angles ¥, ¥»py Where here p=-1/2

" hence

Po= ~¥'sin, 9,=V"', r. = ¢'cos« (1.1)
where primes denote time derivatives,

These are connected with the rotation of the body
by the relation Po=Py Qu=Qs T = r=¢p'.
For the motion of the center of mass, we have the comp-
onents of the weight of the body _

X=Mg sin ¥, Y=0, Z=-Mg cos (1.2)

together with the unknown components of the reaction,
Rx, Ry, Rz. The resultant is to be eqpat,ed to the product

of the mass by the acceleration of the center 04 mass.



It Vs Vy, Vz are the components of the velocity of the

A vy
M Prak st A —v.v,)= an:miv.d
dv,
IW(‘O(\:*Yon\Povz)= R-} '
(1.3)
dv,

M( Iel""Povs ~8. Vx) = R} -m, “w Y

d
A ﬁ ~(cv-n B)P = 3 Rx -x Ry (1.4)

where A ig the moment of inertia around the X s g Y

axis, C is the moment of inertias around the g a.;cis.
We have finally, as the conditiong for rolling

and pivoting, the equationg Stating that the Velocity

inates ape X3Y»2) is at pest

V‘ +8}=°
Va *Yx-p3ag

Vs ~“$¥x¥=o (1.5)
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of the circular edge on which the cylinder rolls. After
some manipulation we get a differential equation for r

in terms of V¥

g —o)
T i ¢ Acem(atA+te) (1.6)
In the case of the disk ¢=0, and if we substitute
x= cos®Yas a new variable we get
' B
x(-x)y" ¢ (L-32 i M€  y-o 1.7
«(G-3%)y A(C +Mat) | (1.7)
T
if ‘p = L “-Qp - .L Pt = mcﬂ
i) 2 @ ACtMar)
then
v-4& F(&,6,F,%x)4¢C, X -YF(u -\-4:‘,,‘-\4'}2-!‘)\()
(1.8)

GRA YL eot?) et Fliel g0t 3 30 estu)

and p and q can be obtained from the original equations.

2. We consider next a hydrodynamical problem. If we

have a basin containing a fluid, standing waves can ex-
ist on the surface of the fluid? In particular, we will
consider a circular basin, the depth of the fluid vary-

ing as 1~ r?®/a®. From the equation of continuity we

have —b—(uk) + L (vly= - 2%
(2.1)
where u is the x component of the fluid velocity and

v is the y component. } is the vertical elevation of
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the surface above the equilibrium level Z2,+ The dynam-

ical equations give us

"& - —)-—P

Pae .

e -3F (2.2)
de 4

where p=p_ + gp (zo + s — 2z). g is the acceleration due
to gravity and ¢ is the density of the fluid. From these

equations we get

2%y 2 ¥
a; l“) ;,(L;;,)‘;Lr\ (2.3)

If we transform to Polar coordlnatea, and assume

the solution of the form § -f{(r)e('d)T(t) we get

t(we $)

T=e O:=cnlod +4) (2.4)

andthe equation for R is

¢ (1 '
r{ d'r a;.dn+.ll.4n ung *

R N AT (2.5)

assuming the depth h is a function of r only. Substit- "
uting our value of the function h=ho(1—r3/a3) we get

LY » ' ‘
(-R) R+ Sr- H)-% ““;‘,“ ° (2.6)

where w is obtained from T(t) and s from 6(v). Writing

w3a2?
gh,

+ 8% = k(k+2)
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we get as a solution to (2.6)

' - 2
R= a (5)° F( K8, 28K o0y; L), (2.7)

Now the hypergeometric function diverges for r=a, since
(k+s)/2 + (2+8—k)/2 - (8+1l) = O. Hence we require that
the series terminate. This will be the case if k= s+2m
where m is an integer. This will determine thé values
of w from the relation

w?a?
gho

+ 82 = (s+2m) (s+2m -2), (2.8)
and finally the whole solution is

= a_ sin (ot+x) cos (s VI+8)

2
F( s+m, 1-m; s+1; gg). (2.9)

3. If a flexible disk vibrates in a fluid, the effect-
ive mass of the disk increases due the the presence of
the fluid? In the calculation of this effect, hyper-
geometrié functions are involved, and for this reason,
we will consider a thin flexible disk vibrating in a
fluid, the disk being sitildted in an infinite plane.
In the first case, we consider a disk with ome nodal
circle, the edge being free. Assume the dynamie defor-

mation curve to be represented by

2
w= A(1- pig3) (3.1)
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where A= X cos wt and p: determines the radius of the

nodal circle. The velocity potential g at points on
the disk is ‘

[}
g J Tk dic  Tutiew) 2% vav | (3.2)

where k=w/c. Integration of the above equation gives

= Aa((1-p1)F(- 4 %; 1; r2) +8paF(-3,3;1; :—3-)) (3.3)
a

The kinetic energy of the fluid associated with
both sides of the disk is

T-pf(¢35es (3.4)

and we find that
T= 2mpA®a®(#(1 ~pa) ((1- p1)F(—252;2)+4paF(-45253))
+8pa ((1-pa)F(-B52;52)+4paF (—858353)))  (3.5)
also T=3MA®, so M, the effective mass of the disk is |
M=(16/3)pa?(1-(14/15)ps+(5/21)p%) | (3.6)
If we consider a free edge disk with one nodal
diameter, the dynamic deformation curve is of the form

