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Abstract 
This manuscript describes the development of a resource module that is part of a learning platform named ‘NIGMS Sandbox for Cloud-
based Learning’ (https://github.com/NIGMS/NIGMS-Sandbox). The module delivers learning materials on Cloud-based Consensus 
Pathway Analysis in an interactive format that uses appropriate cloud resources for data access and analyses. Pathway analysis is 
important because it allows us to gain insights into biological mechanisms underlying conditions. But the availability of many pathway 
analysis methods, the requirement of coding skills, and the focus of current tools on only a few species all make it very difficult for 
biomedical researchers to self-learn and perform pathway analysis efficiently. Furthermore, there is a lack of tools that allow researchers 
to compare analysis results obtained from different experiments and different analysis methods to find consensus results. To address 
these challenges, we have designed a cloud-based, self-learning module that provides consensus results among established, state-of-
the-art pathway analysis techniques to provide students and researchers with necessary training and example materials. The training 
module consists of five Jupyter Notebooks that provide complete tutorials for the following tasks: (i) process expression data, (ii) perform 
differential analysis, visualize and compare the results obtained from four differential analysis methods (limma, t-test, edgeR, DESeq2), 
(iii) process three pathway databases (GO, KEGG and Reactome), (iv) perform pathway analysis using eight methods (ORA, CAMERA, 
KS test, Wilcoxon test, FGSEA, GSA, SAFE and PADOG) and (v) combine results of multiple analyses. We also provide examples, source 
code, explanations and instructional videos for trainees to complete each Jupyter Notebook. The module supports the analysis for many 
model (e.g. human, mouse, fruit fly, zebra fish) and non-model species. The module is publicly available at https://github.com/NIGMS/ 
Consensus-Pathway-Analysis-in-the-Cloud. 

This manuscript describes the development of a resource module that is part of a learning platform named “NIGMS Sandbox for Cloud-
based Learning” https://github.com/NIGMS/NIGMS-Sandbox. The overall genesis of the Sandbox is described in the editorial NIGMS 
Sandbox [1] at the beginning of this Supplement. This module delivers learning materials on the analysis of bulk and single-cell ATAC-
seq data in an interactive format that uses appropriate cloud resources for data access and analyses. 

Keywords: cloud computing; self-learning module; NIGMS sandbox; pathway analysis; jupyter notebooks 

INTRODUCTION 

Pathway analysis is a powerful computational approach used in 
bioinformatics and genomics research to gain insight into the 
underlying biological mechanisms involved in a particular biolog-
ical process or disease. In comparison to differential expression 
analysis at the gene-level, which typically returns a lengthy list of 
differentially expressed (DE) genes across multiple conditions (e.g. 
normal versus cancer), pathway analysis offers a more systematic 

way to report and interpret these results. It allows researchers to 
annotate these DE genes into many certain functions and exam-
ine the interactions and functional relationships between genes, 
proteins and other molecular entities within biological pathways. 
By grouping the genes into subsets that share similar functions, 
pathway analysis has shown its importance in numerous down-
stream analyses, including disease subtype identification [2, 3], 
personalized treatment or medication approaches [4–8], survival 
analysis [9, 10], space biology [11, 12] and  more.
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Thus far, there are more than 100 pathway analysis methods 
that have been proposed, utilizing various statistical and com-
putational approaches [13–15]. These methods can be divided 
into two different categories: ‘non-topology-based’ and ‘topology-
based’ methods. The former treats pathways as simple, unordered 
collections of genes, whereas the latter takes into account the 
dependencies and interactions between genes within pathways. 
Furthermore, each of these categories can be divided into smaller 
subgroups based on their specific input requirements. In essence, 
some methods are designed to handle data from a single-omic 
level, while others have the capability to integrate and analyze 
multi-omics data. However, the wide range of pathway analysis 
methods presents a challenge for researchers in selecting the 
most suitable method(s) for their specific experimental purposes. 
These methods are written in different programming languages, 
tested and deployed in diverse environments, necessitating vary-
ing computational knowledge for their execution. Therefore, there 
is a need for a training module that can provide users with uni-
form guidance on how to utilize these methods effectively. Such 
a module would assist researchers in expanding their research 
capabilities, navigating the variety of pathway analysis methods 
and facilitating their selection and usage in a consistent manner. 

Moreover, as sequencing costs continue to decrease, it is 
becoming common to assay genomic information from different 
cohorts of patients or samples across multiple species. As a 
result, the amount of genomic data generated exponentially 
increased over the past decades, leading to the establishment of 
multiple billion-dollar data repositories for biomedical research, 
such as the National Center for Biotechnology Information Gene 
Expression Omnibus (NCBI GEO) [16, 17], The Cancer Genome 
Atlas (GDC/TCGA) [18] and ArrayExpress [19, 20]. Leveraging 
these data, especially in the context of pathway analysis, requires 
expertise in data processing and substantial computational 
resources. Necessary resources include storage capacity for 
data, powerful Central Processing Units (CPUs) and/or Graphical 
Processing Units to efficiently analyze large-scale genomic 
data. However, these requirements often come at high costs, 
making them hard to afford for small research laboratories 
or educational purposes [21, 22]. To address this issue, cloud 
computing platforms have been adopted by many research 
communities to access computing and storage resources at a scale 
that had previously been available to only the largest research 
institutions, due to the well-known advantages of flexibility, 
elasticity and economy it can offer [23]. 

