
scIDS: Single-cell Imputation by combining Deep
autoencoder neural networks and Subspace

regression
Bang Tran

Computer Science & Engineering
University of Nevada, Reno

Reno, USA
bang.t.s@nevada.unr.edu

Tin Nguyen*
Computer Science & Engineering

University of Nevada, Reno
Reno, USA
tinn@unr.edu

Quyen Nguyen
Water Engineering and Management

Asian Institute of Technology
Pathum Thani, Thailand

st120032@ait.asia

Sangam Shrestha
Water Engineering and Management

Asian Institute of Technology
Reno, USA

sangam@ait.ac.th

Abstract—Single-cell RNA-sequencing (scRNA-seq) has
emerged as a powerful high throughput technique that enables
the characterization of transcriptomic profiles at single-cell
resolution. However, scRNA-seq data has an excess number of
zeros in expressed genes due to a low amount of sequenced
mRNA in each cell. This missing detection in a portion of
mRNA molecules (dropout) presents a fundamental challenge for
various types of data analyses. Here we introduce scIDS, a novel
imputation method that is a combination of deep autoencoder
neural networks and subspace regression to reliably recover the
missing values in scRNA-seq data. We compare scIDS with two
widely used methods using eight datasets. Extensive experiments
demonstrate that scIDS outperforms existing approaches in
improving the identification of cell populations while preserving
the biological landscape.

Index Terms—imputation, single-cell, neural networks

I. INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) was first known
in 2009 when Tang et al. [1] monitored how individual cells
respond to signals and other environmental cues at critical
stages of cell-fate. Since then, next generation sequencing
(NGS) platforms have revolutionized cell biology and clinical
applications with the capability of sequencing millions of cells
in parallel at reduced cost [2]. Despite these advances, a
major problem for scRNA-seq is the sparsity of the expression
matrix with a high number of zero values (dropouts) [3]. These
dropout events usually occur due to the low RNA capture rate
and failed amplification [4]. Since downstream analyses of
scRNA-seq heavily rely on expression measurement’s accu-
racy, it is important to impute the missing values introduced
by dropout events. A number of imputation methods have been
developed for this purpose. These methods can be classified
into two categories: i) statistical modeling of the expression

values, and ii) extrapolation of non-zero values using regres-
sion techniques.

Methods in the first category include scImpute [5], SAVER
[6], BISCUIT [7], and scVI [8]. scImpute models the ex-
pression as a mixture of Gaussian (actual expression) and
Gamma (dropout) distributions. It then estimates the mix-
ture parameters and dropout values using the EM algorithm.
SAVER [6] models read counts as a mixture of Poisson-
Gamma and then uses a Bayesian approach to estimate the
true expression values. BISCUIT [7] uses the Dirichlet process
mixture model [9] to repeatedly perform the processing steps
such as normalization, data imputation, and cells clustering
by simultaneously inferring clustering parameters, estimat-
ing technical variations (e.g., library size), and learning co-
expression structures of each cluster. Lastly, scVI uses a
probabilistic approach for the normalization and analysis of
scRNA-seq data using a hierarchical Bayesian model with
conditional distributions specified by deep neural networks.

Methods in the second category include MAGIC [10],
DrImpute [11], scScope [12], DCA [13], and DeepImpute [14].
MAGIC imputes zero values using heat diffusion [15] tech-
nique to compute the affinity matrix between cells. Then,
MAGIC constructs the Markov transition matrix by normaliz-
ing and smoothing the computed affinity matrix. Finally, the
method multiplies the exponentiated Markov matrix with the
original data to obtain the imputed data. DrImpute [11] is
based on the cluster ensemble strategy [16] and consensus
clustering [17, 18]. It performs clustering to separate data
into groups of similar cells and then imputes missing data by
averaging expression values of similar cells. The other three
methods (scScope, DeepImpute, DCA) rely on deep neural
networks to denoise the data and to impute the missing values.

Despite initial success, the quality of the imputed data

by statistical methods is determined by the validity of the
assumption of the distribution models. Further, these methods
usually require excessive computational power, which makes
them slow on big datasets. For methods in the second category
(regression approaches), the major drawback is that they rely
on many parameters to fine-tune their models, which often
leads to overfitting. Also, these methods can lead to over-
smoothing and may remove the cell-to-cell stochasticity that
represents biological meaningful variation in gene expression.

Here we propose a new approach, scIDS, that can reliably
impute missing values from single-cell data. Our method
consists of two modules. The first module performs data
compression and clustering using deep neural networks. This
compressed data is considered trustworthy information for
imputation. The second module utilizes a z-test to detect
genes that are highly impacted by dropouts. Then, the module
imputes missing values affected by dropout events by learning
the important features patterns in each cell group (identified in
the first module). This strategy ensures that the true missing
values are imputed by using only highly relevant information.
In an extensive analysis using simulation and 8 real scRNA-seq
datasets, we demonstrate that scISR improves the quality of
single-cell data while preserving the transcriptome landscape.

II. METHOD

Figure 1 shows the overall analysis pipeline of scIDS.
The input of scIDS is an expression matrix in which rows
represent genes and columns represent cells. The first module
(Figure 1A) filters the genes and compresses the input data
into a low-dimensional representation using two autoencoders.
Given the compressed data, this module segregates the cells
that share similar characteristics into different groups. The
second module (Figure 1B) performs a z-score parametric
measure to identify which genes need to be imputed. For each
group of cells identified from the first module, a generalized
linear model will learn from the compressed data to impute
the missing data in the high dropout genes set.

