

SSA: a novel method for Single-cell and Spatial transcriptomics Alignment

Presented by Bang Tran, California State University, Sacramento

Table of contents

Introduction

An overview of single-cell RNA sequencing and spatial transcriptomics

Methodology

Data preparation and details of the SSA method

Challenges

Current challenges of profiling spatial transcriptomics at a single-cell resolution

Results and Conclusion

Benchmarking results, conclusion and future direction

Spatial Transcriptomics (ST)

Challenges

- Assays can only measure small regions with mixtures of cells
- smFISH-based techniques such as seq-FISH+ and ExM-MERFISH can only cover a small area of tissue, comprised of around 10,000 cells with a few dozens to a few hundreds of genes.
- 10x Visium platforms are restricted to a set of gene expression evaluations, in which spatial expression profile is the average expression of many cells.
- Require more specialized equipment.

Single-cell and Spatial transcriptomics Alignment

DOI: https://doi.org/10.1038/s41587-023-01697-9

SSA: a novel method for Single-cell and Spatial transcriptomics Alignment

Feature Selection and Data Transformation

- Compute the variance for each gene in the scRNA-seq data and select 5,000 genes with the highest variance.
- Subset both of the expression matrices using this gene set for consistency and comparative analysis.
- Use Z-score transformation to scale and center the data.

Cell to Spot Alignment using Sinkhorn Algorithm

• Calculate the pair-wise Pearson's correlation between cells and spots.

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sigma(X)*\sigma(Y)}$$

• Calculate the pair-wise distance between cells and spots

$$D(X,Y) = 1 - |\rho(X,Y)|$$

Cell to Spot Alignment using Sinkhorn Algorithm

1. Initialization:

- . A distance matrix D(X,Y) (cost matrix) that represents distances between single cells and spatial spots.
- . Two probability vectors p and q that represent the expression distribution of single cells and spatial spots respectively. Here, p are row-wise sum of gene expression values for each cell in scRNA-seq data and q are row-wise sum of gene expression values for each spot in ST data.
- . A regularization term $\lambda=0.05.$
- . A kernel matrix $K=e^{\frac{-\lambda*D(X,Y)}{max(D(X,Y)}}$
- . Two vectors $a \in R^m$ and $b \in R^n$ with all entries equal to 1

2. Update:

Repeat until convergence:

- . Update: $b = \frac{q}{K^T a}$
- . Update: $a = \frac{p}{Kb}$

3. Compute transport plan:

T = diag(a)Kdiag(b)

Data Preparation

- Download high-resolution spatial transcriptomics of 100,064 cells of human breast cancer data from Gene Expression Omnibus (GEO) under accession number GSE176078.
- Partition the spatial domain into a grid structure where each grid cell, or "spot". Centroids of cellular locations are averaging the 2–D coordinates of all cells.
- The gene expression profile for each spot is generated by averaging the gene expression levels of all cells residing within the corresponding grid cell.
- 3,615 spots and sub-sample scRNA-seq dataset 10 times

Table 1: Comparisons using average Euclidean distance.

Datasets	\mathbf{SSA}	$\mathbf{SpaoTsc}$	Tangram	Seurat	$\mathbf{DistMap}$
Dataset-1	1.786	3.007	5.364	11.627	4.624
Dataset-2	1.802	2.977	5.365	12.057	4.718
Dataset-3	1.778	2.952	5.351	11.998	4.534
Dataset-4	1.818	2.955	5.291	11.821	5.345
Dataset-5	1.757	2.970	5.357	12.072	4.519
Dataset-6	1.738	2.944	5.376	11.806	4.804
Dataset-7	1.784	2.955	5.388	12.274	4.989
Dataset-8	1.799	2.991	5.296	11.751	4.484
Dataset-9	1.806	3.076	5.351	11.961	1398.808
Dataset-10	1.789	2.939	5.407	12.200	4.502

Table 2: Comparisons using average Manhattan distance.

Datasets	\mathbf{SSA}	$\mathbf{SpaoTsc}$	Tangram	Seurat	$\mathbf{DistMap}$
Dataset-1	2.259	3.819	6.878	14.769	5.839
Dataset-2	2.277	3.781	6.874	15.309	5.967
Dataset-3	2.245	3.755	6.862	15.179	5.727
Dataset-4	2.298	3.758	6.771	14.98	6.701
Dataset-5	2.227	3.778	6.858	15.333	5.705
Dataset-6	2.193	3.747	6.895	15.096	6.040
Dataset-7	2.252	3.750	6.925	15.603	6.279
Dataset-8	2.272	3.801	6.797	14.912	5.663
Dataset-9	2.280	3.918	6.858	15.229	1697.566
Dataset-10	2.263	3.736	6.930	15.11	5.677

Conclusion

- We have introduced SSA for the alignment of individual cells to physical spatial locations in a tissue based on scRNA-seq and ST data.
- SSA accurately maps single-cells to spatial locations for the whole cell population with very minimal differences in distance.
- SSA efficiently reconstructs a cellular spatial map within a specific cell type.
- SSA substantially outperforms existing state-of-the-art approaches in different benchmark scenarios.
- Integrate other techniques developed in our research lab for single-cell analysis to group cells with similar patterns together before performing cells-to-spot alignment
- Extend this work to improve the data for data integration and pathway analysis, cancer research, and space biology and drug development.

