
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:10267 | https://doi.org/10.1038/s41598-022-14218-6

www.nature.com/scientificreports

scCAN: single‑cell clustering using
autoencoder and network fusion
Bang Tran1, Duc Tran1, Hung Nguyen1, Seungil Ro2 & Tin Nguyen1*

Unsupervised clustering of single‑cell RNA sequencing data (scRNA‑seq) is important because it
allows us to identify putative cell types. However, the large number of cells (up to millions), the
high‑dimensionality of the data (tens of thousands of genes), and the high dropout rates all present
substantial challenges in single‑cell analysis. Here we introduce a new method, named single‑cell
Clustering using Autoencoder and Network fusion (scCAN), that can overcome these challenges to
accurately segregate different cell types in large and sparse scRNA‑seq data. In an extensive analysis
using 28 real scRNA‑seq datasets (more than three million cells) and 243 simulated datasets, we
validate that scCAN: (1) correctly estimates the number of true cell types, (2) accurately segregates
cells of different types, (3) is robust against dropouts, and (4) is fast and memory efficient. We also
compare scCAN with CIDR, SEURAT3, Monocle3, SHARP, and SCANPY. scCAN outperforms these
state‑of‑the‑art methods in terms of both accuracy and scalability. The scCAN package is available at
https:// cran.r‑ proje ct. org/ packa ge= scCAN. Data and R scripts are available at http:// sccan. tinng uyen‑
lab. com/

Advances in microfluidics have enabled the isolation of cells, making it possible to profile individual cells using
single-cell sequencing technologies1,2. This transcriptome profiling of individual cells holds enormous potential
for both basic biology and clinical applications, including the identification of new cell types3,4, resolution of
the cellular dynamics of developmental processes5, and identification of gene regulatory mechanisms that vary
between cell subtypes6.

Unsupervised clustering of scRNA-seq data is one of the most important analyses because it allows us to
identify putative cell types. However, the large number of cells (up to millions) and the high-dimensionality
of the data (tens of thousands of genes or features) present substantial challenges to computational methods7.

One prominent strategy is to reduce the dimensionality of the data before performing cluster analysis. Meth-
ods in this category include SC38, CIDR9, pcaReduce10, SEURAT211, SIMLR12, and SHARP13. These methods
typically apply dimension reduction techniques such as PCA14, t-SNE15 and UMAP16 to obtain a lower-dimen-
sional representation of the data. Deep-learning-based approaches, including scDeepCluster17, scAIDE18, SCA19,
AAE-SC20, and scGMAI21, often use autoencoders to select important features and to project the data onto a
low-dimensional latent space. Next, these clustering methods partition the cells using established clustering
algorithms (e.g., k-means, spectral clustering, etc.). Since these dimension reduction techniques are sensitive to
sequencing platforms22 and dropouts23, the quality of clustering results also varies accordingly.

Another strategy is to iteratively search for hierarchical structures over both cells and genes. Methods using
this strategy include BackSPIN24, SAIC25, and Panoview26). These methods attempt to iteratively divide cells and
genes into sub-groups to maximize cell similarity within each cluster. These methods, however, require excessive
computational power (due to the iteration), and overestimate the number of cell types.

Many single-cell methods also utilize community detection algorithms such as Louvain27 and Leiden28.
 SEURAT329, SCANPY30, and Monocle331 embed community detection algorithms in their analysis pipeline.
These methods first convert scRNA-seq data into networks in which cells are nodes and the edges represent
similarity among them. Next, they partition the network using community detection algorithms that are known
to be fast. The quality of clustering results strongly depends on the construction of the similarity network. Further,
although community detection algorithms can produce reasonable results, they often overestimate the number
of cell communities (cell types).

Lastly, cluster ensemble is another strategy that aims to aggregate results from multiple clustering models.
Methods of this class include SAFE32, SAME33, and Sc-GPE34; these methods selectively combine the results
obtained from multiple clustering algorithms, including SC3, CIDR, SEURAT, CIDR, SIMLR, SNN-cliq35, SSNN-
Louvain36, and MPGS-Louvain37. One of the main drawbacks of clustering ensemble methods is that they do not

OPEN

1Department of Computer Science and Engineering, University of Nevada, Reno, NV 89557, USA. 2Department
of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, USA. *email: tinn@
unr.edu

https://cran.r-project.org/package=scCAN
http://sccan.tinnguyen-lab.com/
http://sccan.tinnguyen-lab.com/
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-14218-6&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:10267 | https://doi.org/10.1038/s41598-022-14218-6

www.nature.com/scientificreports/

scale well for large datasets. Moreover, evaluating the quality of clustering results obtained from each individual
method is a difficult task because there is no universally agreed standard on what constitutes good quality clusters
in the first place38.

Here we introduce scCAN, a single-cell clustering approach that consists of three modules: (1) a non-negative
kernel autoencoder to filter out uninformative features, (2) a stacked, variational autoencoder to generate multiple
low-dimensional representations of single-cell data, and finally (3) a graph-based technique to determine cell
groups from multiple representations. In an extensive analysis using 28 scRNA-seq datasets, we demonstrate
that scCAN significantly outperforms state-of-the-art methods in separating cells of different types. We further
assess the clustering methods with regards to scalability and robustness against dropouts using simulated datasets.
Overall, scCAN is the most robust and accurate method and can analyze most datasets in minutes.

