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Algebraicity Conjecture
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The Plan

Act I First principles, general theory, and optimism
Act II Obstructions and pessimism

Act III Permutation groups
Act IV Permutation groups (cont’d) and other topics

COMPANION NOTES

webpages.csus.edu/wiscons/research/GFMR-Minicourse-Notes.pdf
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Act I

First principles, general theory, and
optimism
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Definability (and interpretability)

LetM be a structure in a first-order language L.

Example

LGROUP = (·,−1 , 1) and LRING = (+, ·,−, 0)

Implicitly, other symbols too: ∀, ∃, ∧, ∨, ¬, parentheses, and variables

A group is then an LGROUP-structure that satisfies the three group axioms.

Actually, we allow groups to be L-structures with L ⊇ LGROUP.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Example

LGROUP = (·,−1 , 1) and LRING = (+, ·,−, 0)

Implicitly, other symbols too: ∀, ∃, ∧, ∨, ¬, parentheses, and variables

A group is then an LGROUP-structure that satisfies the three group axioms.

Actually, we allow groups to be L-structures with L ⊇ LGROUP.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Example

LGROUP = (·,−1 , 1) and LRING = (+, ·,−, 0)
Implicitly, other symbols too: ∀, ∃, ∧, ∨, ¬, parentheses, and variables

A group is then an LGROUP-structure that satisfies the three group axioms.

Actually, we allow groups to be L-structures with L ⊇ LGROUP.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Example

LGROUP = (·,−1 , 1) and LRING = (+, ·,−, 0)
Implicitly, other symbols too: ∀, ∃, ∧, ∨, ¬, parentheses, and variables

A group is then an LGROUP-structure that satisfies the three group axioms.

Actually, we allow groups to be L-structures with L ⊇ LGROUP.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Example

LGROUP = (·,−1 , 1) and LRING = (+, ·,−, 0)
Implicitly, other symbols too: ∀, ∃, ∧, ∨, ¬, parentheses, and variables

A group is then an LGROUP-structure that satisfies the three group axioms.

Actually, we allow groups to be L-structures with L ⊇ LGROUP.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Example

LGROUP = (·,−1 , 1) and LRING = (+, ·,−, 0)
Implicitly, other symbols too: ∀, ∃, ∧, ∨, ¬, parentheses, and variables

A group is then an LGROUP-structure that satisfies the three group axioms.

Actually, we allow groups to be L-structures with L ⊇ LGROUP.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Example

LGROUP = (·,−1 , 1) and LRING = (+, ·,−, 0)
Implicitly, other symbols too: ∀, ∃, ∧, ∨, ¬, parentheses, and variables

A group is then an LGROUP-structure that satisfies the three group axioms.

Actually, we allow groups to be L-structures with L ⊇ LGROUP.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Example
Work in LGROUP. Let G be a group and h ∈ G.

1 α(x) ≡ (∀y)(x−1y−1xy = 1) is an LGROUP-formula.

The “solution set” is α(G) = {g | (∀y)(g−1y−1gy = 1)}

= Z(G).

2 β(x) ≡ (∃y)(x = y−1hy) is an LGROUP(G)-formula.

The “solution set” is β(G) = {g | (∃y)(g = y−1hy)}

= hG.

3 What about CG(h)?

. . . [G,G]?. . . G/Z(G)?

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Example
Work in LGROUP. Let G be a group and h ∈ G.

1 α(x) ≡ (∀y)(x−1y−1xy = 1) is an LGROUP-formula.

The “solution set” is α(G) = {g | (∀y)(g−1y−1gy = 1)}

= Z(G).

2 β(x) ≡ (∃y)(x = y−1hy) is an LGROUP(G)-formula.

The “solution set” is β(G) = {g | (∃y)(g = y−1hy)}

= hG.

3 What about CG(h)?

. . . [G,G]?. . . G/Z(G)?

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Example
Work in LGROUP. Let G be a group and h ∈ G.