In this article, we present Cloud-based Consensus Pathway 
Analysis (CCPA), a specialized cloud-based self-learning module 
designed for students, researchers and clinicians, among others, 
to utilize cloud computing resources to perform pathway analysis 
and meta-analysis. The five core learning submodules of CCPA 
are as follows: (i) data acquisition and processing, which pre-
pares and processes gene expression data, (ii) differential analysis 
and consensus analysis using four different methods, (iii) gene-
set and pathway acquisition, which guides users to effectively 
browse, explore and automatically download pathway informa-
tion from Gene Ontology (GO) [24], Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [25] and Reactome [26], (iv) pathway analy-
sis, which performs pathway analysis using eight methods and 
(v) meta-analysis, which combines analysis results of related 
experiments and explores significantly impacted pathways across 
multiple analyses. 

The learning module is designed to be self-contained and there 
is no prerequisite required for users to complete the module. 
Particularly, we provide detailed instructions on how to install and 
utilize the necessary software packages, as well as how to access 

and utilize the cloud resources. Through practical examples, code 
implementations and detailed explanations, users gain a com-
prehensive understanding and proficiency in utilizing current 
technological advancements in cloud computing via the Google 
Cloud for pathway analysis and other large-scale genomic analy-
ses involving various biomedical species (e.g. human, mouse, fruit 
fly, zebrafish). Each code snippet provided in the learning module 
only takes, at most, some minutes to execute. The learning mod-
ule is designed so that students can learn the materials without 
waiting too long for the analyses. 

This article is a part of the special issue NIGMS SandBox Spe-
cial Edition that presents NIGMS Sandbox (https://github.com/ 
NIGMS/NIGMS-Sandbox), the collective effort aiming to encour-
age students and researchers to utilize cloud computing for the 
benefit of life science applications and research. Compared with 
our previously published web application CPA [27], there are 
numerous distinct differences in this cloud-based learning mod-
ule CCPA. In addition to the structural differences (cloud-based 
training module versus web application), the topics covered in 
CCPA are wider (data processing, differential analysis, pathway 
database processing, pathway analysis, consensus pathway anal-
ysis). CCPA aims to expose students to the full analysis pipelines 
on the cloud with detailed instructions, source code and explana-
tions for each step and parameter needed. These are necessary 
for learners to customize their analysis pipelines without relying 
on a single method or analysis tool. 

The article is structured as follows: the Methods section outlines 
the cloud-based learning module’s overall design architecture 
and comprehensively covers data analyses incorporated in the 
module. The Results section provides a demonstration of CCPA, 
utilizing two Alzheimer’s disease datasets. The codes responsible 
for producing the results and figures discussed in this section 
can be found in the Supplementary Note. However, it is worth 
mentioning that this only presents a portion of CCPA, while the 
complete codes and explanations are available at https://github. 
com/NIGMS/Consensus-Pathway-Analysis-in-the-Cloud. Finally, 
in the Discussion and Conclusion section, we highlight our contribu-
tions to the research community, discuss some limitations of the 
current module and propose potential further enhancements to 
advance the module. 

METHODS 
Figure 1 shows the overall architecture of CCPA. The learning 
takes place within the Google Cloud environment via using a Ver-
tex AI Workbench virtual machine with R kernel. Users have the 
flexibility to select the R version they prefer during the creation 
of the workbench. Upon creation, the working environment is 
automatically set up. The module consists of five submodules, 
presented as separate Jupyter Notebooks containing detailed code 
and instructions. Users can either upload these notebooks to the 
Vertex AI Workbench or clone them from the project’s GitHub 
repository before executing the source code directly within the 
notebooks. 

In the first submodule, named Processing Expression Data, 
we provide guidance on acquiring data from NCBI GEO using 
both the web interface and R command line. For users with their 
own data or those preferring data from other repositories such 
as GDC/TCGA, we direct them to upload the required data files 
to the cloud environment via the web interface. Following data 
preparation, users are instructed on data processing, normaliza-
tion and gene mapping. These processed data serve as input for 
subsequent submodules, including Differential Analysis, Process-
ing Pathway Information, Pathway Analysis and Meta-analysis.
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Figure 1. The high–level description of the CCPA pipeline. Users start by creating Google Cloud Storage buckets to store their data, preparing for the 
upcoming analysis. Next, they launch a Vertex AI workbench with R kernel, running Jupyter Notebooks that are cloned from our project repository. 
These Notebooks contain code and instructions for five separate analysis submodules. The Processing Expression Data submodule demonstrates data 
retrieval from public repositories, followed by preprocessing. The processed data are stored both locally in the Vertex AI workbench and in the user’s 
Google Cloud Storage Bucket. Subsequently, the Differential Analysis, Processing Pathway Information, Pathway Analysis and Meta-analysis submodules 
build upon the outputs of the Data processing submodule. Their results are also saved to the local repository in the Vertex AI workbench before being 
conveniently copied to the user’s cloud bucket. Users can further export analysis reports from their cloud buckets using various cloud functions. 