A. Compressing data using autoencoders

The input of Module 1 is an already-normalized expression
matrix in which rows represent cells while columns represent
genes. Given the input matrix, we rescale the data to a range
of 0 to 1 as follows:

Xij =
Mij −min(Mi.)

max(Mi.)−min(Mi.)
(1)

where M is the input matrix and X is the normalized matrix.
After the rescaling, we further process the data using an 1-

layer autoencoder to filter out genes that do not significantly
contribute to differentiate cells. Autoencoder is a self-learning
neural network that consists of two core components: an
encoder and a decoder. The encoder projects the input onto a
lower-dimensional space (compressed data) while the decoder
tries to reconstruct the original data from the compressed
data. We also constrain the weights of the encoder to be non-
negative. The non-negativity constraint ensures that each latent

variable in the compressed space is a part-based, additive com-
bination of the input. This technique shrinks the coefficients
of less important features to zero while maintaining the non-
negative coefficients of the significant features.

After the feature selection step, we obtain a denoised
data matrix with the same number of cells that consists of
important genes. Here, we further reduce the size of the data by
conducting an additional step of dimensional reduction using
a modified version of Variational Autoencoder (VAE) [19].
The VAE has the same structure as a standard autoencoder,
which consists of an encoder and a decoder. The encoder
(fE) projects the input to a low-dimensional space while
the decoder (fD) reconstructs the original input from the
compressed data. Given an expression profile of a cell x, we
have e = fE(x), where e is the low-dimensional representation
of x in the bottleneck layer. Instead of using e directly to
reconstruct the data, VAE adds two transformations fµ and
fσ to generate the parameters µ and σ. The new vector z is
now sampled from the distribution N(µ, σ2). The decoder uses
z to reconstruct the data: x̄ = fD(z). Adding randomness to
z will help the VAE model to avoid overfitting without losing
the ability to learn a generalized representation of the input.

We call the second autoencoder a Stacked Variational Au-
toencoder because we modify the VAE model to generate
multiple compressed spaces. Given a list of latent variables,
we use a re-parameterization trick [19] to obtain multiple
realizations of z as follows: z = µ + σ ∗ N(0, 1). Given the
list of latent variables, we use Weighted-based meta-clustering
(wMetaC) to generate cells clusters and select the best latent
variable as a compressed data M to be used for imputation.

B. Identifying dropouts and imputation

In this section, we aim to determine the set of genes that are
likely to be impacted by dropouts. This is an important step
to ensure that the missing data is correctly imputed without
introducing false signals to the original data.

Our approach is based on the observation that for genes that
are not impacted by dropouts, the log-transformed expression
values are normally distributed [5]. Therefore, we use z-test to
determine whether a zero value is observed by chance or by
the impact of dropout events. For each gene g, we use the non-
zero expression values to determine the parameters µ and σ of
the Gaussian distribution. Next, we use z-test to estimate how
likely a zero value occurs, given that the expression values
follow the estimated Gaussian distribution. If the chance of
observing a zero value is less than the significance threshold
(0.05), we conclude that gene g is likely to be affected by
dropout. By repeating this process for all genes, we can select
a group of genes that are being affected by dropout and we
call them as imputable set G.

After conducting the z-test, we obtain a new matrix with
the same number of cells (rows), but the columns consist of
genes that are highly impacted by dropout. Here, we perform
imputation on imputable genes using the shared information
within each cell group identified from the first module. For a
gene gi ∈ Gi (imputable set) that belongs to the cell cluster

Ce
lls

Genes

Input
Data

Imputable
Genes

Dropout
Identi�cation

Regression-based
Imputation

Imputed
Data

Genes

Ce
lls

Non Negative
Autoencoder

Stack Baysian
Autoencoder

Denoised
Data

Compressed
Data

Cells
Clusters

A

B
Fig. 1. The overall analysis pipeline of scIDS. The input is a matrix in which rows represent cells and columns represent genes. In the first module (A),
we perform features selection, data embedding, and cells clustering using two autoencoders. In the second module (B), we apply the z-test hypothesis testing
to determine which genes need to be imputed. From the obtained genes set, we segregate cells into different groups using cluster assignment obtained from
module A. For each group of cells, we adopt the generalized linear model to estimate the missing values using embedding data in module A. and we perform.
The algorithm outputs the imputed matrix that has the same number of rows and columns as of the input data.

i, let us denote yi as the non-zero part of gi. In the first step
we calculate the Pearson correlation coefficient of yi with the
corresponding features in the compressed data Mi. We then
select 5 features from Mi with the highest correlation coef-
ficients. Denoting {mij1 , . . . ,mij5} as the selected features
in Mi, we have {xij1 , . . . , xij5} as the vectors obtained from
{mij1 , . . . ,mij5} that are highly correlated with yi. Note that
each vector xijn is a part of mijn . We train the generalized
linear model in which {xij1 , . . . , xij5} are the predictor vari-
ables and yi is the outcome variable. In our implementation,
we adopt the lm function that is available in the stats package.
Next, we use the trained linear model to estimate the missing
values in gi, using {mij1\xij1 , . . . ,mij5\xij5} as the predic-
tors, where mijn\xijn is that part of mijn that do not belong
to xijn .

