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Abstract

For an inverse sequence on [0, 1] with interval-valued functions, we establish
necessary conditions on the bonding functions for chainability of the inverse
limit space. We also characterize chainability of the inverse limit in this
setting in terms of properties of the bonding functions fi and the induced
functions Fn: [0, 1] → G′(f1, . . . , fn−1). The properties, in both cases, are
related to how triods arise in the partial graphs associated with the inverse
sequence when each graph G(fi) is chainable.
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1. Introduction

In the setting of inverse limits on [0, 1] with interval-valued functions,
we determine conditions on the bonding functions that are necessary for
chainability of the inverse limit space. Sufficient conditions for chainability
in this setting, related to C-sets in the graphs of the bonding functions, were
established by W.T. Ingram and the author in [5]. We also provide sufficient
conditions on the bonding functions for chainability of the inverse limit. Our
conditions are related to the C-set notion, but are not as restrictive as those in
[5]. Furthermore, we establish related conditions, on the bonding functions fi
and on the induced continuum-valued functions Fn: [0, 1]→ G′(f1, . . . , fn−1),
that characterize chainability of the inverse limit. In our setting, it has been
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shown that if the inverse limit X is tree-like, or equivalently one dimensional,
then X is chainable if and only if it is atriodic if and only if all partial graphs
(Mahavier products) in the inverse sequence are chainable [9, Corollary 2].
Hence, the conditions mentioned above are ones that determine how triods
are formed in the partial graphs when the graphs of the individual bonding
functions are chainable. It follows from Theorem 1 in [9] that if a partial
graph in our setting contains a triod, then it contains either a one-sided or
two-sided triod. So, these special triods are defined, relative to our setting,
in section 3. They play a critical role in establishing the results in this paper.

In Section 6, we provide examples that illustrate how our results eas-
ily determine chainability or non-chainability of inverse limits on [0, 1] with
interval-valued functions.

2. Basic definitions

A compactum is a compact metric space. A continuum is a connected
compactum. A mapping is a continuous function. A continuum X is chain-
able if for each ε > 0, X admits a finite ε-chain of open sets covering X. A
continuum X is arclike if for each ε > 0, X admits an ε-mapping onto [0, 1].
It is well-known that for a continuum X, the following are equivalent.

(i) X is chainable.

(ii) X is arclike.

(iii) X is representable as an inverse limit of an inverse sequence on [0, 1]
with mappings for bonding functions.

See the end of Section 2 in [2] for specific definitions and discussion of these
equivalences.

Let X and Y be compacta. We refer to functions f :X → 2Y as set-valued
functions from X to Y and we write f :X → Y is a set-valued function. Note
that throughout, we are assuming that, for x ∈ X, the value f(x) of a set-
valued function is a closed set. The graph of f , which we denote by G(f), is
the set in X × Y consisting of all points (x, y) with y ∈ f(x).

A set-valued function f :X → Y is upper semi-continuous at the point
x ∈ X if for each open set V in Y containing the closed set f(x), there is
an open set U in X such that x ∈ U , and f(p) ⊂ V for each p ∈ U . If
f :X → Y is upper semi-continuous at each point of X, then f is said to be

2



upper semi-continuous. All set-valued functions considered in this paper will
be upper semi-continuous.

The set-valued function f :X → Y is surjective if for each y ∈ Y , there
exists x ∈ X such that y ∈ f(x). A set-valued function f :X → Y is
continuum-valued if for each x ∈ X, the set f(x) is a subcontinuum of Y .
If x ∈ X and f(x) is degenerate, we will sometimes treat f(x) as a point
of Y . For f :X → Y a set-valued function, and A ⊂ X, we let f |A be the
set-valued function whose domain is A, and f |A(x) = f(x) for x ∈ A.

For i ≥ 1, let Xi be a compactum, and let Xi
fi←− Xi+1 be a surjective,

set-valued function. Throughout, we let {Xi, fi} denote an inverse sequence,
and its inverse limit is given by

lim
←−
{Xi, fi} = {x = (x1, x2, . . .) ∈

∏
i≥1

Xi | xi ∈ fi(xi+1) for i ≥ 1}.

For 1 ≤ j ≤ n, we define the set below.

Gn+1
j = G′(fj, . . . , fn) = {x ∈

n+1∏
i=j

Xi | xi ∈ fi(xi+1) for j ≤ i ≤ n}.

We refer to these sets as partial graphs in the inverse sequence. For
consistency of notation, we let G1

1 = X1. We point out that some authors use
the notation ?i∈[1,n]Γ(fi) for the sets Gn+1

1 , and call them Mahavier products.

For each n ≥ 1, let Gn
1

Fn←− Xn+1 be the set-valued function such that
(x1, . . . , xn) is in Fn(xn+1) if and only if (x1, x2, . . . , xn, xn+1) is in Gn+1

1 . We
refer to Fn as an induced function in the inverse sequence. We note that
the domain of Fn is the (n + 1)th factor space in the inverse sequence, and
the range of Fn lies in

∏n
i=1Xi. So, all notation related to the graphs of the

bonding functions fi and the induced functions Fn, in an inverse sequence,
will be relative to the ordering in the inverse sequence. Hence, under this
convention, G(Fn) = Gn+1

1 . V. Nall introduced the function Fn in [11], and
showed that Fn is upper semi-continuous. If fi is continuum-valued for each
1 ≤ i ≤ n, it was shown in [7] that Fn is continuum-valued.

For infinite inverse sequences considered in this paper, we assume through-

out that, for each i ≥ 1, Xi = [0, 1], and [0, 1]
fi←− [0, 1] is interval-valued.

Again, we assume the domain and range of each fi are, respectively, the
(i+ 1)th factor space and the ith factor space. For such inverse sequences, it
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follows from [4, Theorems 4.1, 4.3, & 4.7] that the inverse limit is a contin-
uum, and, for each n ≥ 1, G(fn) and Gn+1

1 are continua.
An interval is a subcontinuum of [0, 1]. For a, b ∈ [0, 1], we let [a, b]

denote the minimal interval containing a and b. Unless specified, there is no
assumption that a ≤ b.

A continuum is decomposable if it is the union of two proper subcontinua.
A nondegenerate continuum is indecomposable if it is not decomposable. If
each subcontinuum of X is decomposable, then X is hereditarily decompos-
able. A continuum is hereditarily unicoherent if the intersection of each pair of
its subcontinua is connected. A continuum is a λ-dendroid if it is hereditarily
unicoherent and hereditarily decomposable.

A continuum X is a triod if there exists a subcontinuum Z of X such that
X \ Z is the union of three nonempty sets, each two of which are disjoint.
A unicoherent continuum T is a triod if there exist three subcontinua J1,
J2, and J3 of T such that T = J1 ∪ J2 ∪ J3, J1 ∩ J2 ∩ J3 6= ∅, and for each
i ∈ {1, 2, 3}, Ji \ (Jj ∪ Jk) 6= ∅ for {i, j, k} = {1, 2, 3}, see [10, Theorem
11.26]. Throughout, when we need to establish that a continuum T is a
triod, we will have assumed conditions that give us that T is unicoherent.
So, in these cases, we show that T is a union of three subcontinua satisfying
the properties above. Furthermore, if we write T = J1 ∪ J2 ∪ J3 is a triod,
we mean that T is unicoherent, and the Ji’s satisfy the conditions above. A
continuum is atriodic if it contains no triod.

Given a set-valued function f :X → Y between compacta, let c1:G(f)→
X and c2:G(f) → Y denote coordinate projection. If X is a compactum,
and A ⊂ X, we let cl(A) and int(A) denote, respectively, the closure and the
interior of A in X. We denote the covering dimension of X by dim(X).

3. Definitions related to continuum-valued functions f : [0, 1] → Y

Let Y be a continuum, and f : [0, 1]→ Y be a surjective continuum-valued
function such that G(f) is hereditarily unicoherent. For such functions f , we
define the terminology that follows in this section. For t ∈ [0, 1], we refer to
the sets {t} × f(t) as fibers of f in G(f).