Instructions are also given on saving all data, code and analysis 
results to the local repository in the Vertex AI Workbench as well 
as the user’s cloud storage bucket. The local repository on the 
Vertex AI virtual machine is accessible across all submodules, and 
code for transferring content between the storage bucket and the 
Vertex AI virtual machine is provided. This allows users to easily 
access the results of each submodule and copy them to their cloud 
bucket for further analysis or sharing with collaborators, as well 
as to pause and resume the analysis at any time. 

Cloud environment settings 
Our learning module requires users to have a Google Cloud 
account. Google Cloud is a platform that provides a web-based, 
graphical user interface that we can use to access various 
computing resources and utilize them for many applications such 
as web servers or software deployment. In our learning module, 
we introduce the use of two Google Cloud services, namely Google 
Cloud Storage and Vertex AI Workbench. 

Google cloud storage 
Google Cloud Storage is a versatile object storage service and 
a cost-effective solution for data storage, which can be used in 
many applications such as static website hosting, data backup, 
content distribution and big data analytics. Figure 2A shows  
the screenshot of Google Cloud Storage’s user-friendly GUI. 
Through the GUI, we guide users on creating Google Cloud 
Storage Buckets for user data, public repositories and analysis-
generated data. Users can easily upload their data to the 
buckets via this interface. We also stress data security, access 
control, storage classes and highlighted use cases such as web 
hosting, backup, content distribution and data analysis. This 
knowledge empowers users to effectively manage their data on 
Google Cloud. 

Vertex AI workbench 
Each learning submodule is organized as an R Jupyter Notebook, 
ensuring an interactive and practical experience for participants. 
The notebooks are executed within the Google Cloud environ-
ment, managed through Vertex AI Workbench, offering seamless 
accessibility without the need for extensive configurations. Learn-
ers can conveniently open the notebooks in their browser tabs, 
making it effortless to dive into the world of data analysis. We have 
provided details on configuring the virtual machine and working 

environment in our project repository. Users have the flexibility 
to create different machines that align with their data analysis 
needs. 

Figure 2B and C show an example of what settings are available 
when creating a new notebook. For example, users can create 
the Jupyter Notebook (i.e. virtual machine) using R kernel version 
> 4.1 on a standard machine with a minimum configuration of 
4 vCPUs, 15 GB RAM and 10GB of HDD, within the Workbench 
screen. Once the virtual machine is created, users have the option 
to start, stop or delete the notebook on the Workbench screen. The 
Workbench page also provides status information about the note-
book, such as the current status (starting, running or stopped), 
and the time the notebook was created, as well as a link to 
access JupyterLab (Figure 2D) to start or resume the analysis. 
However, it is important to note that the Google Cloud interface 
may change over time; users are advised to refer to the Google 
Cloud documentation for the latest instructions on using Vertex 
AI Workbench. 

Synchronizing data to google cloud bucket 
In addition to using the web interface, we offer a command-
line option for automation in transferring data between Google 
Cloud Storage and Vertex AI Instances. For example, to create 
a new bucket, users can use the following command in the 
R console: 

where <bucket-name> is the name of the bucket. To upload files 
to the bucket, we can use the following command: 

where <file-name> is the name of the file to be uploaded. Simi-
larly, to download files from the bucket, we can use the following 
command: 

where <local-path> is the path to the local directory where the 
file will be downloaded. At any point in the analysis, users can 
save the snapshot of the R environment to the bucket using the 
following command:
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Figure 2. Setting up cloud environment. (A) Users start by creating Google Cloud Storage buckets to store their data and manage control access to 
share with their collaborators. (B) Users can create a new notebook on Google Cloud on the Workbench screen. (C) They can then configure the virtual 
machine with R version 4.2 as the development environment, with 4 CPUs and 15GB RAM. (D) When users finish creating a notebook, they can locate it 
by navigating to USER–MANAGED NOTEBOOKS tab. Click the START button on the top menu bar to start the machine. The starting process might take 
up to several minutes. When it is done, the green checkmark indicates that your virtual machine is running. Next, click OPEN JUPYTER LAB to access 
the notebook. Note that the Google Cloud interface may change over time, users are advised to refer to the Google Cloud documentation for the latest 
instructions in using Vertex AI Workbench. 

where workspace.RData is the name of the snapshot file. To load 
the snapshot from the bucket, we can use the following command: 

Submodule 01: processing expression data 
The main goal of this submodule is to prepare  the data for  
both differential analysis and gene set enrichment analysis. 
This involves the following steps: (i) browsing and downloading 
data from NCBI GEO using the web interface and R command 
line, (ii) uploading users-provided data to the Cloud, (iii) data 
processing and (iv) gene mapping. In the first step, we guide 
users in efficiently searching and exploring the NCBI GEO 
database to find relevant datasets using various criteria, such 
as keywords, conditions, tissues, organisms and platforms. 
Figure 3 shows the interface of the GEO database for searching 
the datasets. By using interactively filtering on the interface, 
users can easily uncover datasets that align with their specific 
research questions and inform decisions on which datasets to 
download and process. To facilitate dataset acquisition, we offer 
different methods for downloading data from NCBI GEO. Users 
can download data directly from the database’s website or utilize 
an R package, namely GEOquery [28], for downloading from the 
database. 