We repeat this imputation process for all genes in each
cells cluster generated by the first module. Given the already
imputed genes, we merge them by the cells groups to obtain a
new matrix that has the same size of the imputable set. Finally,
we concatenate the set of good genes with the imputable set
to obtain the final imputed data.

III. RESULT

In this section, we assess the performance of scIDS in the
following capabilities: (1) improving the quality of cluster
analysis, (2) preserving the cell transcriptome landscape. We
compare scIDS with the raw data and two widely used
scRNA-seq imputation methods, knn-smoothing [20], and
MAGIC [10] using eight scRNA-seq datasets.

Table I shows the details of the eight single-cell datasets
(accession ID, number of cells, number of cell types, or-
ganism, and single-cell protocol) used in our data analysis.

TABLE I
DESCRIPTION OF THE EIGHT SINGLE-CELL DATASETS USED TO ASSESS

THE PERFORMANCE OF SCIDS.

Dataset Accession ID Size K Organism Protocol
Pollen [22] SRP041736 301 4 Human Tissues SMARTer
Darmanis [23] GSE67835 466 9 Human Brain SMARTer
Usoskin [24] E-MTAB-3321 124 3 Mouse Brain STRT-Seq
Kolodziejczyk [25] E-MTAB-2600 268 3 Mouse Embryo SMARTer
Klein [26] GSE65525 3,005 4 Mouse Embryo inDrop
Baron [27] GSE84133 3,005 14 Human Pancreas inDrop
Hrvatin [28] GSE102827 48,266 8 Mouse Visual Cortex inDrop
Cao [29] SCP454 90,579 7 Sea Squirt Embryos 10x Genomics

The Cao dataset was downloaded from Broad Institute Single
Cell Portal (https://singlecell.broadinstitute.org/single\ cell).
The Hrvatin dataset was downloaded from NCBI [21]. The re-
maining six datasets were downloaded from Hemberg Group’s
website (https://hemberg-lab.github.io/scRNA.seq.datasets). In
each of these datasets, the true cell type (labels) is known. This
information will be used a posteriori to assess the performance
of each clustering method. We apply a log transformation (base
2) to rescale the data if the maximum expression value of the
data is larger than 100, and we remove the genes that do not
express across in any cells.

A. scIDS improves the identification of cells population.

For each of the eight datasets, we use a raw matrix as
the input of each imputation method. After imputation, we
obtain four matrices: the raw data and three imputed matrices
(from knn-smoothing, MAGIC, and scIDS). In order to assess
the segregation of the cell types in each matrix, we use k-
means to cluster each matrix and then compare the obtained
cluster assignments with the known cell types. We use three
different metrics to quantify the quality of the clustering result:

TABLE II
COMPARISONS USING ADJUSTED RAND INDEX (ARI).

Dataset Adjusted Rand Index
Raw knn-smooth MAGIC scIDS

Pollen 0.955 0.577 0.564 0.959
Darmanis 0.612 0.194 0.298 0.702
Usoskin 0.736 0.035 0.276 0.741
Kolodziejczyk 0.727 0.203 0.163 0.996
Klein 0.984 0.991 0.451 0.984
Baron 0.557 0.568 0.578 0.559
Hrvatin 0.713 0.822 0.821 0.832
Cao 0.376 N/A 0.378 0.434
Mean 0.708 0.484 0.441 0.776

adjusted Rand index (ARI) [30], adjusted mutual information
(AMI) [31] and V-measure [32] (see Appendix A for more
details of the three metrics).

Table II shows the ARI values obtained for each method and
for the raw data from eight datasets. For each row, the values
highlighted in bold indicate the highest ARI value. The cell
with “N/A” indicates out of memory or error. In this analysis,
scIDS consistently outperforms all comparing methods by
maintaining the highest average ARI value of 0.776. This is the
highest value compared to 0.708, 0.484, and 441 of raw’s, knn-
smoothing’s, and MAGIC’s. More importantly, the ARI values
obtained from scDIS are always higher than those obtained
from raw data. This vast improvement demonstrates the ability
of scIDS in imputing the dropouts without introducing false
signals. Unlike scIDS, knn-smoothing and MAGIC have ARI
values that are lower than the raw in 5 and 4 datasets.
These methods rely on sophisticated models that might lead to
overfitting. Moreover, knn-smoothing and MAGIC do not have
an efficient mechanism to distinguish whether a low expression
value is due to sequencing limitation (i.e., dropout) or indeed
due to biological phenomena. Therefore, they are likely to add
false signals to the imputed data.

Tables III and IV show the adjusted mutual information
and V-measure values obtained for raw data and imputed
data using knn-smoothing, MAGIC, and scIDS. Again, the
result is similar to the analysis using ARI. scIDS has the
highest AMI values in 6 out of 8 datasets with an average
AMI value of 0.808 while the average AMI values of raw
data, knn-smoothing, and MAGIC are 0.761, 0.577, and 0.581,
respectively. The same trend can be seen for V-measure values
in Table IV. scIDS has the highest average of V-measure
value (0.825). All of the three benchmarking metrics show that
scIDS consistently outperforms knn-smoothing and MAGIC in
all analyses.