1 α(x) ≡ (∀y)(x−1y−1xy = 1) is an LGROUP-formula.
The “solution set” is α(G) = {g | (∀y)(g−1y−1gy = 1)}

= Z(G).
2 β(x) ≡ (∃y)(x = y−1hy) is an LGROUP(G)-formula.

The “solution set” is β(G) = {g | (∃y)(g = y−1hy)}

= hG.

3 What about CG(h)?

. . . [G,G]?. . . G/Z(G)?

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Example
Work in LGROUP. Let G be a group and h ∈ G.

1 α(x) ≡ (∀y)(x−1y−1xy = 1) is an LGROUP-formula.
The “solution set” is α(G) = {g | (∀y)(g−1y−1gy = 1)} = Z(G).

2 β(x) ≡ (∃y)(x = y−1hy) is an LGROUP(G)-formula.

The “solution set” is β(G) = {g | (∃y)(g = y−1hy)}

= hG.

3 What about CG(h)?

. . . [G,G]?. . . G/Z(G)?

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Example
Work in LGROUP. Let G be a group and h ∈ G.

1 α(x) ≡ (∀y)(x−1y−1xy = 1) is an LGROUP-formula.
The “solution set” is α(G) = {g | (∀y)(g−1y−1gy = 1)} = Z(G).

2 β(x) ≡ (∃y)(x = y−1hy) is an LGROUP(G)-formula.

The “solution set” is β(G) = {g | (∃y)(g = y−1hy)}

= hG.

3 What about CG(h)?

. . . [G,G]?. . . G/Z(G)?

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Example
Work in LGROUP. Let G be a group and h ∈ G.

1 α(x) ≡ (∀y)(x−1y−1xy = 1) is an LGROUP-formula.
The “solution set” is α(G) = {g | (∀y)(g−1y−1gy = 1)} = Z(G).

2 β(x) ≡ (∃y)(x = y−1hy) is an LGROUP(G)-formula.
The “solution set” is β(G) = {g | (∃y)(g = y−1hy)}

= hG.
3 What about CG(h)?

. . . [G,G]?. . . G/Z(G)?

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Example
Work in LGROUP. Let G be a group and h ∈ G.

1 α(x) ≡ (∀y)(x−1y−1xy = 1) is an LGROUP-formula.
The “solution set” is α(G) = {g | (∀y)(g−1y−1gy = 1)} = Z(G).

2 β(x) ≡ (∃y)(x = y−1hy) is an LGROUP(G)-formula.
The “solution set” is β(G) = {g | (∃y)(g = y−1hy)} = hG.

3 What about CG(h)?

. . . [G,G]?. . . G/Z(G)?

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Example
Work in LGROUP. Let G be a group and h ∈ G.

1 α(x) ≡ (∀y)(x−1y−1xy = 1) is an LGROUP-formula.
The “solution set” is α(G) = {g | (∀y)(g−1y−1gy = 1)} = Z(G).

2 β(x) ≡ (∃y)(x = y−1hy) is an LGROUP(G)-formula.
The “solution set” is β(G) = {g | (∃y)(g = y−1hy)} = hG.

3 What about CG(h)?

. . . [G,G]?. . . G/Z(G)?

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Example
Work in LGROUP. Let G be a group and h ∈ G.

1 α(x) ≡ (∀y)(x−1y−1xy = 1) is an LGROUP-formula.
The “solution set” is α(G) = {g | (∀y)(g−1y−1gy = 1)} = Z(G).

2 β(x) ≡ (∃y)(x = y−1hy) is an LGROUP(G)-formula.
The “solution set” is β(G) = {g | (∃y)(g = y−1hy)} = hG.

3 What about CG(h)? . . . [G,G]?

. . . G/Z(G)?

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Example
Work in LGROUP. Let G be a group and h ∈ G.

1 α(x) ≡ (∀y)(x−1y−1xy = 1) is an LGROUP-formula.
The “solution set” is α(G) = {g | (∀y)(g−1y−1gy = 1)} = Z(G).

2 β(x) ≡ (∃y)(x = y−1hy) is an LGROUP(G)-formula.
The “solution set” is β(G) = {g | (∃y)(g = y−1hy)} = hG.