However, it is important to note that we limit the description 
of NCBI GEO to the first step only. The purpose is for new users 
to get familiar with gene expression meta-data that have already 
been stored at NCBI GEO in the past decades. Thus, in the second 
step, we describe how users can upload their own data directly to 
Vertex AI Instance and Google Cloud Storage. In this step, we also 
clearly describe the format of the files to be uploaded, including 
the gene expression data and experiment design (sample grouping 
that describes the conditions, such as healthy versus disease). 
Users can certainly download data from GDC/TCGA or other 

public repositories, and upload the data in the format specified 
in the second step. 

In the third step, we walk users through the process of handling 
provided datasets based on the repository, data type, platform 
and species. This involves actions such as delving into metadata 
and assessing data distribution. As a result, users can determine 
whether additional processing of their data is necessary. This step 
also covers common procedures for quality control and normal-
ization. The process encompasses procedures such as quartile 
filtering to eliminate outliers and missing expression values, log 
normalization to ensure consistent sample distributions, and the 
utilization of boxplot function to verify the effectiveness of data 
normalization. Of note, the submodule is designed to handle table 
data generated from either microarray or RNA-Seq experiments. 
For those starting with raw sequencing files (.CEL for microarray 
or .FASTQ for RNA-Seq), we recommend users consult relevant 
protocols for alignment and obtaining the expression data table. 

In the last step, we guide users in performing the gene ID map-
ping process. The reason is that pathway analysis requires both 
pathways (or gene sets) and expression data to be represented 
using the same type of gene IDs. However, it is often the case 
that the available data do not conform to this requirement. For 
example, while pathways from the KEGG database predominantly 
utilize Entrez Gene IDs, microarray datasets commonly employ 
probe set IDs or RefSeq transcript IDs. Consequently, we must 
perform a mapping process to convert the probe set IDs to Entrez 
Gene IDs. To accomplish this, we advise users to refer to the 
documentation of the platform used to generate the sequencing 
data, which provides information on the probe set IDs presented 
in the dataset. In some cases, data repositories such as NCBI GEO 
may include this documentation along with the expression data, 
making it readily accessible. Fortunately, this document already 
includes the essential mapping information from probe set IDs to 
other commonly used gene IDs, such as Entrez Gene IDs or gene 
Symbols. Alternately, we also guided users to download and utilize 
the annotation software packages, which are usually available
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Figure 3. GEO dataset screening. Users can explore the GEO datasets using the database’s web interface. Within this interface, users can access metadata 
containing key information such as sequencing technology, organism, number of samples, data format and more. By interacting with these metadata 
columns, users can apply filters to narrow down datasets most suitable for their analysis needs. 

on Bioconductor. For instance, AnnotationDbi [ 29] is a package  
that provides an interface for connecting and querying various 
annotation databases using SQLite data storage. hgu133plus2.db 
[30] is a package that is built upon a database to perform Probe 
IDs to gene Symbols mapping for human data. 

Submodule 02: differential analysis 
The next step in pathway analysis involves conducting differential 
analysis, which aims to identify genes that exhibit significant 
expression changes between two or more biological conditions. 
The identification of these DE genes provides valuable insights 
into the biological processes influenced by the conditions of 
interest [31, 32]. 

This submodule introduces comprehensive instructions on uti-
lizing well-established methods for differential analysis, tailored 
to different data types, including: t–test, limma [33], DESeq2 [34] 
and edgeR [35]. Furthermore, for microarray data, we recommend 
using the limma method, while for RNA-Seq data, we suggested 
utilizing DESeq2 and edgeR. These methods have proven their 
efficacy in detecting genes with noteworthy expression changes 
across various studies [36, 37]. 

Additionally, we emphasize the importance of visualizing the 
results of the differential expression analysis. Visualization tech-
niques such as heatmaps and Volcano plots were introduced 
to assist users in conducting quality control checks, identify-
ing potential outliers or noise in the data, and gaining valuable 
insights into the data distribution. These visualizations serve as 
valuable tools for pinpointing DE genes and evaluating the overall 
quality and reliability of the analysis. 

Submodule 03: processing pathway information 
In this module, we cover three primary curated pathway 
databases: GO [38], KEGG [39] and Reactome [40]. GO offers a 
structured vocabulary to describe gene attributes across organ-
isms, categorized into Molecular Function, Biological Process and 
Cellular Component. KEGG encompasses databases for genomes, 
pathways, diseases, drugs and chemical substances, serving 
bioinformatics research and education, genomics, metagenomics 

and drug development. Reactome provides pathway knowledge 
and tools for data visualization, integration and analysis covering 
diverse topics including classical intermediary metabolism, 
signaling, transcriptional regulation, apoptosis and disease. 

This submodule describes database structures, ID types and 
how to retrieve pathway annotations. For effective browsing, we 
introduce specific software packages. The topGO package [41] 
retrieves GO terms from gene IDs obtained through DE analysis, 
utilizing the Gene2GO databases. To retrieve KEGG pathways and 
gene sets via the R console, users can employ the KEGGREST 
package [42], providing a client interface to the KEGGREST server. 
To access the Reactome databases, the package ReactomeCon-
tentService4R [43] provides useful functions for querying path-
ways data through the Reactome Content Service API. 

In terms of maintainability, we advise users to regularly update 
the relevant R packages (topGO, KEGGREST and ReactomeCon-
tentService4R). This ensures that they have access to the latest 
pathway information for their analyses. Users can also save the 
pathways to avoid repeated downloads in the future, as each 
download only takes a couple of minutes. However, we recom-
mend that users refresh the pathways regularly to ensure that 
their pathways are up-to-date. 