Methods
The workflow of scCAN is shown in Fig. 1. This workflow consists of three modules. The first module (Fig. 1A)
filters the genes and compresses the input data into a low-dimensional space using two autoencoders. Given the
compressed data from module 1, the second module (Fig. 1B) is used to cluster small data, and the third module
(Fig. 1C) is used to cluster big data.

Data compression using autoencoders (Module 1). Module 1 aims at compressing the original data
into a compact representation. This module consists of three main steps: (1) data rescaling, (2) feature selection,
and (3) multiple latent variables generation. The first step rescales the data, while the second step removes genes
that are not informative. The third step transforms the data obtained from step 2 into a low-dimensional space
using a stacked Bayesian autoencoder. The details of each step are presented in the following sections.

Min‑max scaling. The input of Module 1 is an already-normalized expression matrix in which rows represent
cells while columns represent genes. Given the input matrix, we rescale the data to a range of 0 to 1 as follows:

where M is the input matrix and X is the normalized matrix. Note that this min-max scaling is not a scRNA-seq
normalization method. This min-max scaling added to our method is used on top of the already normalized
data provided by users. Such scaling is frequently used in deep learning models39–43 with the common purpose of
reducing standard deviation and suppressing the effect of outliers without altering the transcriptome landscape
(see Supplementary Section 8 and Figure S11).

Feature selection using non‑negative‑kernel autoencoder. After the rescaling, we further process the data using
an 1-layer autoencoder to filter out genes that do not significantly contribute to differentiating cells. Autoen-
coder is a self-learning neural network that consists of two core components: an encoder and a decoder. The
encoder projects the input onto a lower-dimensional space (compressed data) while the decoder tries to recon-
struct the original data from the compressed data. Optimizing this process can theoretically result in a compact
representation of the original data. By default, we set the dimension of the compressed data (bottleneck layer) to
50. The low number of dimensions ensures that the data obtained from the bottleneck layer is a compact repre-
sentation of the original input, high-dimensional data.

We also constrain the weights of the encoder to be non-negative, so that each latent variable in the compressed
space is a part-based, additive combination of the input. This technique shrinks the coefficients of less important
features to zero while maintaining the non-negative coefficients of the significant features. From the weight distri-
bution of the encoder, scCAN only keeps genes that have non-zero coefficients in the part-based representation.
In essence, this set of genes can be considered the optimal set (sufficient and necessary) to represent the original
data. This set is “necessary” because removing any gene from this set would greatly damage the reconstruction
ability of the decoder. Concurrently, the set is “sufficient” because adding any other genes would not improve
the quality of the compressed data. By default, scCAN selects the top 5000 genes that have non-zero coefficients
with the highest coefficient variances.

After this feature selection step, we obtain a new matrix with the same number of cells (rows), but the col-
umns consist of only the optimal set of genes. This matrix serves as the input of another autoencoder to generate
multiple low-dimensional representations of the data.

Dimensionality reduction using Stacked Variational Autoencoder. After the feature selection step, we obtain
a denoised data matrix that consists of important genes. Although a significant number of genes have been
removed, there are still thousands of genes. To reduce the computational resources required for clustering, we
further reduce the size of the data by conducting an additional step of dimensional reduction using a modified
version of Variational Autoencoder (VAE)44. We call it Stacked Variational Autoencoder because we generate
multiple latent spaces instead of generating only one as in the original VAE.

The VAE has the same structure as a standard autoencoder, which consists of an encoder and a decoder. The
encoder (fE) projects the input to a low-dimensional space while the decoder (fD) reconstructs the original
input from the compressed data. Given an expression profile of a cell x, we have e = fE(x) , where e is the low-
dimensional representation of x in the bottleneck layer. Instead of using e directly to reconstruct the data, VAE
adds two transformations fµ and fσ to generate the parameters µ and σ . The new vector z is now sampled from the

(1)Xij =
Mij −min(Mi.)

max(Mi.)−min(Mi.)

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:10267 | https://doi.org/10.1038/s41598-022-14218-6

www.nature.com/scientificreports/

distribution N(µ, σ 2) . The decoder uses z to reconstruct the data: x̄ = fD(z) . Adding randomness to z will help
the VAE model to avoid overfitting without losing the ability of learning a generalized representation of the input.

Here we modify the VAE model to generate multiple compressed spaces with multiple realizations of z. The
goal is to further diminish overfitting and to increase the robustness of the model. Given a list of latent variables,
we use a re-parameterization trick44 to obtain multiple realizations of z as follows: z = µ+ σ ∗ N(0, 1) . This
strategy ensures the VAE model can be back-propagated. In our model, we limit the size of the latent layer to a

Figure 1. The overall analysis pipeline of scCAN consists of three modules. In the first module (A), we perform
data normalization, gene filtering, and latent variables generation using two autoencoders. In the second
module (B), we adopt the network fusion-based clustering method to segregate cell types for small data. The
third module (C) aims at clustering big data using a combination of the network fusion approach and K nearest
neighbors (k-NN) algorithm.