3 What about CG(h)? . . . [G,G]?. . . G/Z(G)?

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Definition
An L-formula is a “well-formed” finite sequence of symbols from L that
expresses a statement that is either true or false for each L-structure.

Example
Work in LGROUP. Let G be a group and h ∈ G.

1 α(x) ≡ (∀y)(x−1y−1xy = 1) is an LGROUP-formula.
The “solution set” is α(G) = {g | (∀y)(g−1y−1gy = 1)} = Z(G).

2 β(x) ≡ (∃y)(x = y−1hy) is an LGROUP(G)-formula.
The “solution set” is β(G) = {g | (∃y)(g = y−1hy)} = hG.

3 What about CG(h)? . . . [G,G]?. . . G/Z(G)?

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Example
Work in LGROUP. Let G be a group and h ∈ G.

1 α(x) ≡ (∀y)(x−1y−1xy = 1) is an LGROUP-formula.
The “solution set” is α(G) = {g | (∀y)(g−1y−1gy = 1)} = Z(G).

2 β(x) ≡ (∃y)(x = y−1hy) is an LGROUP(G)-formula.
The “solution set” is β(G) = {g | (∃y)(g = y−1hy)} = hG.

3 What about CG(h)? . . . [G,G]?. . . G/Z(G)?

Definition
A set isM-definable (with parameters) if A = ϕ(Mn) for some
L(M)-formula.

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Example
Work in LGROUP. Let G be a group and h ∈ G.

1 α(x) ≡ (∀y)(x−1y−1xy = 1) is an LGROUP-formula.
The “solution set” is α(G) = {g | (∀y)(g−1y−1gy = 1)} = Z(G).

2 β(x) ≡ (∃y)(x = y−1hy) is an LGROUP(G)-formula.
The “solution set” is β(G) = {g | (∃y)(g = y−1hy)} = hG.

3 What about CG(h)? . . . [G,G]?. . . G/Z(G)?

Definition
A set isM-definable (with parameters) if A = ϕ(Mn) for some
L(M)-formula.

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Example
Work in LGROUP. Let G be a group and h ∈ G.

1 α(x) ≡ (∀y)(x−1y−1xy = 1) is an LGROUP-formula.
The “solution set” is α(G) = {g | (∀y)(g−1y−1gy = 1)} = Z(G).

2 β(x) ≡ (∃y)(x = y−1hy) is an LGROUP(G)-formula.
The “solution set” is β(G) = {g | (∃y)(g = y−1hy)} = hG.

3 What about CG(h)? . . . [G,G]?. . . G/Z(G)?

Definition
A set isM-definable (with parameters) if A = ϕ(Mn) for some
L(M)-formula.

Joshua Wiscons Short course: groups of fMr



Definability (and interpretability)

LetM be a structure in a first-order language L.

Definition
A set isM-definable (with parameters) if A = ϕ(Mn) for some
L(M)-formula.

Definition
A set A isM-interpretable (with parameters) if

there is a definable B ⊆ Mn

there is a definable equivalence relation E ⊆ B× B

A = B/E

o We now redefine definable to include interpretable.

Example

Thus, G/Z(G) is G-definable

. . . the underlying set and the group operations!
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o We now redefine definable to include interpretable.

Example

Thus, G/Z(G) is G-definable

. . . the underlying set and the group operations!
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Definability: another example

Example

LRING = (+, ·,−, 0). Let K be a field.

1 GLn(K) is K-definable

GL2(K) = {(k11, k12, k21, k22) ∈ K4 | k11k22 − k12k21 6= 0}
Matrix multiplication and inversion can be defined as well

2 SLn(K) is K-definable.
3 PSLn(K) is K-definable.
4 The algebraic groups over K are definable

Fact
If K is an algebraically closed field (considered as a LRING-structure), then
every K-definable set is (in definable bijection with) a constructible set.
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Ranked structures

Definition (Borovik-Poizat axioms for ranked structures)

M is ranked if

there is a function rk from Def(M)− {∅} to N satisfying the
following four axioms (for all A,B ∈ Def(M)− ∅).