Submodule 04: pathway analysis 
In this module, we provide users with comprehensive guidance 
on performing enrichment analysis using a list of DE genes and 
curated pathways from public databases. Enrichment analysis 
(EA) is a powerful technique that allows us to gain valuable 
biological insights from lists of significantly altered genes [44, 
45]. By identifying biological pathways or ontology terms that are 
enriched in a gene list beyond what would be expected by chance, 
EA helps us understand the underlying mechanisms of diseases 
and the genes and proteins associated with specific diseases or 
drug targets. 

To provide users with a range of options, we introduce 
eight state-of-the-art enrichment analysis methods, including 
Wilcocon test [46], Kolmogorov–Smirnov (KS) test [47], Over-
Representation Analysis (ORA/Webgestalt) [48, 49], Gene Set
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Figure 4. Querying data from GEO repository. On top of the web page showing the querying results, users can find details about the datasets, including 
their titles, publication dates, ownership and pertinent information related to the experimental design, such as organism, tissue, biopsy region, sample 
size and summaries. At the end of the web page, users can find further information about the dataset, such as the sequencing platform used, the 
number of samples, project ID and links to download the expression data. The left panel is the querying result for the microarray dataset (GSE5281), 
and the right panel is the querying result for the RNA-Seq dataset (GSE153873). 

Analysis (GSA) [ 50], Pathway Analysis with Down-weighting 
of Overlapping Genes [51], Fast Gene Set Enrichment Analysis 
(FGSEA) [52], Correlation Adjusted MEan RAnk gene set test 
(CAMERA) [53] and Significance Analysis of Function and 
Expression (SAFE) [54]. To enhance the user experience and 
facilitate result interpretation, we also provide guidance on 
various visualization functions. These visualizations enable users 
to explore enriched gene sets and pathways in an intuitive 
and user-friendly manner, making the analysis process more 
accessible and informative. 

Submodule 05: meta-analysis 
The decreased cost of high-throughput platforms has led to the 
generation of diverse datasets with varying sample sizes. This has 
created opportunities to overcome the limitations of small sample 
sizes through meta-analysis. Meta-analysis is a statistical analysis 
that systematically combines the results of multiple research 
studies. In the context of pathway analysis, meta-analysis enables 
the combination and analysis of multiple sample sets—even if 
they come from different platforms, as well as results obtained 
from multiple methods. By pooling analysis from various stud-
ies and from using multiple methods, meta-analysis enhances 

statistical power, increases sample size and strengthens the reli-
ability and generalizability of research findings. 

In this submodule, we guide users on performing generic 
inverse variance meta-analysis using metagen function available 
in the meta R package [55]. metagen is a statistical method used 
in meta-analysis to combine the results of multiple studies that 
have measured the same effect size, typically using different 
sample sizes and study designs. This method involves pooling 
the effect sizes from each study, weighted by the inverse of their 
variance, in order to obtain an overall estimate of the effect size 
and its confidence interval. Additionally, we provide instructions 
on producing plots, e.g. forest plots and pathway heatmaps, which 
allow users to compare enrichment scores obtained from meta-
analysis using multiple datasets with those calculated from a 
single dataset. These visual tools aid in the assessment and 
comparison of the meta-analysis results, providing valuable 
insights into the combined data’s overall impact. 

RESULTS 
In this section, we present a demonstration of CCPA using 
two Alzheimer’s disease datasets downloaded from NCBI GEO:
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GSE5281 [56] and GSE153873 [57], an Affymetrix microarray and 
RNA-Seq dataset, respectively. Figure 4 displays the GEO webpage 
with comprehensive dataset records, including crucial details 
such as titles, publication dates, ownership and experimental 
design info such as organism, tissue, biopsy region, sample size 
and summaries. Scrolling down, it presents more details such 
as sequencing platform, sample count, project ID and links 
to download expression data. In our example, GSE5281 used 
Affymetrix Human Genome U133 Plus 2.0 Array with 131 samples, 
and GSE153873 used Illumina NextSeq 500 with 30 samples. We 
can also click on sample IDs for detailed descriptions and clinical 
info of individual samples. The summary table at the bottom 
contains all experiment data. We can use the ‘(http)’ link to 
manually download raw data for all samples or choose ‘(custom)’ 
for specific samples of interest. 

In the subsequent sections, we will demonstrate how to obtain 
these datasets and perform all the analyses using the R command 
line. Note that we will include some examples of code snippets 
and their results along with explanations such that users can 
better grasp the process and have a deeper understanding of the 
materials being taught in our learning module. We also provide 
codes to generate all the results and figures presented in the 
following sections in the Supplementary Note. This approach not 
only demonstrates what can be achieved from the module but 
also provides a hint about the hands-on learning experience users 
can expect. To run all the code provided, we used a standard 
machine with the configuration of 4 vCPUs, 15 GB RAM and 10GB 
of HDD created on Vertex AI Workbench. 