Definition 1. We say that G(f) contains a one-sided triod (at r) if there
exists a nondegenerate interval [r, s], two subcontinua A and B of {r}×f(r),
and a subcontinuum K of G(f) such that c1(K) = [r, s] and T = A∪B ∪K
is a triod.
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Definition 2. We say that G(f) contains a two-sided triod (at t) if there
exist an interval [u, v] ⊂ [0, 1] with u < t < v, and subcontinua A and B of
G(f) such that c1(A) = [u, t], c1(B) = [t, v], and T = A∪B ∪ ({t} × f(t)) is
a triod.

Both the graphs of continuum-valued functions f : [0, 1] → Y , and the
partial graphs Gn+1

1 in inverse sequences on [0, 1] with interval-valued func-
tions admit continuum folder structures. Details of this remark can be found
in the first few pages of section 4 in [9]. For graphs of continuum-valued func-
tions, this means that the fibers {t} × f(t) form an upper semi-continuous
decomposition of G(f) where the quotient space is [0, 1]. Theorem 1 in [9],
stated for graphs of continuum-valued functions f , says that if the fibers of f
are atriodic and G(f) contains a triod, then G(f) contains either a one-sided
or two-sided triod. Theorem 1 in [9] will be useful for determining if graphs
of continuum-valued functions are atriodic.

Definition 3. For t ∈ [0, 1], f is left cohesive at t provided either t = 0, or
{t}×f(t) ⊂ cl(G(f |[0,t))). Similarly, f is right cohesive at t if either t = 1, or
{t} × f(t) ⊂ cl(G(f |(t,1])). We say that f is cohesive at t if it is left cohesive
and right cohesive at t. We say that G(f) is cohesive if f is cohesive at each
t ∈ [0, 1].

If I = [r, t] is a nondegenerate subinterval of [0, 1], we often say that f is
cohesive on the I side of t rather than saying f is left or right cohesive at t.

Definition 4. For t ∈ [0, 1], f is fully left (right) cohesive at t if for each
y ∈ f(t), there exists an increasing (decreasing) sequence {ti}i≥1 converging
to t such that, for each i ≥ 1, y ∈ f(ti).

Clearly, if f is fully left (right) cohesive at t, then f is left (right) cohesive
at t. The function `2 in Figure 3 of section 6 is fully left cohesive at 1

2
, but

not fully right cohesive at 1
2
.

A subset H of a continuum X is a C-set in X provided that whenever
K is a subcontinuum of X that meets both H and X \ H, we have that
H ⊂ K. We note that some authors have analogously defined the phrase H
is terminal in X. As with the definition of left and right cohesiveness, we
define the notions of left side and right side C-sets for fibers of f .

Definition 5. A fiber {t} × f(t) is a left side C-set in G(f) provided either
t = 0, or wheneverK is a subcontinuum ofG(f |[0,t]) that meets both {t}×f(t)
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and G(f |[0,t)), we have that {t}× f(t) ⊂ K. A fiber {t}× f(t) is a right side
C-set in G(f) is defined similarly. If each fiber in G(f) is a C-set, we say
that f is C-set-valued.

We observe the following equivalence of a left (right) cohesive fiber and a
left (right) side C-set fiber in certain graphs of continuum-valued functions.

Observation 1. Suppose G(f) is hereditarily unicoherent and contains no
two-sided triod. Let t ∈ [0, 1]. Then f is left (right) cohesive at t if and only
if {t} × f(t) is a left (right) side C-set in G(f).

Proof. We prove the equivalence for the left side case.
⇒: Let H be a subcontinuum of G(f |[0,t]) such that c1(H) = [r, t] for some

r < t. Suppose, for some s with r < s < t, {s} × f(s) 6⊂ H. Then clearly
(H ∩G(f |r,s])) ∪ (H ∩G(f |s,t])) ∪ ({s} × f(s)) is a two-sided triod in G(f),
contradicting the hypothesis. So, G(f |(r,t)) ⊂ H, and also cl(G(f |(r,t))) ⊂
H. Since f is left cohesive at t, {t} × f(t) ⊂ cl(G(f |(r,t))). We have that
{t} × f(t) ⊂ H. Thus, {t} × f(t) is a left side C-set in G(f).
⇐: Since cl(G(f |[0,t))) is a subcontinuum ofG(f |[0,t]) that meets {0}×f(0)

and {t}× f(t), we have that {t}× f(t) ⊂ cl(G(f |[0,t))). So, f is left cohesive
at t.

In addition to being used in the proofs of several of our results, Ob-
servation 1 allows a reader not familiar with the left (right) cohesive fiber
concept to think, instead, of left (right) C-set fibers whenever the graph
of a continuum-valued function is hereditarily unicoherent and contains no
two-sided triod. This is always the case in the proofs of our results.

4. Necessary conditions for chainability of inverse limits

In this section, we provide necessary conditions, for chainability of an
inverse limit X = lim

←−
{[0, 1], fi} with surjective interval-valued bonding func-

tions, that only involve properties of the bonding functins.

Lemma 1. If X is a triod, f :X → Y is a continuum-valued function, and
G(f) is unicoherent, then G(f) is a triod.

Proof. Since f is continuum-valued, c1:G(f) → X is a monotone mapping.
By [6, Table IV], X is unicoherent. So, we let X = J1 ∪ J2 ∪ J3 as in the
definition of a unicoherent triod. Let p ∈ J1 ∩ J2 ∩ J3, x ∈ J1 \ (J2 ∪ J3),
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y ∈ J2 \ (J1 ∪ J3), and z ∈ J3 \ (J1 ∪ J2). For i = 1, 2, 3, let Li = G(f |Ji).
Since f is continuum-valued, Li is a continuum for i = 1, 2, 3. Clearly,
G(f) = L1 ∪ L2 ∪ L3. To see that G(f) is a triod, let p′ ∈ f(p), x′ ∈ f(x),
y′ ∈ f(y), and z′ ∈ f(z). It is immediate that (p, p′) ∈ L1 ∩ L2 ∩ L3,
(x, x′) ∈ L1 \ (L2 ∪ L3), (y, y′) ∈ L2 \ (L1 ∪ L3), and (z, z′) ∈ L3 \ (L1 ∪ L2).
Hence, G(f) is a triod.

A set-valued function f : [0, 1]→ [0, 1] has a flat spot at p if p ∈ [0, 1] and
there exists a nondegenerate interval I ⊂ [0, 1] such that I × {p} ⊂ G(f).
Let X = lim

←−
{[0, 1], fi} with surjective, set-valued bonding functions. For

1 < j < i, a flat spot at xi for fi composes to a nondegenerate value of fj in
the composition fj ◦ fj+1 ◦ . . . ◦ fi if fj(xi) is nondegenerate for j = i − 1,
or if there exists a point xj+1 in fj+1 ◦ . . . ◦ fi−1(xi) such that fj(xj+1) is
nondegenerate for j < i− 1.

Lemma 2. Let X = lim
←−
{[0, 1], fi} where each fi is a surjective, interval-

valued function. Suppose, for each i ≥ 1, dim(G(fi)) = 1, and no flat
spot of fi composes to a non-degenerate value of fj for 1 ≤ j < i. If, for
some n ≥ 2, Gn+1

1 is chainable, then for 1 ≤ i ≤ n, Gn+1
i is chainable and

hereditarily decomposable.

Proof. Let n ≥ 2, and suppose that Gn+1
1 is chainable. Let 1 ≤ i ≤ n. It

follows from [8, Corollary 4] that Gn+1
i is a λ-dendroid. Let Gi−1

1
F←− Gn+1

i be
the set-valued function defined by (x1, . . . , xi−1) ∈ F (xi, . . . , xn+1) if and only
if (x1, . . . , xi, . . . , xn+1) ∈ Gn+1

1 . This function is defined in [7, 4th paragraph,
page 218], and it is shown to be continuum-valued in Theorem 5 of [7]. Since
G(F ) = Gn+1

1 is chainable, it is hereditarily unicoherent and atriodic.
Suppose Gn+1

i contains a triod T . Then G(F |T ) ⊂ G(F ), and hence,
G(F |T ) is unicoherent. By Lemma 1, G(F |T ) is a triod in G(F ), which is a
contradiction. So, Gn+1

i is an atriodic λ-dendroid, and by [1, Theorem 11],
Gn+1

i is chainable. The proof is complete.