FA-:- cos¥ = % x where x= cos? (3.7)

then the potential ¢ is determined in the following man-

ner. Assume L A\Me
Y
ws A(( - )

then

- (% @ et
9{ <A L Ta(ke)dx LT.uw) (e ~}:) dv (3.8)

if we write r=a sin‘f we have for the first integral of"_
(3.8)



L/ -1-
a‘j‘T"““"*-r ) oa TR am U (3.9)

the value of this is
Tﬂa-rt (k.‘ -

z"'")‘ (mar) o (k.)‘hQ‘l

so e 3
f: wn)/\,.‘s ik~ -m‘(k.\‘”'
[-] 'k“)'\iv‘l
(3.10)
IF Clwew) VERTRR 2
T 7 l“(::;/;) Aa F['(“*’/t), Y, ) 1y /q';]
To find § for the case w=A(r/a) cos¥ we put x?=r2-y?
and .t . .
. ) e - ,u P |
S;{A(‘-.' /a ) 1 ) Py (‘ /a\) (3.11)
since \
%F(“)b—)\")s);"‘—& F[C‘N’F‘H‘,‘*‘;‘.‘ T‘t
e ' ' (3.12)
2E __VF Fuan) , —
T R o FER )
If n=0, (3.11l) becomes
e (3.13)
u\
(3.14)

and (3.12) becomes
LS
~AYa F(-l; )2‘.’1.'V/“‘)

If w=A(x/a) then ¢ is formed if (3.14) is multiplied

—-a/2 so finally
zl ..) (3015)

A_f(-L,2
¢’ Y x l-( a2 )z ) P
The result for a free edge disk with a stationary

center is obtained by using w=A(r?/a®) and we find

by

that
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¢= ;-‘ 5 -J.“V) J‘S I,(.‘V) ybdr
o (-]

(3-16)
= A ‘{ Fo4s ')y/ﬁ‘)'él:('% 355 ';17‘.‘)}

Once g has been obtained, the effective mass is deter-

mined in the same manner as in the first of tliese exam=
ples.

4. A somewhat similar example to the preceding is the
o
calculation of the total pressure on a vibrating disk‘.

k The pressure at P due to the area element RARA® is
given by . . 4R
dp - ‘294 € urd4¥
P° “Tn ﬁ (4.1)

where @= density of the fluid; k=w/c=2m/a $ A is
the axidl velocity and w is the angular frequency of
vibration. The total pressure at P is
Ctui ™ (] ~dn
Fg “,jJﬂSA-g 4/ (4.2)
o

we have R —2Rix cose +(x%-a2) =0, or
Ri= X cosé tza.(:l.—b"si.r;"e)é = kK " (4.3)
where b=x/a. Now the first integral of (4.2) is

A S .
-(‘1 - A
AJ © .a.: t'[t ( (/‘*7’_ l]
o

Then the second integral becomes
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5 [{* e p) =% (e -3

< {_:_": (/‘*’)t_ ﬁ—?(/‘"PX)qf...“\eh’ (4-4)

now v L -
Ajﬁ(/g.(f)d,l:rr}‘:(-i)t)")b) (4.5)

where z=ka, and similarly for the othe odd powers of
M +% . The even powers are polynomials. Finally p is
given by

q

prred (Bt g e ailit-Ehe} (g

where
‘8';:‘
-}-‘, = ‘+2bl
&'c’ F(—{)“f')‘-)‘k) (4.7?

: v
by = FE2 L5156 «2 b F(-1i0h2,8)

In case the disk is flexible, the pressure p becomes

s (4.8)
+< (31-'3—33*—2 LR )i

where



-2~

9e=i- Pfa
§azitrb - pi (Y3 +b")
- - -7t (4.9)

30‘F( \), )‘,B) P'f‘ F(-; )1)‘)" )
F[FES, 580 LR(-4,L 0 -)Q\,]'S

the pi originates in the formula for the dynamic deform-
- ation curve w=A(l-pi(r?/a®)) which was assumed for the

flexible disk.