B. scIDS preserves the biological landscape.

In this section, we show that scIDS has a capability of
correctly imputing missing values without making a change
to the transcriptomics landscapes. Preferably, life scientists
impute the data in order to improve the quality of downstream
analyses. At the same time, imputation should not completely
change the data because of falsely introduced signals, leading
to wrong or compromised findings. Since single-cell data

TABLE III
COMPARISONS USING ADJUSTED MUTUAL INFORMATION (AMI).

Dataset Adjusted Mutual Information
Raw knn-smooth MAGIC scIDS

Pollen 0.95 0.788 0.79 0.95
Darmanis 0.722 0.411 0.532 0.738
Usoskin 0.716 0.069 0.404 0.722
Kolodziejczyk 0.774 0.304 0.296 0.991
Klein 0.97 0.981 0.579 0.97
Baron 0.681 0.65 0.701 0.683
Hrvatin 0.775 0.839 0.848 0.862
Cao 0.498 N/A 0.501 0.551
Mean 0.761 0.577 0.581 0.808

TABLE IV
COMPARISONS USING V-MEASURE.

Dataset V-Measure Index
Raw knn-smooth MAGIC scIDS

Pollen 0.953 0.802 0.799 0.954
Darmanis 0.723 0.469 0.563 0.742
Usoskin 0.721 0.1 0.473 0.726
Kolodziejczyk 0.784 0.364 0.354 0.992
Klein 0.973 0.981 0.625 0.973
Baron 0.767 0.715 0.787 0.769
Hrvatin 0.828 0.845 0.858 0.877
Cao 0.515 N/A 0.518 0.567
Mean 0.783 0.611 0.622 0.825

are high-dimensional, the common practice is to project the
high-dimensional data into a low dimensional space with two
or three dimensions. The visualization in 2-D or 3-D helps
researchers to interpret the single-cell data more efficiently.
To reduce the running time, we first use a fast partial singular
value decomposition method [33] to quickly reduce the num-
ber of features to 20. Then, we use t-SNE [34], and UMAP
[35] to project the compact data into two-dimensional space
for visualization.

Transcriptome landscape similarity

0.00

0.25

0.50

0.75

1.00

D
is

ta
nc

e
C

or
re

la
tio

n

t−SNE

0.00

0.25

0.50

0.75

1.00

UMAP

Methods knn−smoothing MAGIC scDIS

Fig. 2. The similarity between the imputed and original landscapes.

To quantify the similarity between the imputed and orig-
inal landscapes, we calculate the distance correlation index
(dCor) [36] for each imputed landscape generated by t-
SNE and UMAP. Given X and Y as the 2D representa-
tion of the raw and imputed data, dCor is calculated as
dCor = dCov(X,Y)√

dV ar(X)dV ar(Y)
where dCov(X,Y) is the distance

covariance between X and Y while dV ar(X) and dV ar(Y)
are distance variances of X and Y . The dCor coefficient
takes value between 0 and 1, with the dCor is expected
to be 1 for a perfect similarity. Unlike Pearson correlation,
dCor measures both the linear and nonlinear associations
between X and Y [36]. Especially, dCor remains constant
when we rotate the transcriptome landscape. Figure 2 shows
the distribution of dCor values for all eight analyzed datasets.
In this figure, the left panel shows the values obtained from
t-SNE while the right panel shows the values obtained from
UMAP representations. The bar plot shows that scIDS has the
highest dCor values. A Wilcoxon test also confirms that the
correlation dCor obtained from scIDS are significantly higher
than the rest (p = 1.1× 10−2 and 6.11× 10−5 for t-SNE and
UMAP, respectively).

Figure 3 shows the visualization of the raw data and the
imputed data for the Baron dataset. Among three comparing
methods, the transcriptomics landscape of scIDS is similar to
that of the original data (raw), demonstrating that scIDS did
not alter the transcriptomics landscape. On the contrary, the
transcriptomics landscapes obtained from knn-smoothing and
MAGIC are very different from the original data.

Fig. 3. The visualization of Baron dataset.

IV. CONCLUSION

In this work, we introduced a new method to reduce the
effects of dropout events that frequently happen during the
sequencing process of individual cells. The contribution is
two-fold. First, we use deep autoencoder neural networks to
get the low-dimensional representation of the input data and
cell cluster assignment. Second, we impute missing values

by using highly correlated genes from the group of cells
that share similar biological characteristics. We compared our
approach with two widely used methods using eight scRNA-
seq datasets. We demonstrated that scIDS outperforms other
imputation methods in improving the quality of downstream
analyses, including cluster analysis and transcriptome land-
scape preservation. Generally, scIDS is easy to use and it
does not require a sophisticated parameters tuning. The tool
can be seamlessly embedded into other single-cell analysis
pipelines. Finally, we plan to extend this work to improve the
data for network analysis [37–45], meta-analysis [46–49], and
the analysis of omics data other than mRNA [50–55].

ACKNOWLEDGMENT

This work was partially supported by NIH NIGMS under
grant number GM103440, and by NSF under grant numbers
2001385 and 2019609. Any opinions, findings, and conclu-
sions, or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of any
of the funding agencies.