Submodule 01: processing expression data 
To download the microarray dataset, GSE5281, from NCBI GEO, 
we utilize the getGEO function from the package GEOquery. This 
package is available in Bioconductor and can be installed through 
the following command: 

Once installed, we provide accession ID, i.e. GSE5281, to the 
getGEO function as its argument, as shown below 

Alternatively, we have the option to employ the fread function 
from the data.table package to download data directly from its 
URL. The code block below demonstrates how we download the 
RNA-Seq dataset using this approach 

Subsequently, we conduct log normalization (base 2) and sam-
ple annotation (control versus disease) for downstream analyses. 
In our example, we perform data normalization only on the 
microarray dataset, and we use raw counts for the RNA-Seq 
dataset. Next, the Probe IDs are used as gene annotations for 
the microarray dataset, while the RNA-Seq dataset uses gene 
Symbols. The pathways in the following sections will use the gene 
Symbols. Therefore, we utilize the hgu133plus2.db package for 
mapping the gene IDs utilized in the datasets to gene Symbols 
used in pathway annotation. Finally, we obtain the necessary 
input data for the subsequent module’s analysis. These data 
include expression matrices, in which rows are gene Symbols and 

columns are samples, and sample grouping information specify-
ing the condition of the samples. 

Submodule 02: differential analysis 
This submodule includes the source code and instructions to 
perform differential analysis using t–test, limma, DESeq2 and 
edgeR. For each method, we provided a customized function 
such that it allows users to perform the analysis with one 
single command line. In each function, the parameters have 
default values that allow novice users to perform the analysis 
without setting those parameters. We have also added detailed 
explanations for each parameter used in each function so that 
users can read the instructions and change these parameters if 
they desire to do so. For example, we provided the following code 
snippet to run DESeq2: 

Accordingly, users only need to pass the expression matrix 
and sample grouping information obtained from Submodule 
01 into the function arguments as countMatrix and groups,

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/Supplem

ent_1/bbae222/7718483 by Auburn U
niversity user on 25 July 2024



8 | Nguyen et al.

respectively. We have performed differential analysis using 
DESeq2 on the RNA-Seq dataset using the following code snippet: 

The codes for running differential analysis methods on the two 
datasets can be found in the Submodule 02 Jupyter Notebook and 
Supplementary Note. All methods return the tables of results that 
have genes represented as rows and their corresponding statistics, 
such as fold change, P-value and adjusted P-value for multiple 
comparisons, as columns. The columns have identical names 
across all methods. This will help users to generate different plots 
for visual representations of the findings by using our provided 
customized plot functions. These plots include: (i) MA plots to 
compare the average expression with the log2 fold-change, (ii) 
volcano plots to compare the log2 fold-change with −log10 P-
value, (iii) Venn diagrams to compare DE genes from multiple 
analyses/datasets and (iv) gene heatmap to plot log2 fold-change 
and −log10 P-values across multiple analyses/datasets. 

Figure 5 displays the plots that users can obtain by following 
our learning submodule. The top panel of the figure (Figure 5A 
and B) shows the MA plot and volcano plot that visualizes 
the differential analysis results when applying limma on the 
microarray dataset (GSE5281) and DESeq2 on the RNA-Seq 
dataset (GSE153873). For the same dataset, users can use the 
four differential analysis techniques: limma, t-test, edgeR and 
DESeq2. To compare and contrast the analysis results, users 
can visualize all analyses using Venn diagrams or heatmaps 
(Figure 5D). Specifically, the Venn diagram (Figure 5C) can be used 
to compare the list of DE genes identified by the four differential 
analysis methods (limma, t-test, edgeR and DESeq2) applied on 
the same dataset. Similarly, the heatmap (Figure 5D) displays 
the log2 fold-change of genes along with their −log10 P-values 
obtained from the four methods. 

Submodule 03: processing pathway information 
In this example, we curate pathway information from two public 
databases: GO, KEGG and Reactome. To achieve this, we use R 
packages named topGO, KEGGREST and ReactomeContentSer-
vice4R. Additionally, for genome-wide annotation specific to 
human, we rely on the org.Hs.eg.db package. 

To acquire GO terms, we explore the GO database through the 
topGO and org.Hs.eg.db package as follows: 

For obtaining KEGG pathways related to human, the keggList 
function from the KEGGREST package is employed. The respective 
command lines for these processes are as follows: 

To retrieve human pathways from Reactome, we apply the 
function getSchemaClass() from ReactomeContentService4R 
package as follows: 

Lastly, the curated pathways are saved in the ‘.gmt’ format, 
which is a widely used file format compatible with various path-
way analysis algorithms, enabling seamless integration into sub-
sequent analyses. 

Submodule 04: pathway analysis 
For pathway analysis, we include in this learning submodule a 
total of eight enrichment methods: Wilcocon test [46], KS test 
[47], ORA/Webgestalt [48, 49], GSA [50], PADOG [51], FGSEA [52], 
CAMERA [53] and  SAFE  [54]. Similar to the functions for dif-
ferential analysis and visualization introduced thus far, we also 
provide customized functions, with detailed explanations, that 
wrap the process of performing each enrichment method. Users 
can simply provide the differential analysis result obtained from
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Figure 5. The visual representation of results obtained from the differential expression analysis. (A) The MA plot illustrates the relationship between gene 
average expression (x-axis) and fold change (y-axis). (B) The volcano plot showcases the relationship between gene fold change (x-axis) and statistical 
significance (P-value) (y-axis). For both the MA plot and the Vocalno plot, each point on the plot represents a gene, colored based on its significance. (C) 
The Venn diagram compares the list of DE genes identified by the four differential analysis methods (limma, t-test, edgeR and DESeq2) applied to the 
same dataset. (D) The heatmap displays the log2 fold-change of genes along with their −log10 P-values obtained from the four methods. In each plot, 
the microarray analysis result is shown on the left panel (GSE5281), while the RNA–seq analysis result is shown on the right panel (GSE153873). 