(Monotonicity) rk(A) ≥ n + 1 ⇐⇒

there exists {Ai}i<ω ⊂ Def(M)− {∅}
A

rk ≥ n rk ≥ n rk ≥ n

A1 A2 · · · Ai · · ·

(Additivity) If f : A � B is a definable surjection, then

rk = n
rk = n

rk = n

...
...

A

f

B

=⇒

rk(A) = rk(B) + n
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Ranked structures

Definition (Borovik-Poizat axioms for ranked structures (continued))

(Definability of rank) If f : A→ B is definable, then {b ∈ B | rk(f−1(b)) = n}
is definable.
(Elimination of infinite quantifiers) If f : A→ B is definable, then there exists a
finite n such that for every b ∈ B, |f−1(b)| ≤ n or f−1(b) is infinite.

Theorem (Poizat)
A group is ranked iff it is a group of finite Morley rank.

We will use the latter terminology

. . . and abbreviate it, so

ranked group = group of fMr
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Examples

Examples

1 Abelian groups of bounded exponent have fMr.
2 All torsion-free divisible abelian groups have fMr.

G is divisible if xn = g has a solution for every g ∈ G and every n ∈ N.
Such a group is of the form

⊕
κQ

3 All divisible abelian groups with finitely many elements of each finite
order have fMr.

Example: the Prüfer p-group Zp∞ = {a ∈ C | apk
= 1 for some k ∈ N}

4 Any group that is definable over a ranked structureM has fMr.

So, any definable subgroup of group of fMr is a group of fMr.
But, definability is stillM-definability (using the language forM)!

5 (Cherlin-Macintyre) An infinite division ring has fMr if and only if it is
an algebraically closed field.

6 Algebraic groups over algebraically closed fields have fMr.

Examples: GLn(K), SLn(K), PSLn(K), . . .
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an algebraically closed field.

6 Algebraic groups over algebraically closed fields have fMr.

Examples: GLn(K), SLn(K), PSLn(K), . . .

Joshua Wiscons Short course: groups of fMr



Examples

Examples
1 Abelian groups of bounded exponent have fMr.
2 All torsion-free divisible abelian groups have fMr.

G is divisible if xn = g has a solution for every g ∈ G and every n ∈ N.
Such a group is of the form

⊕
κQ

3 All divisible abelian groups with finitely many elements of each finite
order have fMr.

Example: the Prüfer p-group Zp∞ = {a ∈ C | apk
= 1 for some k ∈ N}

4 Any group that is definable over a ranked structureM has fMr.
So, any definable subgroup of group of fMr is a group of fMr.
But, definability is stillM-definability (using the language forM)!

5 (Cherlin-Macintyre) An infinite division ring has fMr if and only if it is
an algebraically closed field.

6 Algebraic groups over algebraically closed fields have fMr.

Examples: GLn(K), SLn(K), PSLn(K), . . .

Joshua Wiscons Short course: groups of fMr



Examples

Examples
1 Abelian groups of bounded exponent have fMr.
2 All torsion-free divisible abelian groups have fMr.

G is divisible if xn = g has a solution for every g ∈ G and every n ∈ N.
Such a group is of the form

⊕
κQ

3 All divisible abelian groups with finitely many elements of each finite
order have fMr.

Example: the Prüfer p-group Zp∞ = {a ∈ C | apk
= 1 for some k ∈ N}

4 Any group that is definable over a ranked structureM has fMr.
So, any definable subgroup of group of fMr is a group of fMr.
But, definability is stillM-definability (using the language forM)!

5 (Cherlin-Macintyre) An infinite division ring has fMr if and only if it is
an algebraically closed field.

6 Algebraic groups over algebraically closed fields have fMr.
Examples: GLn(K), SLn(K), PSLn(K), . . .

Joshua Wiscons Short course: groups of fMr



Properties of the rank (and degree)

Fact (Existence of degree)

If rk(A) = n, the degree of A, deg(A), is the maximum d ∈ N such that

A

rk = n rk = n rk = n

A1 A2 · · · Ad

Fact
Let A and B be nonempty definable sets over some ranked structure.