S. For the next example, we will consider the output

voltage of a rectifier when two input frequencies are
applied to the inpute. In the first instance, we assume
the rectifier is a half wave linear one, with a trans-

fer characgeristic

E(t)=e(t) e(t) >0
(5.1)
=0 e(t)£O0
the input voltage is
ele) = Pem(pttifp) + Qe (g +0) (5.2)
“hence the output voltage is
_E(t) =+(t,4,) 2 Peox ¢ & ey ~) “vmrthusydo (5.3)
=0 '-\ﬂ“ﬁ-‘“"‘}so

where we consider P 0 and k=Q/P. It is to be noted
that f(x,y) is periodic with period 2r in x and ¥y 80

we can expand it in a double Fourier series:

Hou=3 = [Aog o Gerkng) 4B, g (k)

M=0 Bze

(5.4)
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The coefficients are determined by the formulae
iy

w
A*—...)u: ’%‘J 5 #(*,’7)‘-4(%)&#«-3)&(141

-7 -~

X R . (5.5)
B Y i J J {-(*,7) iy &’n';)d';dm
g

-~

In our problem we let
K= pte+dp

'}=3t‘1’1’l‘
and the values of x and ¥y are obtained by eliminating

(5.6)

| t, yielding
g =(8/p)% V5 ~(0/,)2 (5.7)
i Since the representation (5.4) holds everywhere in the

X,y plane, it is valid along the line given by (5.7).
Hence the equations (5.5) will give the amplitudes of
the frequencies (mp#nq)/2w. The phase angles are given
DY wVp £ mAly corresponding to the above frequencies.
To integrate (5.5) we can consider the following

relation
o
«“ @ A
L
, ° (5.8)
h =0 U <o

if we substitute u= P Co8 x + G cos y we get
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A A | At
f,9)= T4 5 S‘\r da

using the above relation in (5.5) it can be deducea

that

werner (% T ~ )
A =iy 1o j T 2P) To3Q) o
) 1) \ = 7 (5.9)

where m+n is even and greater than zero. This is a
special case of the Weber and Schafheitlin Integral.
If mn=0 then (5.9) must be replaced by a contour
integral taken along the real axis with an indentation
at the origin. All other quantities remzin the same
except for a factor of one-half. Then it may be shown

that

wmePnit
Tl U S
Aq..,.’ al ;“)s F(h*-: .,M“:‘ ‘)‘kﬁ-,_l.‘)
L Plws) [ (f22ts) (5.10)

for mn=2v where ¢= 0,1,2,3, °°'°, By other consid-
erations, if m+n is odd and greater than one, A =0.

If mn=1, A)o= P/2, Ay = Q/2.

If we consider a half wave square law detector
or rectifier, we have

}(t,a,)-P"(k-v 1-4«'—--;)1 ok th ey JoO

=0 mv-(—‘cmg <o
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and it can be shown as before that

‘h\i\-u

=(-\) A A
W-nty
ax Flwe) r( 1\)

'Ihtﬂ—l

F (1-%1 "“l"l‘,uﬂ &) (5.11)

for odd order products. For all even order products

greater than two, A =0, and Ayo= p? (1+k2)/4 ; Agy=

P3/4 ; Ayq= P2k/2 and A..= P?k2/4.

02

67
6. In the mathematical analysis of random noise, it
is necessary to evaluate certain multuple integrals,
the following of which are expressible in terms of the

hypergeometric function
L]

-

(6.1)
= 0 if n+m is odd
(‘hﬁuu)
= (~1) Flmymy ZM- W -y
(“?ann R ) a

if n+m is even

If several frequencies plus noise are passed through

filters or detectors, the envelope of the output wave
R can be found by elaborate analysis. Among the results

obtained are asymptotic expansions for R these expan-
sion are valid for large signal to noise ratios. It

the input voltage V is V=Vn + P cos pt + Q cos gt, then



* (6.2)

where xl= V V>o

and ,is the mean-square value of V-

7. We turn next to the solution of a wave mechanics
problem'. Several solutions of Schr¥dinger's equation
for a potential barrier have been obtained, mostly
for the case of a tarrier having discontinubus deriv-
atives. In this example, we will consider a smooth

potential function given by

3 b
Vir) s~ 4 s T 3 Ce-a*

€= - "% 7D
This function is analytic and possesses an extremum
whose maximum value is

L8
Vi = arm

if B 20. The wave equation of an electron moving under

the action of this potential is

d‘l“ PO RS /4’3
i BRALNGl e & B3 Vo (7.3)
Wt _s -4 (?‘)l 1-w M= O

or
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T, ‘ t S
Sw +1w ¢ 2%3 (/'i'T+ ('?_1)‘-“/&\“ =0 (7.4)

where primes denote differentiation with respect to 3 .
This equation is of the hypergeometric type, and the

solution applicable here is

ua“-s)(p(%:)“F(l‘*(("pfs) s*‘(‘.ﬁ J) ' 1‘,‘ -‘) (7.53.)

when i>| y and

in
wzq, ( )('-u F (300, sifaposy H“‘n}“-) (7.5D)

+a, (S-L)u e FlRecl-pen), oL ec (a9 faia ﬁ)
otherwise.