The definitions below provide terminology for concepts that are essential
in proofs of results in this section.

Definition 6. Let f : [0, 1] → [0, 1] be a surjective interval-valued function.
We say f has a down (up) fold at the point (s, t) ∈ G(f) if there exist
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u < v with s ∈ [u, v], and interval-valued functions f ′: [u, s] → [0, t] and
f ′′: [s, v]→ [0, t] (f ′: [u, s]→ [t, 1] and f ′′: [s, v]→ [t, 1]) such that

(1) G(f ′) ∪G(f ′′) ⊂ G(f),

(2) (s, t) ∈ G(f ′) ∩G(f ′′), and

(3) G(f ′) \G(f ′′) 6= ∅ 6= G(f ′′) \G(f ′).

We refer to G(f ′) ∪G(f ′′) as a fold of f at (s, t).

We note that if s ∈ {u, v}, one of f ′ or f ′′ will have {s} as its domain,
in which case, by (3), its value at s is nondegenerate. In this case, we call
G(f ′) ∪G(f ′′) a one-sided fold at (s, t). If u < s < v, we call G(f ′) ∪G(f ′′)
a two-sided fold at (s, t). The graph of f0 in Example 1 of section 6 has a
one-sided down fold at (1

2
, 1) and a one-sided up fold at (1

2
, 0).

Definition 7. Let f : [0, 1] → [0, 1] be a surjective, interval-valued function.
Suppose f(t) is a nondegenerate interval for some t ∈ [0, 1]. If f is left (right)
cohesive at t, and there exists r < t (r > t) such that f([r, t]) = f(t), we
say that G(f) has a restricted left (right) cohesive subgraph at {t} × f(t).
Specifically, we say G(f |[r,t]) is a restricted left (right) cohesive subgraph of
G(f) at {t} × f(t).

The graph of the function `2, in Figure 3 of section 6, has a restricted
right cohesive subgraph at 1

2
; specifically note that `2(

1
2
) = `2([

1
2
, 1]).

Let {[0, 1], fi} be an inverse sequence with surjective, interval-valued func-
tions.

Definition 8. For 1 ≤ j + 1 < n and (tj+1, . . . , tn) ∈ G′(fj+1, . . . , fn−1), a
side-to-side sequence from tn to tj+1 is a sequence of nondegenerate intervals
Ij+1, . . . , In such that

(i) for j < i ≤ n, either ti ∈ Ii ⊂ [0, ti] or ti ∈ Ii ⊂ [ti, 1], and

(ii) for j < i < n, fi(Ii+1) = Ii.

The points tj+1, . . . , tn are called side points of the intervals Ij+1, . . . , In.

Definition 9. For 1 ≤ j + 1 ≤ n, a fold Λ of fn at (tn, tn+1) composes to a
side of tj+1 ∈ [0, 1] where fj is not cohesive at tj+1 provided that either
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(i) j + 1 = n, and fn−1 is not left (right) cohesive at tn when Λ is a down
(up) fold, or

(ii) j + 1 < n, and there is a side-to-side sequence from tn to tj+1, where
c2(Λ) = In, and fj is not cohesive on the Ij+1 side of tj+1.

Examples of the notions in Definitions 8 and 9 can be found in the third
paragraph of item 2 in Example 1 of section 6.

Definition 10. For 1 ≤ j + 1 ≤ n, a restricted left (right) cohesive subgraph
G(fn|[rn+1,tn+1]) of G(fn) at fn(tn+1)×{tn+1} composes to an interval Ij+1 =
[rj+1, tj+1] where fj is not cohesive on the Ij+1 side of each of rj+1 and tj+1

provided that for In = fn(tn+1) = [rn, tn] either

(i) j + 1 = n, and fn−1 is not cohesive on the In side of each of rn and tn,
or

(ii) j + 1 < n, there exist (rj+1, . . . , rn), (tj+1, . . . , tn) ∈ G′(fj+1, . . . , fn−1),
and a sequence of nondegenerate intervals Ij+1, . . . , In such that, for
j < i < n, Ii = [ri, ti] = fi(Ii+1), and fj is not cohesive on the Ij+1 side
of each of rj+1 and tj+1.

It may be helpful to a reader to refer to the discussion related to Examples
1 and 3 in section 6 while reading, respectively, the proofs of Cases 1 and 2
in Theorem 1.

Theorem 1. Let X = lim
←−
{[0, 1], fi}, where for each i ≥ 1, fi is a surjective,

interval-valued function. Properties (1), (2), (3), and (4) below are necessary
conditions for chainability of X.

(1) G(fi) is chainable for each i ≥ 1.

(2) If 1 ≤ j < n, no flat spot of fn composes to a nondegenerate value of
fj.

(3) If 1 ≤ j + 1 ≤ n, no fold Λ of fn composes to a side of tj+1 where fj is
not cohesive at tj+1.

(4) If 1 ≤ j+ 1 ≤ n, no restricted cohesive subgraph of G(fn) at fn(tn+1)×
{tn+1} composes to an interval Ij+1 = [rj+1, tj+1] where fj is not cohe-
sive on the Ij+1 side of each of rj+1 and tj+1.
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Proof. Assume X is chainable. Property (1) follows from [9, Theorem 3]. It
also follows from [9, Theorem 3] that each partial graph Gn+1

1 is chainable.
Property (2) follows from [8, Corollary 3]. So, by Lemma 2, for 1 ≤ i ≤ n,
Gn+1

i is chainable. The proofs that properties (3) and (4) follow from the
chainability of X are not as immediate. We consider the proofs separately
in Cases 1 and 2 below.

Case 1. Assume (3) is not the case. We construct a triod in Gn+1
j , giving

us a contradition. Assume there exist n ≥ 2, and tn ∈ fn(tn+1) where fn has
a fold V at (tn, tn+1) that composes, for some j + 1 ≤ n, to a side of tj+1

where fj is not cohesive at tj+1. In particular, we assume, without loss of
generality, that j+1 < n, V is an up fold of fn, and there exists a side-to-side
sequence from tn to tj+1, where fj is not right cohesive at tj+1. The case for
j + 1 = n is similar, but easier.

By definition of an up fold, there exist a nondegenerate interval [un+1, vn+1]

with tn+1 ∈ [un+1, vn+1], and interval-valued functions [tn, 1]
f ′
n←− [un+1, tn+1]

and [tn, 1]
f ′′
n←− [tn+1, vn+1]. So, V = G(f ′n) ∪G(f ′′n), and (tn, tn+1) ∈ G(f ′n) ∩

G(f ′′n). Let (tj+1, . . . , tn) and Ij+1, . . . , In be given as in Definition 8. We
also have from Definitions 6, 8, and 9 that tn ∈ c2(V ) = In ⊂ [tn, 1]
and Ij+1 ⊂ [tj+1, 1]. Since fj is not right cohesive at tj+1, we have that
fj(tj+1) × {tj+1} 6⊂ cl(G(fj|(tj+1,1])). Let K = cl(G(fj|Ij+1\{tj+1})). Let
wj ∈ fj(tj+1) with (wj, tj+1) 6∈ K, and let (tj, tj+1) ∈ K. So, K is a sub-

continuum of G(fj), and c1(K) = Ij+1. Finally, let [0, 1]
f̂j←− Ij+1 be the

interval-valued function whose graph is K.
By (3) of Definition 6, we may pick points (an, an+1) ∈ G(f ′n) \ G(f ′′n),

and (bn, bn+1) ∈ G(f ′′n) \ G(f ′n) with an+1 6= bn+1. Additionally, we note
that these two points can be chosen so that an 6= tn and bn 6= tn. To see
this, suppose for each s ∈ [un+1, tn+1], f

′
n(s) = {tn}. Then un+1 6= tn+1, for

otherwise G(f ′n) = {(tn, tn+1)}, violating property (3) of Definition 6. So,
{tn} × [un+1, tn+1] is a flat spot for f ′n, and fj(tj+1) is nondegenerate since
(wj, tj+1) and (tj, tj+1) are two points of fj(tj+1). This violates property (2)
of this theorem, which was established in the first paragraph of the proof.
A similar argument applies to the interval [tn+1, vn+1]. Hence, we can pick
(an, an+1) and (bn, bn+1) as claimed. We assume, without loss of generality,
that c2(G(f ′n)) = In, and c2(G(f ′′n)) = I ′n ⊂ In. For each j + 1 ≤ i < n, let
I ′i = fi(I

′
i+1).