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:10267 | https://doi.org/10.1038/s41598-022-14218-6

www.nature.com/scientificreports/

low number of dimensions (d = 15 by default). We keep d small to force the neural network to be as compressed
as possible.

After finishing the training stage, the input data is processed through the encoder to generate multiple repre-
sentative latent variables of the original data. As described in the next section, these compressed representations
of the data are used for cell segregation (clustering).

Network fusion and spectral clustering for cell segregation (Module 2). This section describes
the workflow for analyzing datasets with a moderate number of cells (n <= 5000 by default). When the number
of samples is large (over 5000 up to millions of cells), we use a different procedure (see Module 3 in “Big data
analysis (Module 3)” section).

The input of Module 2 is multiple low-dimensional representations (matrices) of the input data. We use
a network fusion-based approach to cluster scRNA-seq data via multiple steps: (1) building a cell-similarity
network for each of the representations, (2) fusing the networks, and (3) clustering using spectral clustering.

For each latent matrix, we construct a cell-similarity network G = (V ,E) where each vertex V corresponds
to a cell and each edge E represents a link between two cells. Edges are weighted and stored in a m×m matrix
W with Wij represents the weight between cells xi and xj . To determine the weight for each pair of cells, we first
compute the Euclidean distance ρij between the cells xi and xj . Next, we calculate the average value of the distances
between the cell xi and its neighbors ρi_ =

∑

j=1...k(ρ(xi ,nj))

k . We repeat this step for the cell xj to obtain ρj_ . We
keep the number of neighbors small (k = 30 by default) to preserve local cells relationship, but users are free to
set their own values. We denote εij =

ρij+ρi_+ρj_
3

 as an average distance among cells xi , xj and neighbour cells to

calculate Wij = exp
(

−
ρ2(xixj)

µεij

)

 where µ is a Gaussian similarity kernel (σ = 0.5). Finally, we repeat this process
for every pair of cells to obtain the similarity matrix W for the current latent matrix to obtain a similarity network.
Here, each network is a graph representation of a single latent matrix.

Next, we perform network fusion to aggregate multiple similarity networks obtained from their corresponding
latent matrices into a consolidated one. The network fusion approach is adapted from SNF method45–47 by first
calculating the full and sparse kernel for each vertex V in the network G. The full kernel is the normalized weight
matrix P obtained from G. The sparse kernel S is a matrix that contains local affinity of cells and their neighbors.
This step maintains the weights for cells in the same group while suppressing the weights of non-neighbouring
cells to zero. That means cell similarities in the same community are more trustworthy than the remote ones.
We repeatedly calculate the full and sparse kernel for all n similarity networks to get the lists of updated weight
matrices and encoded neighbour similarity matrices. Then, those matrices are iteratively fused together to obtain
the final fused network P as follows:

Given the fused network P, we use the eigengap method48 to determine the number of clusters. First, we compute
adjacency matrix A and degree matrix D to get Laplacian matrix L = D − A . Here, eigen values (�) and eigen
vectors (x) are calculated by Lx = �x . Next, eigengap is defined as eigengapi = �i+1 − �i where �i is the i-th eigen-
value of the matrix L. In our method, i is user-control hyperparameter that is set from 2 to 15 by default. From
the list of eigengap values, we sort them in ascending order and select the two highest eigengap values. Among
those two, we select the eigengap that yields a minimum i to prevent overestimating the number of clusters. This
i value is considered as the optimal number of clusters. Given the number of clusters, we use spectral clustering49
to partition the cells in the fused network P.

Big data analysis (Module 3). When the number of cells is large (n > 5000), we split the cells into two
sets: a training set of 5000 randomly selected cells and a testing set that consists of the remaining cells50. We then
use the same procedure presented in Module 2 to cluster the training data. After this step, we obtain a training
cluster assignment. We annotate the remaining cells in each latent matrix as testing data, and we aim to classify
them using the cells labels obtained from the training data.

We perform the classification process on testing data in only one latent matrix among multiple ones obtained
from Module 1. In order to do that, we select the best latent matrix that is a closed representation of other
matrices. First, we use k-nearest neighbor adaption of spectral clustering algorithm (k-nn SC) to quickly get the
clusters assignments for every latent matrix. Given the list of obtained clusters, we use weighted-based meta-
clustering (wMetaC) implemented in SHARP13 to determine the final cluster assignment. The wMetaC algorithm
is conducted through 5 steps: (1) calculating cell-cell weighted similarity matrix W, wij = sij(1− sij) where sij
is the chance that cell i and j are in the same cluster, (2) calculating cell weight, which is the sum of all cell-cell
weights related to this cell, (3) generating cluster-cluster similarity matrix |C| × |C| , where C is the union of all
the clusters obtained in each replicate, (4) performing hierarchical clustering on cluster-cluster similarity matrix,
and (5) determining final clustering result by voting scheme. One note of caution is that the final clustering
results obtained from this step are only used to determine the best latent matrix. Then, we measure the adjusted
Rand index (ARI) value between the final cluster and the cluster obtained from k-nn SC on each input latent.
The latent matrix that yields the highest ARI value will be selected for classification.