Submodule 02 to run pathway analysis. For example, users can 
use the following function to perform FGSEA: 

Users can find the codes and explanations for the remaining 
seven methods in our Submodule 04’s Jupyter Notebook. In our 
example, we perform pathway analysis using FGSEA on the two 
datasets by running the following code snippets: 

Finally, all functions introduced in this submodule return anal-
ysis results that are stored in a table format, with pathways 
represented as rows and their corresponding statistics, including 
P-value (pval), adjusted P-value (padj), enrichment score (ES) and
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normalized enrichment score (NES), as columns. The columns’ 
names are identical across all methods, which makes it easier 
to compare and integrate the results from multiple analyses, as 
outlined in the following submodule. 

Submodule 05: meta-analysis 
In this submodule, we perform generic inverse variance meta-
analysis using metagen function available in the meta package. 
The function allows us to effectively combine the enrichment 
scores of each pathway, which were obtained from the individ-
ual analyses. This enables us to gain a comprehensive under-
standing of pathway enrichment across both datasets and iden-
tifies any potential commonalities or differences in the biological 
processes at play. In the following code snippets, we showcase 
the meta-analysis of the results from using FGSEA on the two 
datasets. 

Similar to the Pathway Analysis submodule, the analysis 
results are also presented in a tabular format, where pathways 
are depicted as rows and their corresponding statistics, such as 

combined enrichment scores and associated P-values (adjusted 
for multiple comparisons), are represented as columns. 

Finally, we also provided customized functions to visualize the 
individual analysis results and their meta-analysis result. Figure 6 
showcases the plots obtained from running the plot functions pro-
vided in our learning module. The functions can be used to plot: 
(i) forest plot to display pathway’s ES with its confidence interval, 
(ii) Venn diagram to compare significant pathways obtained from 
multiple analyses/datasets and (iii) pathway heatmap to visual-
ize enrichment scores and −log10 P-values obtained from one 
or multiple analyses/datasets. By employing the meta-analysis 
approach, we gain a more robust and comprehensive view of the 
pathway enrichment results, enabling us to draw more insightful 
conclusions by comparing the outcomes of the two datasets. The 
codes to reproduce the results and plots presented here can be 
found in the Supplementary Note. 

Storing data files in google cloud bucket 
To store the data files in Google Cloud Bucket, we use the gsutil 
cloud application with the following syntax: 

To execute this command line, we can either open the terminal 
or use the system function in R within a Jupyter Notebook’s code 
cell. For example, we use the following R command lines to save 
our analysis results in Google Cloud Bucket: 

DISCUSSION AND CONCLUSION 
Cloud computing has become an essential tool for researchers to 
perform large-scale data analyses. However, the learning curve 
for cloud computing can be steep for researchers who are unfa-
miliar with the field of high-performance computing. With the 
increasing popularity of cloud computing, there is a need for 
training modules that can help researchers learn how to use 
cloud computing for their research. This is especially helpful 
with small research groups that do not have consistent access to 
high-performance computing resources. The biggest advantage of 
cloud computing is that it provides a cost-effective solution for the 
necessary computational resources with the ability to scale up 
or down as needed without the need to purchase and maintain 
expensive hardware. It also allows researchers to perform their 
analysis in a reproducible manner since the computing environ-
ment can be easily replicated. Another big advantage of cloud 
computing is that it allows researchers to share their analysis
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Figure 6. Visual representation for the results derived from applying FGSEA on the GSE5281 and GSE153873 datasets, along with their meta-analysis. (A) 
The forest plot displays the individual pathway analysis outcomes and their meta-analysis. Each pathway’s normalized score for each dataset is denoted 
by a circle, with horizontal segments depicting the confidence intervals around these scores. (B) Venn diagram compares significant pathways obtained 
from the two individual analyses. (C) Pathway heatmap to visualize enrichment scores and −log10 P-values obtained from the three analyses. The 
plots allow for a comprehensive visual comparison of pathway enrichment results across the datasets, facilitating insights into shared and distinctive 
pathways between the studies. 

with other researchers with ease, which is especially important 
for researchers who are working on collaborative projects. 

The learning module introduced in this article has been derived 
from the web-based application for pathway analysis, known as 
CPA, previously developed by the authors. Genomic datasets are 
often massive, and pathway analysis requires significant com-
putational resources. Cloud computing provides the necessary 
infrastructure to perform these analyses that bypass the limita-
tions of local computational resources. Therefore, by extending 
core analysis modules of our CPA on Google Cloud, we have 
provided a complete cloud-based training module on pathway 
analysis, which allows researchers to uncover meaningful biolog-
ical insights from their data in a timely and efficient manner. This 
learning module also serves as an example of using cloud comput-
ing for collaborative research between computer scientists and 
biologists across different institutions and agencies. By leveraging 
the cloud computing infrastructure, users can effectively reduce 
the time and effort required to set up the computing environment 
before they can start learning. For example, one may need to 
download software and dependent packages, and prepare the 
computing environment before performing any analysis. Many of 
those steps can be time-consuming, especially for novice learners 
and students with life-science backgrounds. When using cloud 
infrastructure for learning, teachers or organizers can pre-specify 
a virtual machine with all configurations needed (software, hard-
ware, dependency, computing power). Users only need to use the 
predefined and well-tested specifications of virtual machines and 
computing environments to perform the analyses described in the 
learning module. 