APPENDIX

Rand index (RI) evaluates the similarity between predicted
clusters and true cell types. Given P as a set of clusters and
Q is a set of true cell types then RI is calculated as:

RI =
t+ u

t+ u+ v + s
=
t+ u(
N
2

) (2)

where t is the number of pairs belonging to the same cell
type in Q and are grouped together in the same cluster in P ,
u is the number of pairs of different cell types in Q and are
grouped to different clusters in P , v is the number of pairs of
same cell types in Q and are grouped to different clusters in
P , s is the number of pairs in different cell types in Q and
are grouped together in the same cluster in P , N is the total
number of cells, and

(
N
2

)
is the number of possible pairs. The

Adjusted Rand Index (ARI) [30] is the corrected-for-chance
version of the Rand Index. The ARI values ranged from -1 to
1 in which 0 indicates for a random grouping. The ARI score
is calculated as :

ARI =
RI − exptected RI

max(RI)− expected RI
(3)

Adjusted mutual information (AMI) is an adjustment of the
mutual information (MI) score to account for random parti-
tioning. It accounts for the fact that the MI is generally higher
for two clusters with a larger number of clusters, regardless
of whether there is actually more information shared. Given a
dataset of n cells with true partition X = {X1, X2, ..., XR}
of R clusters and predicted partition Y = {Y1, Y2, ..., YC}
of C clusters. The mutual information of cluster overlap
between X and Y can be summarized as a contingency table
MR×C = [nij], where i = 1...R, j = 1...C, and nij represents
the number of common data point falls into cluster Xi is
p(i) = |xi|

n . The entropy associated with the clustering X

is calculated as H(X) =
∑R
i=1 P (i)logP (i). The mutual

information (MI) between two clusters X and Y is calculated
as MI(X,Y) =

∑R
i=1

∑C
j=1 P (i, j)log P (i,j)

P (i)P (j)
nij

n where
P (i, j) is the cell that is classified to both clusters Xi in X

and Yj in Y . P (i, j) is calculated as P (i, j) =
|Xi∩Yj |

n . MI
gives outputs as non-negative values bounded by the entropies
H(X) and H(Y) and 0 indicates that there is no cell classified
to the same cluster. AM I is defined as follows:

AMI(X,Y) =
MI(X,Y)− E{MI(X,Y)}

max{H(X), H(Y)} − E{MI(X,Y)}
(4)

where E{MI(X,Y)} is the expected mutual information
between two random clusterings. The AMI takes values
between 0 and 1 where 0 stands for random clustering and
1 represents a perfect partition.

V-Measure is the harmonic mean between two measures:
homogeneity and completeness. Homogeneous clustering is
when each cluster has data points belonging to the same
class. Complete clustering is when all dat a points belonging
to the same class are clustered into the same cluster. Given
a set of classes C = {C1, C2, ..., Cl}, a set of cluster
K = {K1,K2, ...,Km} and the conditional entropy of the
class distribution given the identified clustering is computed
as H(C|K). The homogeneity is defined as follows:

h =

{
1 ifH(C|K) = 0

1− H(C|K)
H(C) otherwise

(5)

The completeness is symmetrical to homogeneity. To mea-
sure the completeness, the distribution of cluster assignments
within each class is assessed. In a perfect clustering, each
of these distributions will be completely skewed to a single
cluster. Given the homogeneity h and completeness c, the
V-measure is computed as the weighted harmonic mean β
between homogeneity and completeness:

V −measure =
1 + β ∗ h ∗ c)
(β ∗ h) + c

(6)

if β is greater than 1, completeness is weighted more strongly
in the calculation. If β is less than 1, homogeneity is weighted
more strongly. Since the computations of homogeneity, com-
pleteness and V-measure are completely independent of the
number of classes, the number of clusters, the size of the
dataset and the clustering algorithm, these measures can be
employed for evaluating any clustering solution.

REFERENCES

[1] F. Tang, C. Barbacioru, Y. Wang, E. Nordman, C. Lee,
N. Xu, X. Wang, J. Bodeau, B. B. Tuch, A. Siddiqui,
K. Lao, and A. Surani, “mRNA-Seq whole-transcriptome
analysis of a single cell,” Nature Methods, vol. 6, no. 5,
pp. 377–382, 2009.

[2] C. Ziegenhain, B. Vieth, S. Parekh, B. Reinius,
A. Guillaumet-Adkins, M. Smets, H. Leonhardt,
H. Heyn, I. Hellmann, and W. Enard, “Comparative anal-
ysis of single-cell RNA sequencing methods,” Molecular
Cell, vol. 65, no. 4, pp. 631–643, 2017.

[3] F. Buettner, K. N. Natarajan, F. P. Casale, V. Proserpio,
A. Scialdone, F. J. Theis, S. A. Teichmann, J. C. Marioni,
and O. Stegle, “Computational analysis of cell-to-cell
heterogeneity in single-cell RNA-sequencing data reveals
hidden subpopulations of cells,” Nature Biotechnology,
vol. 33, no. 2, pp. 155–160, 2015.

[4] A. Haque, J. Engel, S. A. Teichmann, and T. Lönnberg,
“A practical guide to single-cell RNA-sequencing for
biomedical research and clinical applications,” Genome
Medicine, vol. 9, no. 1, p. 75, 2017.

[5] W. V. Li and J. J. Li, “An accurate and robust imputation
method scImpute for single-cell RNA-seq data,” Nature
Communications, vol. 9, p. 997, 2018.