Given the final latent matrix, we use k-NN algorithm to classify the remaining cells using cluster’s labels
obtained from the training data. Lastly, we merge the cluster assignments from the training data and the testing
data to get the final clustering result.

(2)P(v) = S(v) ×

(

∑

k �=v P
(k)

n− 1

)

× (S(v))T , v = 1, 2, ..., n

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:10267 | https://doi.org/10.1038/s41598-022-14218-6

www.nature.com/scientificreports/

Note that the default value of 5000 allows us to have a sufficiently large sample size to properly determine the
cell types which in turns will lead to a proper classification of the remaining cells. At the same time, 5000 is a
reasonable small number of samples that allows users to perform the analysis efficiently using personal comput-
ers. However, this default value might hinder the process of detecting rare cell types in large datasets. To enhance
the method’s capability to detect rare cell types, users can either increase the sample size or perform multi-stage
clustering. More details are provided in Supplementary Section 9 and Figure S12.

Results
In this section, we assess the performance of scCAN in the following capabilities: (1) correct estimation of the
number of cell types, (2) proper segregation of cells of different types, (3) robustness against dropout events,
and (4) scalability against the increasing number of cell types. For this purpose, we analyze 28 real scRNA-seq
datasets and simulations in various scenarios. We compare scCAN with five state-of-the-art clustering methods
that are widely used for single-cell analysis: CIDR9, SEURAT329, Monocle331, SHARP13, and SCANPY30.

Table 1 shows the number of datasets used in our analysis. Supplementary Table S1 reports more details of
the 28 scRNA-seq datasets and Supplementary Table S2 reports the download link. The largest dataset, Brain
1.3M, has 1,300,774 cells. The datasets Guo, Kanton, Brann, and Miller were downloaded from the European
Bioinformatics Institute (https:// www. ebi. ac. uk/ gxa/ sc/ exper iments/). The datasets Slyper, Zilionis, Orozco, and
Kozareva were downloaded from Broad Institute Single Cell Portal (https:// singl ecell. broad insti tute. org/ single_
cell). The datasets Montoro, Hrvatin, Darrah, Cao were downloaded from NCBI51. The Brain 1.3M dataset was
downloaded from the 10X Genomics website (https:// suppo rt. 10xge nomics. com/ single- cell- gene- expre ssion/
datas ets/1. 3.0/ 1M_ neuro ns). The remaining 15 datasets were downloaded from Hemberg Group’s website https://
hembe rg- lab. github. io/ scRNA. seq. datas ets. We removed samples with ambiguous labels from these datasets.
Specifically, we removed cells with the label “zothers” from Chen,“dropped” from Wang, “not applicable” from
Segerstolpe, and “Not available” from Guo, Kanton, and Miller. The only processing step we did was to perform
a log transformation (base 2) to rescale the data if the range of the data is larger than 100. All datasets except

Table 1. Description of the 28 single-cell datasets used in our data analysis. The table shows the accession ID,
tissue, number of cells, true number of cell types, and single-cell platform. All datasets except Brain 1.3M have
true cell type information and thus can be used to assess the accuracy of the clustering methods. Each of the
Cao and Brain 1.3M datasets has more than a million of cells and thus can be used to assess the scalability of
the methods.

Name Accession ID Tissue Size Class Platform

Brain 1.3M GSE93421 Mouse brain 1,300,774 NA 10X Genomics

Cao GSE156793 Human cerebellum 1,092,000 9 10X Genomics

Kozareva SCP795 Mouse cerebellum 611,034 18 10X Genomics

Darrah GSE139598 Human blood 162,490 14 Drop-seq

Miller E-MTAB-8221 Human lung 142,523 11 10X Genomics

Orozco GSE135133 Human eye 100,055 11 10X Genomics

Hrvatin GSE102827 Mouse visual cortex 48,266 8 inDrop

Macosko GSE63473 Mouse retina 44,808 12 Drop-seq

Zilionis GSE127465 Human lung 34,558 9 inDrop

Brann E-GEOD-151346 Mouse brain 26,766 46 10X Genomics

Kanton E-HCAD-5 Human brain 17,542 14 Smart-Seq2

Slyper SCP345 Human blood 13,316 8 10X Genomics

Chen GSE87544 Mouse brain 12,089 46 Drop-seq

Baron GSE84133 Human pancreas 8569 14 inDrop

Guo E-GEOD-134144 Human testis 7416 7 10X Genomics

Montoro GSE103354 Human pancreas 7193 7 Smart-Seq2

Lake phs000833.v3.p1 Human brain 3042 16 Fluidigm C1

Zeisel GSE60361 Mouse brain 3005 9 STRT-Seq

Romanov GSE74672 Mouse brain 2881 7 SMARTer

Segerstolpe E-MTAB-5061 Human pancreas 2209 14 Smart-Seq2

Muraro GSE85241 Human pancreas 2126 10 CEL-Seq2

Xin GSE81608 Human pancreas 1600 8 SMARTer

Camp GSE81252 Human liver 777 7 SMARTer

Usoskin GSE59739 Mouse brain 622 4 STRT-Seq

Li GSE81861 Human tissues 561 9 SMARTer

Wang GSE83139 Human pancreas 457 7 SMARTer

Patel GSE57872 Human tissues 430 5 Smart-Seq

Pollen SRP041736 Human tissues 301 11 SMARTer

https://www.ebi.ac.uk/gxa/sc/experiments/
https://singlecell.broadinstitute.org/single_cell
https://singlecell.broadinstitute.org/single_cell
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.3.0/1M_neurons
https://hemberg-lab.github.io/scRNA.seq.datasets
https://hemberg-lab.github.io/scRNA.seq.datasets