When x is large and negative, we should have a
DeBroglie wave, the wavelength of which is Ash/ (2mW)é,
and when x is large and positive, a wave of wavelength
’A'=h/ (2m(’|!1'—A))é. The two waves (traveling in opposite

directions) for x<<O0 should be of the form -~

C K
TOLK 1043 -~

G R tave TR ()% a (-1)

o2 (7.6)
T A
and for x>0 the wave is )
w@ix
A" = (-%
< e (7.7)
o=

we call C the energy of an electrbn whose DeBroglie

wavelength is 2R, the width of the region of varying
potential: 29 C = &/ar

L\
-

then we define s B-< )‘/1.

and we get the important result that the reflection

coefficient of the barrier ¢ is



- -
l"(!;_ € (J-p -x)) r(.‘iﬂ'(d-p _‘)) 2

- (7.8)
= | P4 (-pamd) FCY 4 (=5-pra))

Here is a case in which the knowledge of the twenty-
four solutions of the hypergeometric: equation enables
us to get the proper asymptotic behavior of the wave

function.

8. We consider next, a different potential distribution
which is used in the theory of vibrations of polyatomic

3
molecules. The distribution is

Vis) = B e &)= Canes? (¥) (8.1)

If Bl < 2C then there is a minimum value at

(B
X<~ Team b '.‘"?) (802)
and q ¢4t
Visgy= — e (8.3)

Using this potential distribution, the wave equation is
4% |
£ O e S G Y

0‘3‘ (8.4)
_ Fatmat
where z= x/d, ¢=° —Q— € -
St Mot . W AL,
s —Q%: G ¥ T
and E is the allowed energy of the system.
If we call
-b
w= ea3(o—u‘~) F(,) (8'5)
we get
(8.6)

F“-G?.(a—b X'M}) F'.(.[\,-b(bu)]/ud.l} F=o
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' U f
if a:-';{(ew)"—(e-ﬂ)‘ 3 (e1p) 20

‘ ‘h phse
and b=".:f(Hh)"+(t--P‘ ) (e-p)>

then ¥[g <% for-osxse ,
Let u= (1 + tanh 2z)/2, then
w(i-w) F'easbri-wlh ) WYF '« [¥-b(b+N)F =0 (8.7)
and a solution of the above equation, finite at the |
origin is

F=F (btt-(x+ ﬁ)"‘, bl +(Y*%)'/‘ ya+h i) (8.8)
In order that ¥ be finite everywhere it is necessary

that b= (vad) -t
‘_

where n is an integer. In this case F becomes a Jacobi

polynomial. Solving for a we have

@ = °P/[ (4\'+|)'Iz —2m—t)
so the allowed values of the energy E are
[}
sar mar (21400

Ern

L8

B
N 17 T

T q((aceq ) g (2us)) + - . (8.9)
[ 1 .) [(Q( +1.‘)“-’(1.'u+|)-)

Y '/
here oS s“_*:)l‘_ (M‘)n_%

¢ - “lem mar
Finally

ay ' -
Y=y ¢ 4 cnn® (Y/a) F(‘“) (‘\'*l)h-u yathriy L{i4taui "/4-)) (8.10)

where N, is the normalizing constant.

9. As the last example we consider a solution to
an equation due to Eddington for the darkening of

a spectral line due to absorption.: In the case where
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the ratio of line absorption to continuous absorption

W 18 connected by the following reiation o the optical
depth 2,

= > +y
Lt A ¥ (9.1)

’ {
the equation for the intensity within the line B is
L N []

4'3-' /
(AP 43y —? +2 o _a "} =3mlztin)
A+ Frcindladt A2 Ty ) (9.2)

The general solution is obtained by 1letting

n(ne1)= Yy

80 we get Legendre's equation

[y "‘3. J’;; ‘o [
(=3 - rry +n(wi)F, =0 (9.3)

and the solutions desired are

'\5, Fatbr+4Fwuny 1 1Y

’ ‘ ———

S
+ BF (nomeny ';3)

za+bd +AFRG) «BF, ()

where a + b% is the particular solution. Considerations
of the values of X, B,y used in practice leads to the

conclusion that the final result is of the form
He L

F’ = “{ﬂ. +A r|(}.) + B F‘(b.)}' (9.5)

where HJ/H gives the darkening of the line, and z, is

the value of z when +=0.
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