
Machine Learning Methods for Prostate Cancer Prediction using Magnetic
Resonance Imaging and Clinical Data

Singh Akal Ustat1, Thiramdas Vikas Balram1, Baynes Anna1, Bang Tran1

1 Department of Engineering & Computer Science, California State University 6000 J St,
Sacramento, CA 95819

Abstract

Prostate cancer is one of the most common cancers in
males and is difficult to diagnose in its early stages. Tradi-
tional methods have attempted to predict prostate cancer
from clinical data, but lack of ability to incorporate image
to enhance the predictive outcomes. To address this issue,
we develop an analysis pipeline that integrates clinical and
medical imaging data to efficiently predict prostate can-
cer using multiple machine learning approaches. In this
paper, we demonstrate a high performance of our analy-
sis pipeline by using Magnetic Resonance Imaging, clini-
cal data and advanced pre-processing technique to over-
come class imbalance challenges. In the task of analyz-
ing prostate cancer datasets from Challemon Challenge,
our analysis pipeline delivers a high accuracy score of
86.9% in prediction using deep neural network architec-
ture, showing strong superiority over traditional methods.
This research is not only promising in providing improve-
ment in patient outcomes but also optimizing use of health-
care resources.

1. Introduction

Prostate cancer remains among the most common can-
cers diagnosed in males worldwide. It is projected to ac-
count for approximately 1.4 million new cases for the year
2020 and continues to rise as a result of demographic and
lifestyle factors [1, 2]. Detection and proper risk stratifi-
cation are some of the important components of effective
management of prostate cancer because these will dictate
clinical decision-making and consequently determine the
outcome of treatment. Traditional diagnostic methods like
the Prostate Specific Antigen (PSA) test and Digital Rectal
Examination (DRE) suffer from low specificity and sensi-
tivity, leading to over-diagnosis, unnecessary biopsies, and
missed aggressive cancers [3, 4], highlighting the need for
a more accurate, scalable, and non-invasive alternative.

Medical imaging modalities including MRI and TRUS,
or Transrectal Ultrasound, have enhanced prostate abnor-

mality visualization and have allowed for the detection of
early-stage disease [5–7]. But these imaging technologies
are costly, requiring expert interpretation. They are not
scalable nor accessible in clinical settings because of their
resource intensity. In addition, with the inclusion of imag-
ing data along with clinical variables, such as PSA lev-
els, patient demographics, and family history, the compu-
tation also becomes quite challenging, necessitating more
sophisticated analytical methods [8, 9]. ML is a method of
AI, which can successfully solve this challenge. Since ML
uses complex, high-dimensional data, it potentially detects
patterns and relationships in data that more traditional sta-
tistical methods could not uncover [10, 11].

Deep learning methods in ML, especially CNNs, have
shown exceptional results in medical image analysis [12,
13]. CNNs are suitable for the task like tumor detec-
tion, segmentation and feature extraction from imaging
data, so especially suitable for prostate cancer diagnosis
where there is the issue of great heterogeneity of data [10,
12]. Use of combination of CNN with traditional classifier
such as KNN, Naive Bayes presents an effective methodol-
ogy for measuring the effectiveness of different techniques
used for estimation of prognosis of prostate cancer [14,15].

This study bridges clinical relevance and computa-
tional innovation by developing an integrated pipeline for
prostate cancer prediction. It combines clinical data and
image analysis while addressing class imbalance and data
heterogeneity. Traditional machine learning and deep
learning models are compared to identify the most effec-
tive approach for severity prediction. Additionally, CNN
architectural design strategies are explored to reduce over-
fitting and enhance generalization [16, 17].

2. Methods

Figure 1 shows the overall prediction pipeline of our ap-
proach. The pipeline accepts clinical features and high-
dimensional 3D MRI scans as inputs. The inputs data go
through a pre-processing step, involving resizing the MRI
scans and using the Synthetic Minority Over-sampling
Technique (SMOTE) to balance the class distributions.
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Figure 1. The overview of the prostate cancer prediction pipeline. This pipeline uses MRI and clinical data as primary
inputs. After feature selection, data is normalized and over-sampled using synthetic data generation to address class imbal-
ance. The dataset is then split into training and testing sets, where the model is trained and evaluated. The trained model
makes the final prediction, ensuring a robust and reliable diagnostic process.