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:10267 | https://doi.org/10.1038/s41598-022-14218-6

www.nature.com/scientificreports/

Brain 1.3M have true cell type information and thus can be used to assess the accuracy of the clustering meth-
ods. Each of the Cao and Brain 1.3M datasets has more than a million of cells and thus can be used to assess the
scalability of the methods.

We use CIDR9, SEURAT329, Monocle331, SHARP13, SCANPY30, and scCAN to partition each of the 28 real
scRNA-seq datasets. CIDR, SEURAT3, Monocle3, and SHARP cannot perform clustering when the dataset has
more than 45,000, 30,000, 160,000, and 100,000 cells, respectively. These methods run out of memory in 7, 9, 3,
and 5 datasets, respectively (the memory limit is set to 200GB of RAM). Only scCAN and SCANPY can analyze
all datasets. Below, we use different metrics to assess the performance of each method.

Estimating the number of true cell types. We use CIDR9, SEURAT329, Monocle331, SHARP13,
 SCANPY30, and scCAN to partition each of the 27 real scRNA-seq datasets. To evaluate how well each method
estimates the number of cell types, we compare the number of clusters produced by each method against the
number of true cell types using the absolute log-modulus52: L(x) = |sign(x) ∗ log10(|x| + 1)| where x is the dif-
ference between the number of clusters and the number of cell types. The lower the L(x) value, the more similar
the number of clusters and the true number of cell types. L(x) equals to zero denotes a perfect estimation.

Figure 2 shows the absolute log-modulus values obtained using the six clustering methods. Each box repre-
sents the absolute log-modulus values across 27 scRNA-seq datasets for a method. We observe that Monocle3 and
SCANPY frequently overestimate the number of clusters. Both methods have the highest absolute log-modulus
values. Overall, scCAN is the best method in estimating the number of true cell types. The average log modulus
of scCAN is 0.59 whereas those of Monocle3, SCANPY, SHARP, SEURAT3, and CIDR are 1.35, 1, 0.72, 0.64,
and 0.63, respectively. A one-sided Wilcoxon test also confirms that the absolute log-modulus values obtained
from scCAN are significantly smaller than other methods with a p-value of 9× 10−4 . We report the absolute
log-modulus values for each method and each dataset in Supplementary Table S3.

Segregating cells of different types. To assess the accuracy of each clustering method, we also compare
the clustering results against the true cell labels. For this purpose, we use three evaluation metrics: adjusted Rand
index (ARI)53, adjusted mutual information (AMI)54, and V-measure55. Details of each metric are provided in
Supplementary Section 3.

Figure 3A shows the ARI values obtained from the six clustering methods. Each box represents the ARI
values across 27 datasets for a method. The results show that scCAN significantly outperforms other state-of-
the-art methods by having the highest ARI values (p = 6× 10−12 using Wilcoxon test). The average ARI value
of scCAN is 0.81 which is substantially higher than those of other methods (0.50, 0.55, 0.23, 0.41, and 0.40 for
CIDR, Seurat3, Monocle3, SHARP, and SCANPY, respectively). More importantly, scCAN has the highest ARI
values in 24 out of 27 datasets (Supplementary Table S4).

Figure 3B shows the AMI values of each method. The AMI values of scCAN are significantly higher than
those of other methods (p = 9× 10−10 using Wilcoxon test). The average AMI value of scCAN is 0.77 while
the average AMI values of CIDR, Seurat3, Monocle3, SHARP, and SCANPY are 0.52, 0.64, 0.43, 0.41 and 0.55,
respectively. scCAN also has the highest AMI values in 23 out of 27 datasets (Supplementary Table S5).

Figure 3C shows a similar trend using V-measure. The V-measure values of scCAN are significantly higher
than those of other methods (p = 2× 10−8). The average V-measure value of scCAN is 0.81 while the average
AMI values of CIDR, Seurat3, Monocle3, SHARP, and SCANPY are 0.57, 0.72, 0.56, 0.50 and 0.66, respectively.
scCAN also has the highest V-measure values in 23 out of 27 datasets (Supplementary Table S6). The visualiza-
tions of cell transcriptomic landscape for 27 datasets using original cell types and cluster assignments generated
by scCAN are shown in Supplementary Figures S1–S5 and Supplementary Figures S6–S10.