For j ≤ i ≤ n − 2, let f̂i+1 = fi+1|Ii+2
, and let f̃i+1 = fi+1|I′i+2

. Let
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J1 = G′(f̂j, f̂j+1, . . . , f̂n−1, f
′
n), J2 = G′(f̂j|I′j+1

, f̃j+1, . . . , f̃n−1, f
′′
n), and J3 =

fj(tj+1)×(tj+1, . . . , tn, tn+1). For i = 1, 2, 3, Ji ⊂ Gn+1
j , and Ji is a continuum

since all functions involved in the defintions are interval-valued functions.
We show that J1 ∪ J2 ∪ J3 is a triod in Gn+1

j . Recalling the points
(tj, tj+1) ∈ K, (tn, tn+1) ∈ G(fn), and (tj+1, . . . , tn) given in the defini-
tion of a side-to-side sequence, let p = (tj, tj+1, . . . , tn, tn+1). We note that
p ∈ J1 ∩ J2 ∩ J3. Recalling the points (an, an+1) ∈ G(f ′n) and (bn, bn+1) ∈
G(f ′′n), we pick points (aj, . . . , an) ∈ G′(f̂j, f̂j+1, . . . , f̂n−1) and (bj, . . . , bn) ∈
G′(f̂j|I′j+1

, f̃j+1, . . . , f̃n−1). Let a = (aj, . . . , an, an+1), b = (bj, . . . , bn, bn+1),

and w = (wj, tj+1, . . . , tn, tn+1). It is easy to see from the choices of points
and defintions that a ∈ J1 \ (J2∪J3), b ∈ J2 \ (J1∪J3), and w ∈ J3 \ (J1∪J2).
It follows that J1 ∪ J2 ∪ J3 is a triod in Gn+1

j . This is a contradiction since,

as noted in the first paragraph of this proof, Gn+1
j is chainable.

Case 2. Assume (4) is not the case. We construct a triod in Gn+1
j . Assume

there exist n ≥ 2, and a nondegenerate interval In+1 = [rn+1, tn+1] such that
G(fn|In+1) is a restricted left cohesive subgraph of G(fn) that composes to
an interval Ij+1 = [rj+1, tj+1] with j + 1 ≤ n, where fj is not cohesive on the
Ij+1 side of each of rj+1 and tj+1. We assume j + 1 < n, and (rj+1, . . . , rn),
(tj+1, . . . , tn), and the sequence of intervals Ij+1, . . . , In are given as in Defi-
nition 10.

Let [0, 1]
f̂j←− Ij+1 be the continuum-valued function whose graph is

cl(G(fj|(rj+1,tj+1))). By assumption in this case, fj(rj+1)×{rj+1} 6⊂ G(f̂j) and

fj(tj+1)×{tj+1} 6⊂ G(f̂j). So, we pick points vj ∈ fj(rj+1) and wj ∈ fj(tj+1)

so that neither (vj, rj+1) nor (wj, tj+1) is in G(f̂j). Also, let (rj, rj+1) and

(tj, tj+1) be points of G(f̂j). For j + 1 ≤ i ≤ n, let f̂i = fi|Ii+1. Recall, from
Definitions 7 and 10, that fn(tn+1) = In = fn(In+1).

Define J1 = G′(f̂j, . . . , f̂n), and let (xj . . . , xn, rn+1) ∈ J1.
Given (tj+1, . . . , tn, tn+1) and (rj+1, . . . , rn, tn+1) inG′(f̂j+1, . . . , f̂n), define

J2 = (fj(rj+1)× (rj+1, . . . , rn, tn+1)) ∪ (G′(f̂j, . . . , f̂n−1)× {tn+1}), and

J3 = (fj(tj+1)× (tj+1, . . . , tn, tn+1)) ∪ (G′(f̂j, . . . , f̂n−1)× {tn+1}).
We observe that J1∪J2∪J3 is a triod in Gn+1

j . We note that, for i = 1, 2, 3,

Ji is a subcontinuum of Gn+1
j . Since (vj, rj+1) 6∈ G(f̂j) and rj+1 6= tj+1, we

have that (vj, rj+1, . . . , rn, tn+1) ∈ J2 \ (J1 ∪ J3). Similarly, since (wj, tj+1) 6∈
G(f̂j) and rj+1 6= tj+1, we have that (wj, tj+1, . . . , tn, tn+1) ∈ J3 \ (J1 ∪ J2).
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Also, since rn+1 6= tn+1, we have that (xj, . . . , xn, rn+1) ∈ J1 \ (J2 ∪ J3). The
point (tj, tj+1, . . . , tn, tn+1) is in J1 ∩ J2 ∩ J3. Hence, J1 ∪ J2 ∪ J3 is a triod in
Gn+1

j , which is a contradiction.

Remark 1. It is useful to note that, from the proof of Theorem 1, the
existence of folds or restricted cohesive subgraphs that compose to sides of
values where a bonding function is not cohesive produces triods in the partial
graphs. That is, if either (3) or (4) does not hold for some j and n where
1 ≤ j + 1 ≤ n, then Gn+1

j contains a triod.

Question 1. Let X = lim
←−
{[0, 1], fi}, where for each i ≥ 1, fi is a surjective,

interval-valued function. Do properties (1), (2), (3), and (4) of Theorem 1
characterize chainability of X?

Remark 2. By Theorem 1, one only needs to establish sufficiency of prop-
erties (1) through (4) to have an affirmative answer to Question 1. By Corol-
laries 3 and 4 in [8], properties (1) and (2) give us that X is tree-like, and
each partial graph Gn

j is a λ-dendroid. By [2, Corollary 4.3], if each Gn
1 is

chainable, then X is chainable. By [1, Theorem 11], each atriodic λ-dendroid
is chainable. Hence, an affirmative answer to Question 1 can be established
by showing that properties (3) and (4), together with having each Gn

j be a
λ-dendriod, are sufficient for atriodicity of the partial graphs Gn

1 .

5. A characterization of chainability

Theorem 5 of this section gives a characterization of chainable inverse
limits on [0, 1] with interval-valued functions that involves properties of the
bonding functions fi and the induced functions Fn defined in section 2. Al-
though such a characterization is not as desirable as one that only involves
properties of the bonding functions, Corollary 1 of this section gives suffi-
cient conditions on the bonding functions for a chainable inverse limit. The
examples in section 6 illustrate how Corollary 1 can be used to determine
chainability. Also, Theorem 5 characterizes how triods arise in the partial
graphs.

5.1. Observations and theorems related to a finite inverse sequence

Y
g←− [0, 1]

f←− [0, 1]

Given a continuum Y , let Y
g←− [0, 1]

f←− [0, 1] be a finite inverse se-
quence, where each of f and g is a surjective continuum-valued function. The
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induced function G(g)
F←− [0, 1] is defined by F (t) = G(g|f(t)) for t ∈ [0, 1].

We observe that G(F ) = G′(g, f). Furthermore, since both f and g are
continuum-valued, it follows that for each t ∈ [0, 1], G(g|f(t)) is a continuum.
Hence, F is continuum-valued. As discussed in section 2, notation for graphs
of functions related to this inverse sequence will be relative to the order in
the inverse sequence.

For all results in this subsection, we let Y
g←− [0, 1]

f←− [0, 1] be a finite
inverse sequence, where each of f and g is a surjective continuum-valued
function, each of G(f) and G(g) is chainable, and G′(g, f) is hereditarily
unicoherent. Since G(F ) = G′(g, f) ⊂ Y × [0, 1] × [0, 1], we let, for 1 ≤ i <
j ≤ 3, πi and πi,j denote, respectively, the projection mappings from G′(g, f)
onto the ith coordinate, and onto the ith and jth coordinates.

Observation 2 can be useful for determining left or right cohesiveness of
induced functions in specific examples of inverse sequences. We illustrate
this in the examples in section 6. Observations 3, 4, and 5 are useful in the
proofs of Theorems 2 and 3.