Next, we split the processed data into training and testing
sets. Then we train and evaluate multiple machine learning
models on the training set. Finally, we used the best model
obtained from the training phase to make predictions on
the testing set.

2.1. Data Processing

This study uses clinical and with 3D MRI scans as the
primary inputs to diagnose prostate cancer. MRI images
are obtained in a sequential thin sections called a slice.
Each slice represents a cross-sectional view of the body in
a specific plane. The thickness and spacing of these slices
may vary based on the imaging protocol and desired res-
olution. The number of slices are varied per experiment.
We choose to use 40 first slices for our analysis. From se-
lected slices, we encode the inputs feature using 3D Con-
volutional Neural Network. Finally, we get a flatten MRI
data in a 1D array [18, 19], converting the volumetric in-
formation into a format suitable for machine learning mod-
els. This transformation helps reduce dimensionality while
preserving essential patterns for analysis. Then, we merge
the flatten data obtained from the MRI with clinical infor-
mation to consolidate them into a unified dateset.

We also notice that the dataset has an extreme class
imbalance because the majority class (low-severity) com-
prised 71% of the samples, while the minority class (high-
severity) comprised only 29%. We apply SMOTE [20]to
balance the class distribution. Figure 2 show the side-
by-side of class distribution before and after applying
SMOTE. Finally, we use 70% of data samples for training
and the rest is used for testing.

Figure 2. Impact of the Synthetic Minority Over-sampling
Technique on balancing class distributions in the dataset.
The left panel shows the original dataset, where the Low-
Severity class (blue) comprised 71% of the samples, while
the High-Severity class (red) made up only 29%, leading
to potential model bias. The right panel depicts the dataset
after SMOTE, where both classes are balanced at 50%.

2.2. Classical Models

After data preprocessing step, we use the obtained data
to train multiple machine learning models. Here, we aim
at using models that belong classical and deep learning ap-
proaches.

The first classical method we use is K-Nearest Neigh-
bors (KNN) [21] which is a simple yet powerful algorithm
that classifies instances based on the majority class of their
k-nearest neighbors. The KNN decision rule is defined as:

ŷ = argmax
y

P (y|x) = argmax
y

1

k

k∑
i=1

I(y = yi) (1)

where ŷ is the predicted class, x are the input features, yi
are the labels of the k-nearest neighbors, and I(·) is an in-
dicator function, which outputs one if the condition holds.



Hyperparameter tuning is performed via grid search to op-
timize k, minimizing prediction bias and variance. In this
paper, we use k = 10 and Euclidean distance for training.

Second, we use Naı̈ve Bayes [22] classifier which is
probabilistic model based on Bayes’ Theorem. It is as-
sumed that features are conditionally independent given
the class labels. The posterior probability of each class
is computed as follows:

P (y|x) = P(x|y) ·P(y)

P(x)
(2)

where P (y|x) is the posterior probability of class y
given the input x, P (x|y) is the likelihood of x given y,
P (y) is the prior probability of y, and P (x) is the evi-
dence. Despite relying on many independent assumptions,
Naı̈ve Bayes works particularly well on large training sets
where the independence of features approximately holds
Euclidean distance. In this paper, we use a smoothing pa-
rameter to avoid zero-probability issues, improve general-
ization, and prevent overfitting.

2.3. Deep Learning Models

In the deep learning approach, we use CNN [23]model
which is particularly suited for extracting spatial features
from the structure of images such as MRI scans, even dis-
torted, translated, or rotated images. The CNN architec-
ture consists of convolutional layers followed by fully con-
nected layers to capture these hierarchical patterns. Each
convolutional layer filters the processed input data to ex-
tract relevant features such as textures and spatial relation-
ships. Then, the fully connected layers learn how to com-
bine these features to make predictions about the sever-
ity of the cancer. Here, we evaluate two different CNN
model’s architecture: (i) Single-Layer CNN Architecture
and (ii) Multi-layer CNN Architecture.