Figure 2. Absolute log-modulus values obtained from CIDR, SEURAT3, Monocle3, SHARP, SCANPY, and
scCAN for 27 real scRNA-seq datasets. This metric measures the difference between the number of clusters and
the number of true cell types. The average log modulus of scCAN is 0.59 while those of Monocle3, SCANPY,
SHARP, SEURAT3, and CIDR are 1.35, 1, 0.72, 0.64, and 0.63, respectively. scCAN significantly outperforms
other methods by having the smallest absolute log-modulus values (Wilcoxon p-value of p = 8.6× 10−4). Note
that the dataset Brain 1.3M was excluded from this analysis because it does not have true cell type information.

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:10267 | https://doi.org/10.1038/s41598-022-14218-6

www.nature.com/scientificreports/

Robustness against dropouts. One of the prominent challenges in single-cell data analysis is the preva-
lence of dropouts. To assess how robust each method is against dropouts, we simulate a number of datasets.
There are a number of tools that generate simulated data, including Splatter56 and SymSim57. Though powerful,
these tools cannot completely emulate real-world situations. The simulators do not preserve expression levels
and gene correlation structure of real genes58. Therefore, instead of generating completely new expression values,
we simulate different dropout scenarios using the 27 real datasets listed above. For each dataset, we gradually
increase the number of dropouts by randomly replacing non-zero expression values with zeros. The dropout
rates are set to 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85% and 90%. In summary, we generate 243 simulated
datasets (27 real datasets with 9 different dropout rates per dataset).

For each dataset, the true cell label of each cell is known and thus can be used a posteriori to assess the robust-
ness of each clustering method. We analyze each of the 243 datasets using the six clustering methods and then
calculate the ARI values. Figure 4 shows the ARI values for each method across datasets of varying dropout rates.
Overall, scCAN consistently outperforms other methods in clustering cell populations regardless of dropout

Figure 3. Accuracy assessment of the six clustering methods using adjusted Rand index (ARI), adjusted mutual
information (AMI), and V-measure. scCAN consistently and substantially outperforms other methods in every
assessment by having the highest ARI, AMI, and V-measure values across 27 real scRNA-seq datasets.

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:10267 | https://doi.org/10.1038/s41598-022-14218-6

www.nature.com/scientificreports/

rates. A one-sided Wilcoxon test also confirms that the ARI values obtained from scCAN are significantly higher
than those of CIDR, SEURAT3, Monocle3, SHARP, SCANPY (p < 2.2× 10−16).

Time and space complexity. In order to assess the scalability of the clustering methods, we record the
running time that each method uses to analyze the 28 real datasets. Figure 5 shows the running time of the meth-
ods with varying numbers of cells. The time complexity of CIDR increases exponentially with respect to sample
size. Supplementary Table S7 shows the detailed running time of each method for all 28 datasets. The cell with
“NA” indicates out of memory or error. The memory of our machine is limited to 256 GB. scCAN and SCANPY
can cluster all datasets in minutes. The scalability of scCAN and SCANPY for big data analysis is shown at Sup-
plementary Section 10 and Supplementary Figures S13 and S14. CIDR, SEURAT3, Monocle3, and SHARP are
unable to cluster datasets with more than 48,000, 17,000, 600,000, and 140,000 cells, respectively.

Conclusion
In this article, we introduce a new clustering method named scCAN that can accurately segregate cells of different
types from large-scale scRNA-seq data. The contribution of scCAN is three-fold: (1) effective noise detachment
and dimension reduction using a non-negative-kernel and a Stacked Variational Autoencoder, (2) accurate clus-
tering of cells using network fusion and graph-based analysis, and (3) scalable analysis of large number of cells

Figure 4. Assessment of CIDR, SEURAT3, Monocle3, SHARP, SCANPY and, scCAN against dropouts.
Simulations were obtained by varying the number of zeros in each of 27 real biological datasets from 50% to
about 90%, respectively. Each box plot shows the ARI values obtained from each method for a specific dropout
portion. Wilcoxon test shows that the ARI values obtained from scCAN are significantly higher than CIDR,
SEURAT3, Monocle3, SHARP, SCANPY (p < 2.2× 10−16).

Figure 5. Running time of CIDR, SEURAT3, Monocle3, SHARP, SCANPY, and scCAN for the analysis of 28
real scRNA-seq datasets. The horizontal axis shows the number of cells while the vertical axis shows the running
time in the log scale (base 60) of minutes. scCAN and SCANPY are the only two methods that can analyze
datasets with more than 200,000 cells.

9

Vol.:(0123456789)

Scientific Reports | (2022) 12:10267 | https://doi.org/10.1038/s41598-022-14218-6

www.nature.com/scientificreports/

using sampling and k-nearest neighbor. In an extensive analysis using 28 real scRNA-seq datasets and various
simulation scenarios, we demonstrate that scCAN outperforms the current state-of-the-art methods, CDIR,
SEURAT3, Monocle3, SHARP and SCANPY. The method can: (1) accurate estimate the number of cell types,
(2) properly segregate cells of different types, (3) is robust against dropouts, and (4) is able to analyze datasets
with more than a million cells in minutes. We also provide a CRAN R package with documentation for users.
The tool can be seamlessly embedded into other single-cell analysis pipelines.