Observation 2. Let t ∈ [0, 1]. If both f(t) and g(f(t)) are degenerate, then
F is cohesive at t. If f is fully left (right) cohesive at t, then F is fully left
(right) cohesive at t.

Proof. If both f(t) and g(f(t)) are degenerate, then F (t) = (g(f(t)), f(t)) is
degenerate, and clearly F is cohesive at t. We assume f is fully left cohesive
at t. Let (y, w, t) ∈ F (t)× {t}. So, w ∈ f(t) and y ∈ g(w). By assumption,
there exists an increasing sequence of points {ti}i≥1 converging to t, where,
for each i ≥ 1, w ∈ f(ti). So, for each i ≥ 1, (y, w) ∈ F (ti), and {(y, w, ti)}i≥1
converges to (y, w, t), giving us that F is fully left cohesive at t.

Observation 3. Let K be a subcontinuum of G′(g, f).

(a) If π3(K) = [r, t], then cl(G(f |(r,t))) ⊂ π2,3(K).

(b) If π2(K) = [u, v], then cl(G(g|(u,v))) ⊂ π1,2(K).

Proof. (a) By hypothesis, π2,3(K) ⊂ G(f |[r,t]). Suppose, for some r < s < t,
f(s)×{s} 6⊂ π2,3(K). Then clearly π2,3(K)∪(f(s)×{s}) is a two-sided triod
in G(f), which contradicts the chainability of G(f). So, G(f |(r,t)) ⊂ π2,3(K).
Since π2,3(K) is a continuum, we have that cl(G(f |(r,t))) ⊂ π2,3(K).

(b) The proof is similar to the proof of (a).
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Observation 4. If t ∈ [0, 1], and f(t) = [u, v] is nondegenerate, then

(a) for t > 0, cl(G(f |[0,t))) contains either (u, t) or (v, t), and for t < 1,
cl(G(f |(t,1]))) contains either (u, t) or (v, t), and

(b) if cl(G(f |[0,t))) does not contain (w, t) for w ∈ {u, v}, then (w, t) ∈
cl(G(f |(t,1]))). An analogous statement holds for cl(G(f |(t,1]))).

Proof. (a) Suppose cl(G(f |[0,t))) contains neither (u, t) nor (v, t). Then it is
easy to see that cl(G(f |[0,t))) ∪ ([u, v] × {t}) is a one-sided triod in G(f), a
contradiction.

(b) Suppose (v, t) is not in cl(G(f |[0,t)))∪cl(G(f |(t,1])). Then cl(G(f |[0,t)))∪
cl(G(f |(t,1]))) ∪ ([u, v]× {t}) is a triod in G(f), a contradiction.

Observation 5. Let K be a subcontinuum of G′(g, f).

(a) If 0 < w < 1, and there exists y such that (y, w) 6∈ π1,2(K), then
w 6∈ int(π2(K)).

(b) If π3(K) = [s, t] is a nondegenerate interval, and there exists y such
that (y, w, t) ∈ G′(g, f)\K, then there exists r 6= t and a subcontinuum
Kr of K such that π3(Kr) = [r, t] and (y, w) 6∈ π1,2(Kr).

Proof. (a) Suppose 0 < w < 1, and w ∈ int(π2(K)). Then π1,2(K) is a con-
tinuum in G(g) that meets both sides of g(w)×{w} in G(g). By Observation
3(b), (y, w) ∈ π1,2(K), which is a contradiction.

(b) If w 6∈ π2(K), then (y, w) 6∈ π1,2(K); so, we may choose r = s and
Kr = K. We assume w ∈ π2(K). Assume, without loss of generality, that
s < t, and no such r < t exists. Let {ti} be an increasing sequence in [0, 1]
converging to t with t1 > s. For each i ≥ 1, let Ki = K ∩ π−13 ([ti, t]). By
assumption, for each i ≥ 1, there exists a point (y, w, ri) ∈ Ki. It follows,
from hereditary unicoherence of G′(g, f), that each Ki is a subcontinuum of
K. We note also that {Ki} is a nested decreasing sequence whose intersection
lies in π−13 (t). So, {ri} converges to t, and {(y, w, ri)} converges to (y, w, t),
putting (y, w, t) ∈ K, a contradiction.

Theorem 2. Let t ∈ [0, 1] where f(t) = {u} is degenerate. Then

(1) G′(g, f) = G(F ) contains no one-sided triod at t, and
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(2) if G′(g, f) = G(F ) contains a two-sided triod at t, then f has either a
two-sided down fold or a two-sided up fold at (u, t) and g is, respectively,
either not left or not right cohesive at u.

Proof. We note that if p is a flat spot for f , then g(p) is a singleton, for
otherwise, G′(g, f) is not hereditarily unicoherent.

(1) Suppose G′(g, f) = G(F ) contains a one-sided triod at t. By definition
of a one-sided triod, we may assume, without loss of generality, that there ex-
ist a nondegenerate interval [s, t] with s < t, two nondegenerate subcontinua
A and B of π−13 (t) = g(u)×{u}×{t}, and a subcontinuum K of G′(g, f) such
that π3(K) = [s, t], and A ∪B ∪K is a triod in the hereditarily unicoherent
continuum G′(g, f). Let (a, u, t) ∈ A \ (B ∪K), and (b, u, t) ∈ B \ (A ∪K).
By Observation 5(b), we can choose s ≤ r < t and a subcontinuum Kr of
K so that (a, u) and (b, u) are not in π1,2(Kr). It is clear that Kr ∪ A ∪ B
is also a one-sided triod in G′(g, f). We note that π2(Kr) is nondegenerate;
for otherwise, {u} × [r, t] is a flat spot of f where g(u) is nondegenerate,
contradicting the first paragraph of the proof. So, π2(Kr) 6= {u}. From this,
it is easy to see that π1,2(A) ∪ π1,2(B) ∪ π1,2(Kr) is a triod in G(g), which
contradicts the chainability of G(g).

(2) Suppose G′(g, f) = G(F ) contains a two-sided triod at t. By defini-
tion, there exist a nondegenerate interval [r, s] with r < t < s, and subcon-
tinua Kr and Ks of G′(g, f) such that π3(Kr) = [r, t] and π3(Ks) = [t, s], and
Kr ∪Ks ∪ (F (t)× {t}) is a triod. So, there is a point (y, u, t) in F (t)× {t}
that is not in Kr∪Ks. Since (y, u, t) is not in Kr∪Ks, we apply Observation
5(b), as we did in the proof of (1), to get r′, s′, and subcontinua Kr′ and
Ks′ of, respectively, Kr and Ks such that π3(Kr′) = [r′, t], π3(Ks′) = [t, s′],
and (y, u) 6∈ π1,2(Kr′ ∪Ks′). Clearly, Kr′ ∪Ks′ ∪ (F (t) × {t}) is also a two-
sided triod. For notational convenience, we let K1 = Kr′ , K2 = Ks′ , and
T = K1 ∪K2 ∪ (F (t)× {t}). Hereafter, we consider the two-sided triod T .

As in the proof of (1), we have both π2(K1) and π2(K2) are nondegenerate
intervals. If π2(K1 ∪ K2) is not a subset of either [0, u] or [u, 1], then u ∈
int(π2(K1∪K2)), giving us a contradiction to Observation 5(a) since (y, u) 6∈
π1,2(K1∪K2). So, we suppose, without loss of generality, that π2(K1∪K2) is
a nondegenerate interval in [0, u]. Let (x, u, t) ∈ K1∩K2∩(F (t)×{t}). Since
π2,3(K1) and π2,3(K2) are subcontinua of G(f) that may be thought of as the
graphs of continuum-valued functions, we note that π2,3(K1) ∪ π2,3(K2) is a
two-sided down fold of f at (u, t). Also, since (y, u) is not in π1,2(K1), and
π1,2(K1) is a continuum in G(g|[0,u]) that meets both g(u)×{u} and G(g|[0,u)),
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it follows that g(u)× {u} is not a left side C-set in G(g). By Observation 1,
g is not left cohesive at u.