[6] M. Huang, J. Wang, E. Torre, H. Dueck, S. Shaffer,
R. Bonasio, J. I. Murray, A. Raj, M. Li, and N. R. Zhang,
“SAVER: gene expression recovery for single-cell RNA
sequencing,” Nature Methods, vol. 15, no. 7, pp. 539–
542, 2018.

[7] E. Azizi, S. Prabhakaran, A. Carr, and D. Pe’er,
“Bayesian inference for single-cell clustering and imput-
ing,” Genomics and Computational Biology, vol. 3, no. 1,
pp. e46–e46, 2017.

[8] R. Lopez, J. Regier, M. B. Cole, M. I. Jordan, and
N. Yosef, “Deep generative modeling for single-cell
transcriptomics,” Nature Methods, vol. 15, no. 12, pp.
1053–1058, 2018.

[9] D. Görür and C. E. Rasmussen, “Dirichlet process gaus-
sian mixture models: Choice of the base distribution,”
Journal of Computer Science and Technology, vol. 25,
no. 4, pp. 653–664, 2010.

[10] D. Van Dijk, R. Sharma, J. Nainys, K. Yim, P. Kathail,
A. J. Carr, C. Burdziak, K. R. Moon, C. L. Chaffer,
D. Pattabiraman, B. Bierie, L. Mazutis, G. Wolf, S. Kr-
ishnaswamy, and D. Pe’er, “Recovering gene interactions
from single-cell data using data diffusion,” Cell, vol. 174,
no. 3, pp. 716–729, 2018.

[11] W. Gong, I.-Y. Kwak, P. Pota, N. Koyano-Nakagawa,
and D. J. Garry, “DrImpute: imputing dropout events in
single cell RNA sequencing data,” BMC Bioinformatics,
vol. 19, p. 220, 2018.

[12] Y. Deng, F. Bao, Q. Dai, L. F. Wu, and S. J. Altschuler,
“Scalable analysis of cell-type composition from single-
cell transcriptomics using deep recurrent learning,” Na-
ture Methods, vol. 16, no. 4, pp. 311–314, 2019.

[13] G. Eraslan, L. M. Simon, M. Mircea, N. S. Mueller, and
F. J. Theis, “Single-cell rna-seq denoising using a deep
count autoencoder,” Nature Communications, vol. 10, p.
390, 2019.

[14] C. Arisdakessian, O. Poirion, B. Yunits, X. Zhu, and
L. X. Garmire, “DeepImpute: an accurate, fast, and
scalable deep neural network method to impute single-
cell RNA-seq data,” Genome Biology, vol. 20, no. 1, pp.
1–14, 2019.

[15] Z. I. Botev, J. F. Grotowski, D. P. Kroese et al., “Kernel
density estimation via diffusion,” The Annals of Statistics,
vol. 38, no. 5, pp. 2916–2957, 2010.

[16] A. Strehl and J. Ghosh, “Cluster ensembles—a knowl-
edge reuse framework for combining multiple partitions,”
The Journal of Machine Learning Research, vol. 3, pp.
583–617, 2003.

[17] S. Monti, P. Tamayo, J. Mesirov, and T. Golub, “Consen-
sus clustering: a resampling-based method for class dis-
covery and visualization of gene expression microarray
data,” Machine Learning, vol. 52, no. 1-2, pp. 91–118,
2003.

[18] V. Y. Kiselev, K. Kirschner, M. T. Schaub, T. Andrews,
A. Yiu, T. Chandra, K. N. Natarajan, W. Reik, M. Bara-
hona, A. R. Green, and M. Hamberg, “SC3: consensus
clustering of single-cell RNA-seq data,” Nature Methods,
vol. 14, no. 5, pp. 483–486, 2017.

[19] D. P. Kingma and M. Welling, “Auto-Encoding Varia-
tional Bayes,” arXiv:1312.6114, 2013.

[20] F. Wagner, Y. Yan, and I. Yanai, “K-nearest neighbor
smoothing for high-throughput single-cell rna-seq data,”
BioRxiv, p. 217737, 2017.

[21] T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista, I. F.
Kim, M. Tomashevsky, K. A. Marshall, K. H. Phillippy,
P. M. Sherman, M. Holko, A. Yefanov, H. Lee, N. Zhang,
C. L. Robertson, N. Serova, S. Davis, and A. Soboleva,
“NCBI GEO: archive for functional genomics data sets–
update,” Nucleic Acids Research, vol. 41, no. D1, pp.
D991–D995, 2013.

[22] A. A. Pollen, T. J. Nowakowski, J. Shuga, X. Wang, A. A.
Leyrat, J. H. Lui, N. Li, L. Szpankowski, B. Fowler,
P. Chen, N. Ramalingam, G. Sun, M. Thu, M. Norris,
R. Lebofsky, D. Toppani, D. W. Kemp Ii, M. Wong,
B. Clerkson, B. N. Jones, S. Wu, L. Knutsson, B. Al-
varado, J. Wang, L. S. Weaver, A. P. May, R. C. Jones,
M. A. Unger, A. R. Kriegstein, and J. A. A. West, “Low-
coverage single-cell mRNA sequencing reveals cellular
heterogeneity and activated signaling pathways in devel-
oping cerebral cortex,” Nature Biotechnology, vol. 32,
no. 10, pp. 1053–1058, 2014.