Data availability
In this manuscript, we analyzed 28 publicly available datasets. The Accession numbers are reported in Sup-
plementary Table S1. The link to each dataset is available in Supplementary Table S2. The scCAN package is
available at https:// cran.r- proje ct. org/ packa ge= scCAN. Processed data and R scripts are available at http:// sccan.
tinng uyen- lab. com/

Received: 9 November 2021; Accepted: 2 June 2022

References
 1. Saliba, A.-E., Westermann, A. J., Gorski, S. A. & Vogel, J. Single-cell RNA-seq: Advances and future challenges. Nucleic Acids Res.

42, 8845–8860 (2014).
 2. Tran, D., Tran, B., Nguyen, H. & Nguyen, T. A novel method for single-cell data imputation using subspace regression. Sci. Rep.

12, 2697 (2022).
 3. Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science

356, eaah4573 (2017).
 4. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343,

776–779 (2014).
 5. Li, L. et al. Single-cell RNA-seq analysis maps development of human germline cells and gonadal niche interactions. Cell Stem Cell

20, 858–873 (2017).
 6. Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167, 1883–1896

(2016).
 7. Kiselev, V. Y., Andrews, T. S. & Hemberg, M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet.

20, 273–282 (2019).
 8. Kiselev, V. Y. et al. SC3: Consensus clustering of single-cell RNA-seq data. Nat. Methods 14, 483–486 (2017).
 9. Lin, P., Troup, M. & Ho, J. W. K. CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome

Biol. 18, 59. https:// doi. org/ 10. 1186/ s13059- 017- 1188-0 (2017).
 10. žurauskienė, J. & Yau, C. pcaReduce: Hierarchical clustering of single cell transcriptional profiles. BMC Bioinform. 17, 1–11 (2016).
 11. Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression data. Nat. Bio‑

technol. 33, 495–502 (2015).
 12. Wang, B. et al. SIMLR: A tool for large-scale genomic analyses by multi-kernel learning. Proteomics 18, 1700232 (2018).
 13. Wan, S., Kim, J. & Won, K. J. SHARP: Hyperfast and accurate processing of single-cell RNA-seq data via ensemble random projec-

tion. Genome Res. 30, 205–213 (2020).
 14. Pearson, K. L. I. I. I. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2,

559–572 (1901).
 15. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
 16. McInnes, L., Healy, J. & Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv: 1802.

03426 (2018).
 17. Tian, T., Wan, J., Song, Q. & Wei, Z. Clustering single-cell RNA-seq data with a model-based deep learning approach. Nat. Mach.

Intell. 1, 191–198 (2019).
 18. Xie, K., Huang, Y., Zeng, F., Liu, Z. & Chen, T. scAIDE: Clustering of large-scale single-cell RNA-seq data reveals putative and rare

cell types. NAR Genomics Bioinform. 2, lqaa082 (2020).
 19. Alessandri, L. et al. Sparsely-connected autoencoder (SCA) for single cell RNAseq data mining. NPJ Syst. Biol. Appl. 7, 1–10 (2021).
 20. Wu, Y., Guo, Y., Xiao, Y. & Lao, S. AAE-SC: A scRNA-seq clustering framework based on adversarial autoencoder. IEEE Access 8,

178962–178975 (2020).
 21. Yu, B. et al. scGMAI: A Gaussian mixture model for clustering single-cell RNA-Seq data based on deep autoencoder. Brief. Bioin‑

form. 22, bbaa316 (2020).
 22. Mereu, E. et al. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat. Biotechnol. 38, 747–755 (2020).
 23. Haque, A., Engel, J., Teichmann, S. A. & Lönnberg, T. A practical guide to single-cell RNA-sequencing for biomedical research

and clinical applications. Genome Med. 9, 75 (2017).
 24. Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).
 25. Yang, L., Liu, J., Lu, Q., Riggs, A. D. & Wu, X. SAIC: An iterative clustering approach for analysis of single cell RNA-seq data. BMC

Genomics 18, 9–17 (2017).
 26. Hu, M.-W. et al. PanoView: An iterative clustering method for single-cell RNA sequencing data. PLoS Comput. Biol. 15, e1007040

(2019).
 27. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory

Exp. 2008, P10008 (2008).
 28. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: Guaranteeing well-connected communities. Sci. Rep. 9, 1–12

(2019).
 29. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).
 30. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: Large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
 31. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).
 32. Yang, Y. et al. SAFE-clustering: Single-cell aggregated (from ensemble) clustering for single-cell RNA-seq data. Bioinformatics 35,

1269–1277 (2019).
 33. Huh, R., Yang, Y., Jiang, Y., Shen, Y. & Li, Y. SAME-clustering: S ingle-cell A ggregated Clustering via M ixture Model E nsemble.

Nucleic Acids Res. 48, 86–95 (2020).
 34. Zhu, X., Li, J., Li, H.-D., Xie, M. & Wang, J. Sc-GPE: A graph partitioning-based cluster ensemble method for single-cell. Front.