Theorem 3. Let t ∈ [0, 1] where f(t) = [u, v] is a nondegenerate interval
with u < v. If G′(g, f) = G(F ) contains either a one-sided or two-sided triod
at t, then either

(1) f has either an up fold at (u, t) or a down fold at (v, t), and g is,
respectively, either not right cohesive at u or not left cohesive at v, or

(2) G(f) has a restricted left (right) cohesive subgraph at f(t)×{t}, and g
is both not right cohesive at u and not left cohesive at v.

Proof. Case 1. Suppose G(F ) contains a two-sided triod at t. Let T =
Kr ∪ Ks ∪ (F (t) × {t}) be a two-sided triod, where [r, s], K, Kr, and Ks

are defined analogously as in the proof of Theorem 2(2). Let (y, w, t) ∈
(F (t) × {t}) \ (Kr ∪ Ks). We also assume [r′, s′] ⊂ [r, s], and Kr′ , and Ks′

have been modified using Observation 5(b), as in the proof of Theorem 2(2),
so that (y, w) 6∈ π1,2(Kr′∪Ks′). Lastly, we assume, without loss of generality,
that r′ = r and s′ = s.

Let (q, p, t) ∈ (F (t) × {t}) ∩Kr ∩Ks. By Observation 4, cl(G(f |(r,t))) ∪
cl(G(f |(t,s))) contains both (u, t) and (v, t). By Observation 3(a), π2,3(Kr) ∪
π2,3(Ks) contains both (u, t) and (v, t). Also, (p, t) ∈ π2,3(Kr) ∩ π2,3(Ks) ∩
([u, v] × {t}); so, we have that [u, v] × {t} ⊂ π2,3(Kr ∪ Ks). Since (y, w) 6∈
π1,2(Kr ∪ Ks) and u ≤ w ≤ v, it follows, from Observation 5(a), that w ∈
{u, v}. We suppose, without loss of generality, that w = u. So, (y, u) 6∈
π1,2(Kr ∪Ks).

We assume, without loss of generality, that (u, t) ∈ π2,3(Kr). It fol-
lows from Observation 5(a) that u 6∈ int(π2(Kr ∪ Ks)). From the pre-
vious paragraph, both u and v are in π2(Kr ∪ Ks). Since u < v, we
have that, π2(Kr ∪ Ks) ⊂ [u, 1]. Let K ′r = π2,3(Kr) ∪ ([u, v] × {t}), and
K ′s = π2,3(Ks) ∪ ([u, v] × {t}). So, we have that K ′r ∪K ′s is a two-sided up
fold of f at (u, t). Recall that (y, u) 6∈ π1,2(Kr), and π1,2(Ks) is a subcontin-
uum of G(g|[u,1]) that meets both g(u) × {u} and G(g|(u,1]). From this, we
note that g(u)× {u} is not a right side C-set in G(g). By Observation 1, g
is not right cohesive at u, giving us that (1) of the conclusion holds.

Case 2. Suppose G(F ) contains a one-sided triod at t. Let T = A ∪ B ∪
K be a triod, where A and B are subcontinua of F (t) × {t}, and K is a
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subcontinuum of G(F ) such that π3(K) = [s, t] with s < t. By Observation
3(a), cl(G(f |(s,t)) ⊂ π2,3(K).

By Observation 4(a), we may assume, without loss of generality, that
(u, t) ∈ cl(G(f |[0,t)). From the previous paragraph, (u, t) ∈ π2,3(K). Let
(x, a, t) ∈ A \ (B ∪K) and (y, b, t) ∈ B \ (A ∪K). Let (z, w, t) ∈ A ∩B ∩K
be chosen so that w is the largest point of π2(A∩B∩K) in the natural order
on [0, 1]. The choices of these three points put a, b, w ∈ f(t) = [u, v]. Also,
[u,w] ⊂ π2(K). As we have done several times, we modify K by applying
Observation 5(b) to get a subcontinuum Kr so that (x, a) and (y, b) are not
in π1,2(Kr). We may assume, without loss of generality, that Kr = K and
r = s from the first paragraph of this case.

By Observation 5(a), neither a nor b is in the interior of π2(K). So, in
particular, neither a nor b is in the open segment in [0, 1] from u to w. We
assume, without loss of generality, that a ≤ b.

Suppose u < a < b. From the previous two paragraphs, we have that
[u,w] ⊂ π2(K) and [w, b] ⊂ π2(B). Hence, we have a ∈ int(π2(K ∪ B)) with
(x, a) 6∈ π1,2(K ∪B), contradicting Observation 5(a). So, we must have that
either a = b, or a = u and b is not in [u,w) since b is not in the interior of
π2(K).

(a) Assume a = u and b is not in [u,w). From above, we have that
(x, a) = (x, u) 6∈ π1,2(K), which contains cl(G(g|(u,w)) by Observation 3(b).
So, g is not right cohesive at u. Also, by Observation 5(a), u 6∈ int(π2(K)),
so, f([s, t]) ⊂ [u, 1]. If f is not left cohesive at t, then G(f |[s,t])∪ (f(t)×{t})
is a one-sided up fold of f at (u, t), and we have the desired conclusion.

So, we assume that f is left cohesive at t. From this assumption and
Observation 3(b), we have that [u, v] × {t} ⊂ cl(G(f |(s,t))) ⊂ π2,3(K). So,
[u, v] ⊂ π2(K). As observed in the first sentence of the third previous para-
graph, b 6∈ int(π2(K)). Also, by assumption in this case, b 6= u. Hence,
b = v, and v 6∈ int(π2(K)). So, f([s, t]) ⊂ [0, v]. We now have that
f([s, t]) = [u, v]. Also, by Observation 1, we observe that g is not left cohe-
sive at v since π1,2(K) is a continuum in G(g) such that π2(K) = [u, v], but
(y, b) = (y, v) 6∈ π1,2(K). We see that G(f |[s,t]) is a restricted left cohesive
subgraph of G(f), and (2) of the conclusion is satisfied.

(b) Assume a = b. Then x 6= y since (x, a) 6= (y, b).
Suppose u 6= a. Then a ≥ w. Recall that (z, w, t) ∈ K ∩ A ∩ B. Let

[0, 1]
f̂←− {t} be the function such that f̂(t) = [w, a]. Let A′ = G′(g|[w,a], f̂)∩

A, and B′ = G′(g|[w,a], f̂) ∩ B. So, (z, w) ∈ π1,2(K) ∩ π1,2(A′) ∩ π1,2(B′).
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Also, (x, a) ∈ π1,2(A′)\ (π1,2(B
′)∪π1,2(K)), and (y, a) ∈ π1,2(B′)\ (π1,2(A

′)∪
π1,2(K)). For any point (p, u, t) ∈ K, we have (p, u) ∈ π1,2(K) \ (π1,2(A

′) ∪
π1,2(B

′)). Hence, π1,2(K) ∪ π1,2(A′) ∪ π1,2(B′) is a triod in G(g), which is a
contradiction.

Suppose u = a = b. Then π2(K) 6= {u}; for otherwise, since K ⊂ G(F )
and π3(K) = [s, t], {u} × [s, t] would be a flat spot of f at u, where g(u) is
nondegenerate, violating the hereditary unicoherence of G′(g, f). Similarly
as in the previous paragraph, letting A′ = A ∩ (g(u) × {u} × {t}), and
B′ = B ∩ (g(u) × {u} × {t}), we get that π1,2(K) ∪ π1,2(A′) ∪ π1,2(B′) is a
triod in G(g), which is a contradiction.

Theorem 4 establishes converse statements to Theorems 2 and 3.

Theorem 4. Let t ∈ [0, 1].

(1) If f has a down (up) fold at (u, t), and g is not (left) right cohesive at
u, then G′(g, f) = G(F ) contains a triod.

(2) If f(t) = [u, v] with u < v, and G(f) has a restricted left (right) cohesive
subgraph at f(t) × {t}, and g is both not right cohesive at u and not
left cohesive at v, then G′(g, f) = G(F ) contains a triod.