In this learning module, we have included here five sub-
modules that cover different aspects of pathway analysis. 
The submodules are designed to be taken in order, as each 
submodule builds on the previous one. The first submodule, 
Processing Expression Data, teaches the fundamental concepts 
of preprocessing and quality control of data obtained from 
microarray or RNA-Seq experiments. As genomic datasets 
can come from different platforms with various formats and 
normalization methods, it is important to learn how to process 
and normalize the data before performing any downstream 
analysis. The second submodule, Differential Analysis, focuses 
on how to analyze gene expression data to identify genes 
that are DE between two or more conditions using multiple 
techniques. The module was designed to handle different 
types of data, including microarray and RNA-Seq data, and 

different normalization methods. The third submodule, Pro-
cessing Pathway Information, shows us how to use different R 
libraries to automatically obtain pathways and GO terms with 
associated gene lists. The fourth submodule, Pathway Analysis, 
focuses on the identification of enriched biological pathways 
or functional categories within a set of genes of interest. This 
allows researchers to familiarize themselves with the different 
tools and choose the most appropriate one for their data. Finally, 
the fifth submodule, meta-analysis, teaches the techniques of 
meta-analysis, which is a statistical approach to combine the 
results of multiple independent studies. Reaching a consensus 
on the results of multiple studies can be challenging, and meta-
analysis provides a solution to this problem by combining the 
results of multiple studies to obtain a more accurate and robust 
result. Moreover, each code snippet provided in the submodule’s 
Jupyter Notebook only takes some seconds or, at most, some 
minutes to execute. The methods chosen for differential analysis 
and pathway analysis are relatively fast. Therefore, the learning 
module is also designed so that students can learn the materials 
without waiting too long for the analyses. 

Overall, the cloud learning module provides a comprehensive 
and practical guide for researchers to systematically analyze and 
interpret their genomic data using various bioinformatics tools 
and techniques. Users can also learn how to leverage the large 
storage on the cloud to save their data and analysis results. 
However, it is important to note that the learning materials could 
be overwhelming for individuals who are new to bioinformatics 
and cloud computing. Despite the user-friendly approach, some 
researchers might still find certain concepts or tools daunting, 
which might impede their journey toward proficiency. In addition, 
while the convenience of sharing data and analysis in the cloud is 
a great advantage, it also poses a risk to the security of personal 
data if the users do not set up their accounts properly. To ensure 
the security of personal data, each user should use their personal 
account to set up virtual machines and storage buckets that 
are not visible to any other users. When sharing the data with 
other users, we recommend that the users make fine-grained 
access control to their data following the guidelines from the 
Google Cloud Platform. As part of our future endeavors, we aim 
to transition our web-based CPA’s computing engine to cloud-
based infrastructure. This will enable users to conveniently access 
CCPA through a user-friendly GUI/web interface, allowing them 
to effortlessly perform consensus pathway analysis with a single 
click.
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Key Points 
• Cloud-based computing provides cost-effective compu-

tational resources for analyzing large-scale genomic 
data. 

• This article presents five cloud-based submodules that 
enable users to learn and perform consensus pathway 
analysis. 

• This article assists life scientists in performing differen-
tial analysis and pathway analysis. 

• This article allows users to integrate analysis results 
obtained from multiple analyses to find consensus 
results. 
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51. Tarca AL, Drǎghici S, Bhatti G, Romero R. Down-weighting over-
lapping genes improves gene set analysis. BMC Bioinformatics 
2012;13:136. 

52. Korotkevich G, Sukhov V, Budin N, et al. Fast gene set enrichment 
analysis. BioRxiv 2021;060012. 

53. Di W, Smyth GK. CAMERA: a competitive gene set test account-
ing for inter-gene correlation. Nucleic Acids Res 2012;40(17): 
e133–3. 

54. Barry WT, Nobel AB, Wright FA. Significance analysis of func-
tional categories in gene expression studies: a structured per-
mutation approach. Bioinformatics 2005;21(9):1943–9. 

55. Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-
analysis with R: a practical tutorial. BMJ Mental Health 2019;22(4): 
153–60. 

56. Liang WS, Dunckley T, Beach TG, et al. Gene expression 
profiles in anatomically and functionally distinct regions of 
the normal aged human brain. Physiol Genomics 2007;28(3): 
311–22. 

57. Nativio R, Lan Y, Donahue G, et al. An integrated multi-
omics approach identifies epigenetic alterations associated with 
Alzheimer’s disease. Nat Genet 2020;52(10):1024–35.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/Supplem

ent_1/bbae222/7718483 by Auburn U
niversity user on 25 July 2024


	 CCPA: cloud-based, self-learning modules for consensus pathway analysis using GO, KEGG and Reactome
	INTRODUCTION  
	METHODS
	RESULTS
	DISCUSSION AND CONCLUSION
	Key Points
	SUPPLEMENTARY DATA
	AUTHOR CONTRIBUTIONS
	FUNDING
	DATA AVAILABILITY