Genet. 11, 1606 (2020).
 35. Xu, C. & Su, Z. Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 31,

1974–1980 (2015).

https://cran.r-project.org/package=scCAN
http://sccan.tinnguyen-lab.com/
http://sccan.tinnguyen-lab.com/
https://doi.org/10.1186/s13059-017-1188-0
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1802.03426

10

Vol:.(1234567890)

Scientific Reports | (2022) 12:10267 | https://doi.org/10.1038/s41598-022-14218-6

www.nature.com/scientificreports/

 36. Zhu, X. et al. Single-cell clustering based on shared nearest neighbor and graph partitioning. Interdiscip. Sci. Comput. Life Sci. 12,
117–130 (2020).

 37. Zhu, X., Li, H.-D., Guo, L., Wu, F.-X. & Wang, J. Analysis of single-cell RNA-seq data by clustering approaches. Curr. Bioinform.
14, 314–322 (2019).

 38. Alqurashi, T. & Wang, W. Clustering ensemble method. Int. J. Mach. Learn. Cybern. 10, 1227–1246 (2019).
 39. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) 770–778 (2016).
 40. Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. In 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) 4700–4708 (2017).
 41. Szegedy, C. et al. Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

1–9 (2015).
 42. Tan, M. & Le, Q. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International

Conference on Machine Learning, Vol. 97, 6105–6114 (Long Beach, California, USA, 2019).
 43. Tran, D., Nguyen, H., Tran, B., La Vecchia, C., Luu, Hung N. & Nguyen, T. Fast and precise single-cell data analysis using a hier-

archical autoencoder. Nat. Commun. 12, 1–10 (2021).
 44. Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. arXiv: 1312. 6114 [cs, stat] (2013).
 45. Wang, B. et al. Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333–337 (2014).
 46. Nguyen, T., Tagett, R., Diaz, D. & Draghici, S. A novel approach for data integration and disease subtyping. Genome Res. 27, 2025–

2039 (2017).
 47. Nguyen, H., Shrestha, S., Draghici, S. & Nguyen, T. PINSPlus: a tool for tumor subtype discovery in integrated genomic data.

Bioinformatics 35, 2843–2846 (2019).
 48. Von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007).
 49. Ng, A. Y. et al. On spectral clustering: Analysis and an algorithm. Adv. Neural. Inf. Process. Syst. 2, 849–856 (2002).
 50. Nguyen, H., Tran, D., Tran, B., Roy, M., Cassell, A., Dascalu, S., Draghici, S. & Nguyen, T. SMRT: Randomized data transformation

for cancer subtyping and big data analysis. Front. Oncol. 11, 1–11 (2021).
 51. Barrett, T. et al. NCBI GEO: Archive for functional genomics data sets-update. Nucleic Acids Res. 41, D991–D995 (2013).
 52. John, J. & Draper, N. R. An alternative family of transformations. J. R. Stat. Soc.: Ser. C (Appl. Stat.) 29, 190–197 (1980).
 53. Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2, 193–218 (1985).
 54. Vinh, N. X., Epps, J. & Bailey, J. Information theoretic measures for clusterings comparison: Variants, properties, normalization

and correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010).
 55. Rosenberg, A. & Hirschberg, J. V-measure: A conditional entropy-based external cluster evaluation measure. In Proceedings of

the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP‑CoNLL) 410–420 (2007).

 56. Zappia, L., Phipson, B. & Oshlack, A. Splatter: Simulation of single-cell RNA sequencing data. Genome Biol. 18, 1–15 (2017).
 57. Zhang, X., Xu, C. & Yosef, N. Simulating multiple faceted variability in single cell RNA sequencing. Nat. Commun. 10, 1–16 (2019).
 58. Sun, T., Song, D., Li, W. V. & Li, J. J. scDesign2: A transparent simulator that generates high-fidelity single-cell gene expression

count data with gene correlations captured. Genome Biol. 22, 1–37 (2021).

Acknowledgements
This work was partially supported by NIH NIGMS under grant number GM103440, and by NSF under grant
numbers 2001385 and 2019609. Any opinions, findings, and conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of any of the funding agencies.

Author contributions
B.T. and T.N. conceived of and designed the approach. B.T. performed the data analysis and all computational
experiments. B.T., D.T. implemented the method in R. H.N. and S.R. helped with data preparation and some data
analysis. B.T., D.T., H.N., S.R. and T.N. wrote the manuscript. All authors reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 022- 14218-6.

Correspondence and requests for materials should be addressed to T.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

http://arxiv.org/abs/1312.6114
https://doi.org/10.1038/s41598-022-14218-6
https://doi.org/10.1038/s41598-022-14218-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	scCAN: single-cell clustering using autoencoder and network fusion
	Methods
	Data compression using autoencoders (Module 1).
	Min-max scaling.
	Feature selection using non-negative-kernel autoencoder.
	Dimensionality reduction using Stacked Variational Autoencoder.

	Network fusion and spectral clustering for cell segregation (Module 2).
	Big data analysis (Module 3).

	Results
	Estimating the number of true cell types.
	Segregating cells of different types.
	Robustness against dropouts.
	Time and space complexity.

	Conclusion
	References
	Acknowledgements