Proof. (1) Suppose, without loss of generality, that f contains an up fold
V at (u, t), and g is not right cohesive at u. So, there exist an interval

[r, s] and interval-valued functions [u, 1]
f ′
←− [r, t] and [u, 1]

f ′′
←− [t, s] as in

Definition 6. So, V = G(f ′) ∪ G(f ′′), and (u, t) ∈ G(f ′) ∩ G(f ′′). Assume,
without loss of generality, that c2(V ) = [u,w] with u < w. Since g is not right

cohesive at u, g(u)×{u} 6⊂ cl(G(g|(u,1])). Let Y
ĝ←− [u,w] be the continuum-

valued function whose graph is cl(G(g|(u,w])). Let x ∈ ĝ(u), and let (y, u) ∈
G(g) \G(ĝ). Let T = G′(ĝ|f ′([r,t]), f

′) ∪G′(ĝ|f ′′([t,s]), f
′′) ∪ (g(u)× {u} × {t}).

We saw similar constructions of triods in Cases 1 and 2 of Theorem 1. As in
the last paragraphs of those two cases, it is easy to see that T is a triod in
G′(g, f) = G(F ).

(2) Suppose f(t) = [u, v] with u < v, G(f) has a restricted left cohesive
subgraph at f(t) × {t}, and g is both not right cohesive at u and not left
cohesive at v. So, by Definition 7, there exists r < t where f([r, t]) = [u, v].

Since g is not right cohesive at u and not left cohesive at v, we let Y
ĝ←−

[u, v] be the continuum-valued function whose graph is cl(G(g|(u,v))), and
we note that there exist points (y1, u) and (y2, v) in G(g) \ G(ĝ). Letting
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J1 = G′(ĝ, f |[r,t]), J2 = (G(ĝ)× {t}) ∪ (g(u)× {u} × {t}) and J3 = (G(ĝ)×
{t})∪(g(v)×{v}×{t}), we see that T = J1∪J2∪J3 is a triod in G′(g, f).

5.2. The characterization

Theorem 5. Let X = lim
←−
{[0, 1], fi}, where for each i ≥ 1, fi is a surjective,

interval-valued function. Then X is chainable if and only if properties (1),
(2), (A), and (B) below hold.

(1) G(fi) is chainable for each i ≥ 1.

(2) If 1 ≤ j < n, no flat spot of fn composes to a nondegenerate value of
fj.

(A) If, for some n ≥ 2, Λ is a down (up) fold of fn at (tn, tn+1), then Fn−1
is left (right) cohesive at tn.

(B) If, for some n ≥ 2, fn(tn+1) = [rn, tn] with rn < tn, and G(fn) has a
restricted left (right) cohesive subgraph at fn(tn+1)×{tn+1}, then Fn−1
is either right cohesive at rn or left cohesive at tn.

Proof. As we have seen, properties (1) and (2) are equivalent to having each
partial graph Gn+1

1 be a λ-dendroid. Also, we recall that λ-dendroids are
chainable if and only if they are atriodic. Given this, X is chainable if and
only if each Gn+1

1 is atriodic. So, to complete the proof, we only need to
see that, assuming (1) and (2), properties (A) and (B) are equivalent to
atriodicity of the partial graphs Gn+1

1 . We prove the necessary implications
in Cases 1 and 2 below.

Case 1. (A) and (B) ⇒ Gn+1
1 is atriodic. We prove the contrapositive

statement. Suppose, for some n ≥ 1, Gn+1
1 contains a triod. If n = 1, then

G2
1 = G(f1) which is chainable. So, we choose the least n ≥ 2 for which Gn+1

1

contains a triod. We note that Gn+1
1 = G′(Fn−1, fn) = G(Fn), and G(fn)

is chainable by (1). Furthermore, G(Fn−1) = Gn
1 is chainable by the choice

of n. The fibers Fn(t) × {t} of G(Fn) = Gn+1
1 are atriodic since each one is

homeomorphic to Fn(t) ⊂ Gn
1 . Since the fibers of G(Fn) are atriodic, by [9,

Theorem 1], as discussed after Definitions 1 and 2 in section 3, G(Fn) contains
either a one-sided or a two-sided triod. Hence, it follows from Theorems 2
and 3 that either (A) or (B) does not hold.

Case 2. Gn+1
1 is atriodic ⇒ (A) and (B). We prove the contrapositive

statement. Suppose one of (A) or (B) is not true for some n ≥ 2. As in
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Case 1, we consider G′(Fn−1, fn), and note that the hypotheses of statements
(1) and (2) in Theorem 4 are denials of properties (A) and (B). Hence, it
follows from Theorem 4 that Gn+1

1 contains a triod.

Let {[0, 1], fi} be an inverse sequence with surjective interval-valued bond-
ing functions, and let n ≥ 1. If t is a point of [0, 1], by the n-orbit of t, we
mean the finite sequence of sets f1 ◦ . . . ◦ fn(t), . . . , fn−1 ◦ fn(t), fn(t) con-
tained, respectively, in the first through nth factor spaces. If each set in the
n-orbit of t is a singleton, it is observed in [5, Lemma 3.2] that Fn(t) is de-
generate. For a single set-valued functon f : [0, 1] → [0, 1], the full orbit of
t is the sequence of sets {fn(t)}n≥1, where fn denotes the composition of f
with itself n times.

For Corollary 1, one should recall Definition 4 in section 3.

Corollary 1. Let X = lim
←−
{[0, 1], fi}, where for each i ≥ 1, fi is a surjective

interval-valued function. Suppose (1) and (2) in Theorem 5. Also, suppose
(a) and (b) below.

(a) Whenever fn has a down (up) fold at (tn, tn+1) for some n ≥ 2, either
the (n− 1)-orbit of tn consists of singletons or fn−1 is fully left (right)
cohesive at tn.

(b) Whenever fn(tn+1) = [rn, tn] with rn < tn, and G(fn) has a restricted
left (right) cohesive subgraph at fn(tn+1) × {tn+1} for some n ≥ 2, we
have that one of (i) or (ii) holds.

(i) Either the (n−1)-orbit of rn consists of singletons, or fn−1 is fully
right cohesive at rn.

(ii) Either the (n−1)-orbit of tn consists of singletons, or fn−1 is fully
left cohesive at tn.

Then X is chainable.

Proof. If fn has a down (up) fold at (tn, tn+1), by (a) and Observation 2, it
follows that Fn−1 is left (right) cohesive at tn. Similarly, if fn(tn+1) = [rn, tn],
and G(fn) has a restricted left (right) cohesive subgraph at fn(tn+1)×{tn+1},
by (b) and Observation 2, it follows that Fn−1 is either right cohesive at rn
or left cohesive at tn. So, (A) and (B) of Theorem 5 are satisfied. Therefore,
X is chainable.
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6. Examples

To illustrate the easy use of our results to determine chainability, or the
lack thereof, of inverse limits on [0, 1] with interval-valued functions, we look
at three examples, the first of which is a family of functions considered by
Ingram [3, Example 7.1].

Example 1. For 0 ≤ a ≤ 1, define fa: [0, 1]→ [0, 1] as follows. For 0 ≤ t < 1
2
,

let fa(t) = 2t. Let fa(
1
2
) = [a, 1]. For 1

2
< t ≤ 1, let fa(t) = 2(1 − a)t +

2a − 1. We note that f1 is a mapping, and, for a < 1, fa has exactly one
nondegenerate value at 1

2
. We consider inverse limits Xa = lim

←−
{[0, 1], fa}

with the single bonding function fa from this family. Graphs of f0, f 1
4
, and

f 3
4

are shown in Figure 1. The functions f0 and f 3
4

produce chainable inverse
limits. The inverse limit produced with f 1

4
is not chainable.

Ingram showed in [3] that Xa is chainable if and only if fn
a (a) 6= 1

2
for

n ≥ 0. He additionally showed that X0 is indecomposable, and that Xa is
an arc for each 1

2
< a ≤ 1. He showed Xa is chainable for each a such that

fn
a (a) 6= 1

2
by proving that each partial graph Gn+1

1 is an arc. In general, this
can be difficult to determine, as Ingram states in the sentence preceeding
Question 5.2. We simply wish to observe, in this example, how his chainabil-
ity characterization for this family follows from our results.

f0
f 1

4

f 3
4

Figure 1. Graphs of f0, f 1
4
, and f 3

4
.