Single-layer CNN used in this study applies convolu-
tions over data using filters or kernels to pick up relevant
features in some input region. This operation is defined as:

Zi,j,k =
∑
m,n

Xi+m,j+n ·Wm,n,k + bk (3)

where X is the input image, W represents the filter
weights, and bk is the bias term for the k-th filter, and Z
is the output feature map. Here, we use Rectified Linear
Unit (ReLU) as activation function. ReLU provides non-
linearity through replacement of all negative values with
zero using the following formula:

f(x) = max(0, x) (4)

To accelerate the training process without compromis-
ing model’s performance, we use dropout regularization

Figure 3. Visualization of the processed MRI obtained
from six randomly selected patients . Each image shows
one volume slide sampled from multiple images taken for
each patient. Images highlight the spatial resolution and
intensity variations.

[24] technique. Here, a fraction of p neurons are randomly
deactivated during training to prevent over-fitting:

hi =

{
xi, with probability 1− p

0, with probability p
(5)

Fully connected layer is added after the CNN layer. The
fully connected layer classifies the data as follows:

ŷ = σ(Wfc · h+ bfc) (6)

where Wfc and bfc are the weights and biases of the
fully connected layer, h is the flattened feature vector, and
σ represents the sigmoid activation function.

Finally, we use multi-layer CNN architecture as a sec-
ond deep learning model. A multi-layer CNN increases
the number of convolutional layers to extract increas-
ingly abstract features. As a result, the network captures
more complex features. Max-pooling layers further down-
sample and reduce the data’s dimensionality, minimizing
the model’s computational requirements while retaining
important features. Additionally, we batch normalization
to stabilize training by normalizing the inputs to each layer,
improving convergence alongside performance.

3. Result

In this section, we assess the performance of multiple
machine learning methods in the ability of accurate classi-
fication of prostate cancer.

3.1. Data Preparation

This section presents the process of preparing data for
our analyses. We download 3D MRI image and clini-
cal prostate cancers data from EU-funded CHAIMELEON

https://chaimeleon.grand-challenge.org/overview/


Project. The repository contains data from 295 patient
records with clinical features and 3D MRI scans. The clin-
ical data was store in JSON format where patient ID, age,
and Prostate-Specific Antigen levels are available. The
ground truth information of ‘High’ and ‘Low’ severity
classes are also available and we only use ground truth for
training.

Figure 3 shows a representative slice randomly taken
from multiple volumes and patients in 3D MRI dataset.
Visualizing individual slices helps to understand the un-
derlying characteristics of MRI data, such as spatial reso-
lution, intensity variations, and potential imaging artifacts
as well as the quality and integrity of the data for down-
stream pre-processing and analysis. We make the spatial
resolution consistent by resizing them to a standard di-
mension of 256 × 256 × 40 voxels through interpolation
techniques[25], reducing variation due to different scan-
ning protocols.

3.2. Model performance

Figure 4. The accuracy of four classification models,
with each represented in distinct pastel colors. The Single-
Layer CNN achieved the highest accuracy (86.9%), while
the Multi-Layer CNN exhibited overfitting, resulting in the
lowest accuracy (57%).

Figure 4 shows the overall performance of all the as-
sessed models. Here, we measure the ability to accurately
predicted patients into the respected classes. Here, KNN
classifier achieves 69% accuracy, with a moderate preci-
sion of 70% and recall of 60%. This indicates a limited ca-
pability for capturing complex patterns within MRI data.
The reliance on proximity metrics such as Euclidean dis-
tance failed to capture the non-linear relationships and spa-
tial complexities inherent to MRI scans. Moreover, hyper-
parameter tuning may not have sufficiently accounted for
these, either. Similarly, Naı̈ve Bayes classifier achieves
65% with precision of 71% and recall of 67%., the model
performs relatively well for low-severity cases. This is
consistent with our understanding of Naı̈ve Bayes because
it relies on an assumption of feature independence. How-

ever, it struggled with MRI images, where these assump-
tions break down; spatial dependencies abound, and com-
plex feature interactions are inherent to MRIs.