[23] S. Darmanis, S. A. Sloan, Y. Zhang, M. Enge, C. Caneda,
L. M. Shuer, M. G. H. Gephart, B. A. Barres, and S. R.
Quake, “A survey of human brain transcriptome diversity
at the single cell level,” Proceedings of the National
Academy of Sciences of the United States of America,
vol. 112, no. 23, pp. 7285–7290, 2015.

[24] D. Usoskin, A. Furlan, S. Islam, H. Abdo,
P. Lönnerberg, D. Lou, J. Hjerling-Leffler, J. Haeggström,
O. Kharchenko, P. V. Kharchenko, S. Linnarson, and
P. Ernfors, “Unbiased classification of sensory neuron
types by large-scale single-cell RNA sequencing,”
Nature Neuroscience, vol. 18, no. 1, pp. 145–153, 2015.

[25] P. Brennecke, S. Anders, J. K. Kim, A. A. Kolodziejczyk,
X. Zhang, V. Proserpio, B. Baying, V. Benes, S. A. Te-
ichmann, J. C. Marioni, and M. G. Heisler, “Accounting
for technical noise in single-cell RNA-seq experiments,”
Nature Methods, vol. 10, no. 11, pp. 1093–1095, 2013.

[26] A. M. Klein, L. Mazutis, I. Akartuna, N. Tallapragada,
A. Veres, V. Li, L. Peshkin, D. A. Weitz, and M. W.

Kirschner, “Droplet barcoding for single-cell transcrip-
tomics applied to embryonic stem cells,” Cell, vol. 161,
no. 5, pp. 1187–1201, 2015.

[27] M. Baron, A. Veres, S. L. Wolock, A. L. Faust, R. Gau-
joux, A. Vetere, J. H. Ryu, B. K. Wagner, S. S. Shen-Orr,
A. M. Klein, D. A. Melton, and I. Yanai, “A single-cell
transcriptomic map of the human and mouse pancreas
reveals inter-and intra-cell population structure,” Cell
Systems, vol. 3, no. 4, pp. 346–360, 2016.

[28] S. Hrvatin, D. R. Hochbaum, M. A. Nagy, M. Cic-
conet, K. Robertson, L. Cheadle, R. Zilionis, A. Ratner,
R. Borges-Monroy, A. M. Klein, B. L. Sabatini, and
M. E. Greenberg, “Single-cell analysis of experience-
dependent transcriptomic states in the mouse visual cor-
tex,” Nature Neuroscience, vol. 21, no. 1, pp. 120–129,
2018.

[29] C. Cao, L. A. Lemaire, W. Wang, P. H. Yoon, Y. A. Choi,
L. R. Parsons, J. C. Matese, M. Levine, and K. Chen,
“Comprehensive single-cell transcriptome lineages of a
proto-vertebrate,” Nature, vol. 571, no. 7765, pp. 349–
354, 2019.

[30] L. Hubert and P. Arabie, “Comparing partitions,” Journal
of Classification, vol. 2, no. 1, pp. 193–218, 1985.

[31] N. X. Vinh, J. Epps, and J. Bailey, “Information the-
oretic measures for clusterings comparison: Variants,
properties, normalization and correction for chance,” The
Journal of Machine Learning Research, vol. 11, pp.
2837–2854, 2010.

[32] A. Rosenberg and J. Hirschberg, “V-measure: A con-
ditional entropy-based external cluster evaluation mea-
sure,” in Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-
CoNLL), 2007, pp. 410–420.

[33] J. Baglama, L. Reichel, and B. W. Lewis, irlba: Fast
Truncated Singular Value Decomposition and Principal
Components Analysis for Large Dense and Sparse
Matrices, 2018, r package version 2.3.2. [Online].
Available: https://CRAN.R-project.org/package=irlba

[34] L. van der Maaten and G. Hinton, “Visualizing data using
t-SNE,” Journal of Machine Learning Research, vol. 9,
no. Nov, pp. 2579–2605, 2008.

[35] E. Becht, L. McInnes, J. Healy, C.-A. Dutertre, I. W.
Kwok, L. G. Ng, F. Ginhoux, and E. W. Newell, “Dimen-
sionality reduction for visualizing single-cell data using
UMAP,” Nature Biotechnology, vol. 37, no. 1, pp. 38–44,
2019.

[36] G. J. Székely, M. L. Rizzo, and N. K. Bakirov, “Measur-
ing and testing dependence by correlation of distances,”
The Annals of Statistics, vol. 35, no. 6, pp. 2769–2794,
2007.

[37] H. Nguyen, D. Tran, B. Tran, B. Pehlivan, and
T. Nguyen, “A comprehensive survey of regulatory net-
work inference methods using single-cell RNA sequenc-
ing data,” Briefings in Bioinformatics, vol. 22, no. 3, pp.
1–15, 2021.

[38] T.-M. Nguyen, A. Shafi, T. Nguyen, and S. Draghici,
“Identifying significantly impacted pathways: a com-
prehensive review and assessment,” Genome Biology,
vol. 20, p. 203, 2019.

[39] A. Shafi, T. Nguyen, A. Peyvandipour, H. Nguyen,
and S. Draghici, “A multi-cohort and multi-omics meta-
analysis framework to identify network-based gene sig-
natures,” Frontiers in Genetics, vol. 10, p. 159, 2019.

[40] A. Shafi, T. Nguyen, A. Peyvandipour, and S. Draghici,
“GSMA: an approach to identify robust global and test
Gene Signatures using Meta-Analysis,” Bioinformatics,
vol. 36, no. 2, pp. 487–495, 2019.