We begin by observing that, for no 0 ≤ a ≤ 1, does G(fa) contain a
restricted cohesive subgraph, so by Theorem 1 and Corollary 1, we only need
to consider points in G(fa) where there is a down or up fold in order to
determine chainability or non-chainability of Xa. For each 0 ≤ a < 1, fa has
a down fold at (1

2
, 1), has an up fold at (1

2
, a), and is both not left and not

right cohesive at 1
2
.

1. Xa is chainable if fn
a (a) 6= 1

2
for n ≥ 0. Consider an up fold V of fa at

(a, 1
2
) in the mth factor space for some m ≥ 2. Since fn

a (a) 6= 1
2

for n ≥ 0, we
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have that the (m−1)-orbit of a from the mth factor space [0, 1] is a sequence
of singletons. For a down fold Λ at (1, 1

2
) in the mth factor space, we have

that the (m− 1)-orbit of 1 is the constant {1} sequence. Thus, by Corollary
1(a), Xa is chainable.

2. Xa is not chainable if, for some n ≥ 0, fn
a (a) = 1

2
. If a = 1

2
, let V be the

one-sided up fold of f 1
2

at (1
2
, 1
2
) where c2(V ) = [1

2
, 1]. Since fa is not right

cohesive at 1
2
, it follows from Theorem 1(3) that X 1

2
is not chainable.

Suppose a 6= 1
2
, and assume that n is the smallest positive interger such

that fn
a (a) = 1

2
. We see, from the definition of fa, that, for each interval

J = [u, v] not containing 1
2
, fa([u, v]) = [fa(u), fa(v)], and the length of fa(J)

is less than or equal to twice the length of J . From this, it should be clear
that we can pick b > a where the interval In+2 = [a, b] is small enough so that
In+2−i = f i

a(In+2) does not contain 1
2

for each 1 ≤ i ≤ n−1. It follows that fa
is an increasing linear mapping on each Ii, and I2, I3, . . . , In+2 is a right side
to right side sequence of intervals with side points 1

2
= fn

a (a), . . . , fa(a), a.
Finally, we pick the up fold V of fa at (a, 1

2
) where c2(V ) = In+2. This gives

an up fold of fa that composes to the right side of 1
2

where fa is not right
cohesive. Thus, by Theorem 1(3), Xa is not chainable.

For clarity, we illustrate this process for fa when a = 1
8
. Choose I4 =

[1
8
, 3
16

]. Let V be the up fold of fa whose first coordinate is in the fifth factor
space, and c2(V ) = I4. Then I3 = fa(I4) = [1

4
, 3
8
], and I2 = fa(I3) = [1

2
, 3
4
].

We have a right side to right side sequence of intervals such that the up fold
V composes to the right side of 1

2
in the second factor space where fa is not

right cohesive.
One can find a different proof of the existence of the interval In+2, dis-

cussed in the second paragraph above this one, in [3]. See the last five lines
of the paragraph immediately preceeding the definitions of α, β, and γ in
Example 7.1 of [3].

In Example 2, we consider a family of functions similar to the family in
Example 1, however, the graphs of the functions are not arcs. So, chainability
cannot be proven by showing that each partial graph is an arc. We make the
family a little easier to analize by having additional restrictions.

Example 2. Let 0 ≤ a ≤ c < 1. Define ga,c: [0, 1] → [0, 1] as follows. Let
G(ga,c|[0, 1

2
)) be a sin 1

x
-curve with endpoint (0, 0), limit bar {1

2
}× [c, 1], down

folds at a sequence of points {(xi, 1)} converging to (1
2
, 1), and up folds at

a sequence of points {(yi, c)} converging to (1
2
, c). Let ga,c|[ 1

2
,1] = fa from
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Example 1. Graphs for g 5
8
, 3
4

and g 1
4
, 1
2

are shown in Figure 2.

Let Ya,c = lim
←−
{[0, 1], ga,c} with the single bonding function ga,c from this

family. We show that Ya,c is chainable if, for all n ≥ 0, gna,c(a) 6= 1
2

and
gna,c(c) 6= 1

2
. As in Example 1, we only need to consider the points where ga,c

has either an up fold or a down fold, and show that the second coordinate
of each such point does not compose under iterates of ga,c to 1

2
, which is the

only value where ga,c is not cohesive. Hence, it will suffice to look at the full
orbits of such points.

g 5
8
, 3
4 g 1

4
, 1
2

Figure 2. The graphs of g 5
8
, 3
4

and g 1
4
, 1
2

1. Ya,c is chainable if, for all n ≥ 0, gna,c(a) 6= 1
2

and gna,c(c) 6= 1
2
.

For a down fold at (1
2
, 1), and each down fold in the sequence of down

folds at {(xi, 1)}, we see that the full orbit of 1 is the constant {1} sequence.
For an up fold at some (yi, c), by hypothesis, the full orbit of c consists of
singletons. For an up fold at (1

2
, a), by hypothesis, the full orbit of a also

consists of singletons. By Corollary 1(a), Ya,c is chainable.
By placing additional restrictions on some of the members of this family

of functions, one can ensure that, for all n ≥ 0, gna,c(a) 6= 1
2

and gna,c(c) 6= 1
2
.

For example, for 0 < a < c < 1
2
, let y1 = a, and let ga,c(c) = c. We have that

the full orbit of each of a and c is the constant {c} sequence.

2. Ya,c is not chainable if either a = 1
2

or c = 1
2
.

(a) Suppose a = 1
2
. Then we consider the one-sided up fold V of g 1

2
,c at

(1
2
, 1
2
) where c2(V ) = [1

2
, 1] in the second factor space. Now, g 1

2
,c is not right

cohesive at 1
2

into the first factor space. So, by Theorem 1(3), Ya,c is not
chainable.

(b) Suppose c = 1
2
. Let V be the up fold of ga, 1

2
at (1

2
, y1) such that

c2(V ) = [1
2
, 1] in the second factor space. Again, ga, 1

2
is not right cohesive at

1
2
. So, by Theorem 1(3), Ya, 1

2
is not chainable.
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In Example 3, we give an example of an inverse sequence where a re-
stricted right cohesive subgraph in the graph of the second bonding function
`2 produces a triod in the partial graph G3

1, making the inverse limit not
chainable. It can be checked that no up or down fold Λ of `2 produces a
triod in G3

1 since Λ does not compose to a value where `1 is not cohesive.
So, condition (4) in Theorem 1 is necessary in the sense that it cannot be
omitted.

Example 3. We define an inverse sequence {[0, 1], `i} with limit Z. The
bonding functions `1 and `2 cause Z to not be chainable.

Define `2 as follows. Let G(`2|[0, 1
2
]) be the graph of a sin 1

x
-curve with

endpoint (0, 0) and limit bar {1
2
} × [1

4
, 3
4
]. Let G(`2|[ 1

2
,1]) be the graph of a

sin 1
x
-curve with the same limit bar. For the sin 1

x
-curve to the left of the

limit bar, we assume the down folds all have second coordinates larger than
3
4
, and the up folds all have second coordinates less than 1

4
and larger than

0. For the sin 1
x
-curve to the right of the limit bar, we assume the down folds

all have second coordinates less than 3
4
, and the up folds all have second

coordinates larger than 1
4
.

Define `1 as follows. Let `1(0) = [0, 5
8
], `1(t) = 5

8
for 0 < t < 1

4
, `1(

1
4
) =

[1
2
, 5
8
], `1(t) = 1

2
for 1

4
< t < 3

4
, `1(

3
4
) = [1

2
, 3
4
], and `1(t) = t for 3

4
< t ≤ 1.

For i > 2, let `i be the identity mapping on [0, 1]. Graphs of `1 and `2
are shown in Figure 3.

`2`1

Figure 3. The graphs of `1 and `2

The inverse limit Z is not chainable. We observe that G(`2) has a re-
stricted right cohesive subgraph at 1

2
; in particular, `2(

1
2
) = `2([

1
2
, 1]) = [1

4
, 3
4
].

Also, `1 is not right cohesive at 1
4

and not left cohesive at 3
4
. By either The-

orem 1(4) or Theorem 4(2), this produces a triod in G3
1. Hence, Z is not

chainable.
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