The challenges experienced with KNN and Naı̈ve Bayes
make it evident that high-dimensional MRI images require
advanced deep learning models. The single-layer CNN
achieved 86.9% accuracy on the test set, showing promis-
ing results. On the other hand, although more complex, the
multi-layer CNN suffered from severe over-fitting, result-
ing in an accuracy of 57%. In summary, complex architec-
tures tend to over-fit more, while simpler architectures fail
to capture complex patterns. This highlights the need for
carefully selecting model architecture and regularization
techniques to balance performance and generalization.

4. Conclusion

In this paper, we proposed a machine-learning pipeline
for prostate cancer detection using classical machine learn-
ing and deep learning data analysis. These techniques
use low-dimensional data (e.g., patient demographics and
PSA) and high-dimensional data such as MRI scans. A fur-
ther comparison reveals how classical algorithms are better
suited to low-dimensional data, failing to achieve meaning-
ful accuracy for the MRI scans. On the other hand, deep
learning models, which achieve a balance between com-
plexity and accuracy, perform better at cancer detection
using image data. In the the future we plan to integrate de-
noising techniques [18, 26] and sub-typing methods [27]
to improve the predictive outcomes and sub-disease group
discovery.
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Ramón-Borja JLC, Garcı́a IM, Benito MB, et al. Deep
learning for fully automatic detection, segmentation, and
gleason grade estimation of prostate cancer in multipara-

metric magnetic resonance images. Scientific Reports 2021;
11:1–12.

[16] Cao R, Bajgiran AM, Mirak SA, Shakeri S, Zhong X, Enz-
mann DR, Raman SS, Sung K. Joint prostate cancer de-
tection and gleason score prediction in mpmri via focalnet.
IEEE Transactions on Medical Imaging 2019;38(11):2496–
2506.

[17] Hussein S, Cao R, Sung K, Raman SS, Patel P, Reiter RE,
et al. Deep learning-based pipeline for prostate cancer grad-
ing in multiparametric mri with clinical integration. Medi-
cal Image Analysis 2022;75:102267.

[18] Tran B, Tran D, Nguyen H, Ro S, Nguyen T. sccan: single-
cell clustering using autoencoder and network fusion. Sci-
entific Reports 2022;12(1):10267.

[19] Tran D, Nguyen H, Tran B, La Vecchia C, Luu HN, Nguyen
T. Fast and precise single-cell data analysis using a hi-
erarchical autoencoder. Nature Communications 2021;
12(1):1029.

[20] Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP.
Smote: synthetic minority over-sampling technique. Jour-
nal of Artificial Intelligence Research 2002;16:321–357.

[21] Guo G, Wang H, Bell D, Bi Y, Greer K. Knn model-
based approach in classification. In Meersman R, Tari Z,
Schmidt DC (eds.), On The Move to Meaningful Internet
Systems 2003: CoopIS, DOA, and ODBASE, volume 2888
of Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer. ISBN 978-3-540-39964-3, 2003; 986–996.

[22] McCallum A, Nigam K. A comparison of event mod-
els for naive bayes text classification. In AAAI-98 Work-
shop on Learning for Text Categorization. 1998; 41–
48. URL https://www.cs.cmu.edu/˜knigam/
papers/multinomial-aaaiws98.pdf.

[23] LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based
learning applied to document recognition. Proceedings of
the IEEE 1998;86(11):2278–2324. ISSN 0018-9219.

[24] Srivastava N, Hinton G, Krizhevsky A, Sutskever I,
Salakhutdinov R. Dropout: A simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning
Research 2014;15(1):1929–1958.
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