[41] H. Nguyen, S. Shrestha, D. Tran, A. Shafi, S. Draghici,
and T. Nguyen, “A comprehensive survey of tools and
software for active subnetwork identification,” Frontiers
in Genetics, vol. 10, p. 155, 2019.

[42] H. Nguyen, D. Tran, J. M. Galazka, S. V. Costes, A. Be-
heshti, S. Draghici, and T. Nguyen, “CPA: A web-based
platform for consensus pathway analysis and interactive
visualization,” Nucleic Acids Research, vol. 49, no. W1,
pp. W114–W124, 2021.

[43] T. Nguyen, C. Mitrea, and S. Draghici, “Network-based
approaches for pathway level analysis,” Current Proto-
cols in Bioinformatics, vol. 61, no. 1, pp. 8–25, 2018.

[44] J. Tanevski, T. Nguyen, B. Truong, N. Karaiskos, M. E.
Ahsen, X. Zhang, C. Shu, K. Xu, X. Liang, Y. Hu,
H. V. Pham, L. Xiaomei, T. D. Le, A. L. Tarca,
G. Bhatti, R. Romero, N. Karathanasis, P. Loher, Y. Chen,
Z. Ouyang, D. Mao, Y. Zhang, M. Zand, J. Ruan,
C. Hafemeister, P. Qiu, D. Tran, T. Nguyen, A. Gabor,
T. Yu, J. Guinney, E. Glaab, R. Krause, P. Banda,
DREAM SCTC Consortium, G. Stolovitzky, N. Rajew-
sky, J. Saez-Rodriguez, and P. Meyer, “Gene selection for
optimal prediction of cell position in tissues from single-
cell transcriptomics data,” Life Science Alliance, vol. 3,
no. 11, 2020.

[45] E. Cruz, H. Nguyen, T. Nguyen, and I. Wallace, “Func-
tional analysis tools for post-translational modification:
a post-translational modification database for analysis of
proteins and metabolic pathways,” The Plant Journal,
vol. 99, no. 5, pp. 1003–1013, 2019.

[46] T. Nguyen, R. Tagett, M. Donato, C. Mitrea, and
S. Draghici, “A novel bi-level meta-analysis approach-
applied to biological pathway analysis,” Bioinformatics,
vol. 32, no. 3, pp. 409–416, 2016.

[47] T. Nguyen, C. Mitrea, R. Tagett, and S. Draghici,
“DANUBE: Data-driven meta-ANalysis using UnBiased
Empirical distributions - applied to biological pathway
analysis,” Proceedings of the IEEE, vol. 105, no. 3, pp.
496–515, 2017.

[48] T. Nguyen, D. Diaz, R. Tagett, and S. Draghici, “Over-
coming the matched-sample bottleneck: an orthogonal
approach to integrate omic data,” Scientific Reports,
vol. 6, p. 29251, 2016.

[49] T. Nguyen, A. Shafi, T.-M. Nguyen, A. G. Schissler, and
S. Draghici, “NBIA: a network-based integrative anal-

ysis framework–applied to pathway analysis,” Scientific
Reports, vol. 10, p. 4188, 2020.

[50] T. Nguyen, R. Tagett, D. Diaz, and S. Draghici, “A novel
approach for data integration and disease subtyping,”
Genome Research, vol. 27, no. 12, pp. 2025–2039, 2017.

[51] H. Nguyen, S. Shrestha, S. Draghici, and T. Nguyen,
“PINSPlus: A tool for tumor subtype discovery in inte-
grated genomic data,” Bioinformatics, vol. 35, no. 16, pp.
2843–2846, 2019.

[52] D. Tran, H. Nguyen, U. Le, G. Bebis, H. N. Luu, and
T. Nguyen, “A novel method for cancer subtyping and
risk prediction using consensus factor analysis,” Frontiers
in Oncology, vol. 10, p. 1052, 2020.

[53] M. P. Menden, D. Wang, M. J. Mason, B. Szalai, K. C.
Bulusu, Y. Guan, T. Yu, J. Kang, M. Jeon, R. Wolfinger,
T. Nguyen, M. Zaslavskiy, AstraZeneca-Sanger Drug
Combination DREAM Consortium, I. S. Jang, Z. Gha-
zoui, M. E. Ahsen, R. Vogel, E. C. Neto, T. Norman,
E. K. Y. Tang, M. J. Garnett, G. Y. Di Veroli, C. Zwaan,
S. Fawell, G. Stolovitzky, J. Guinney, J. R. Dry, and
J. Saez-Rodriguez, “Community assessment to advance
computational prediction of cancer drug combinations
in a pharmacogenomic screen,” Nature Communications,
vol. 10, p. 2674, 2019.

[54] J. C. Stansfield, D. Tran, T. Nguyen, and M. G. Doz-
morov, “R tutorial: Detection of differentially interacting
chromatin regions from multiple Hi-C datasets.” Current
Protocols in Bioinformatics, vol. 66, no. 1, pp. e76–e76,
2019.

[55] A. Shafi, C. Mitrea, T. Nguyen, and S. Draghici, “A
survey of the approaches for identifying differential
methylation using bisulfite sequencing data,” Briefings
in Bioinformatics, vol. 19, no. 5, pp. 737–753, 2018.