(Finite sets) A is finite if and only if rk A = 0 and deg A = |A|.
(Monotonicity) If A ≤ B, then rk A ≤ rk B.

(Unions) rk(A ∪ B) = max(rk A, rk B)

(Products) rk(A× B) = rk A + rk B and deg(A× B) = deg(A) · deg(B)

(Invariance) Definable bijections preserve rank and degree
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Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups—DCC)
A group of fMr has no infinite descending chains of definable subgroups.

Proof.
Suppose H0 > H1 > · · · is a chain of definable subgroups of G.

Hi+1 rk Hi+1

rk Hi+1

rk Hi+1

...

Hi

=⇒ rk Hi > rk Hi+1 or deg Hi > deg Hi+1
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Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups—DCC)
A group of fMr has no infinite descending chains of definable subgroups.

Example
Z does NOT have fMr because

Z > 2Z > 4Z > 8Z > · · · , and mZ is defined
by ϕm(x) ≡ ∃y(x = y + · · · (m times) · · ·+ y).

Corollary
Let G be a group of fMr.

(Connected Component) G has a minimal definable subgroup of finite
index G◦. And. . .

G = G◦ ⇐⇒ G has degree 1 ⇐⇒ “G is connected”

(Definable Hull) Every subgroup H is contained in a minimal definable
subgroup d(H).
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Quick check-in

Exercise
Suppose that G is a connected group of fMr. Show that if a ∈ G has finitely
many conjugates, then a ∈ Z(G).

Solution.

CG(a) has finite index in G

CG(a) is definable

G = G◦ =⇒ G has no proper definable subgroups of finite index

Thus, G = CG(a)

Exercise
Let G be a group of fMr and a ∈ G. Show that d(a) is abelian.
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Algebraic analogies: semisimplicity (kind of)

Definition
Any divisible abelian p-group (of fMR or not) will be called a p-torus.

Recall: T is divisible if xn = a has a solution for every a ∈ T and every n.

A p-torus must be of the form
⊕

r Zp∞ . (r is the Prüfer p-rank)

K algebraically closed =⇒ (charK = p ⇐⇒ K× has no p-torus)

As subgroups of groups of fMr, p-tori tend to not be definable.

Definition
A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.

Decent tori are divisible, hence connected (exercise!).

Decent tori have finite Prüfer p-rank for all p.
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Algebraic analogies: semisimplicity (kind of)

Definition
A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.

Exercise
If G is a group of fMr and T ≤ G is a decent torus, then N◦G(T) = C◦G(T).

Solution.

Want to show T is centralized by N := N◦G(T)

T = d(T0) where T0 is the torsion subgroup

Suffices to show T0 is centralized by N (exercise!)

T0 =
⊕

p

(⊕
rp
Zp∞

)
with each rp finite

Thus, T0 has finitely many elements of each finite order

Thus, every a ∈ T0 has a finitely many N-conjugates, so a ∈ Z(N)
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Algebraic analogies: semisimplicity (kind of)

Definition
A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.

Exercise
If G is a group of fMr and T ≤ G is a decent torus, then N◦G(T) = C◦G(T).

Fact (Conjugacy of Maximal Tori, Cherlin—2005)
Any two maximal decent tori of a group of fMr are conjugate.
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Algebraic analogies: unipotence (kind of)

Definition
Let p be a prime. A definable subgroup of a group of fMr G is called
p-unipotent if it is a connected nilpotent p-group of bounded exponent.

K algebraically closed =⇒ (charK = p ⇐⇒ K+ is p-unipotent)

Example

Let K be algebraically closed of characteristic p. Then subgroup of GLn(K)
of upper-triangular matrices with all 1’s on the main diagonal is p-unipotent.

Fact (Burdges-Cherlin—2009)
Let p be a prime. If G is a connected group of fMr with no nontrivial
p-unipotent subgroup, then every p-element of G is contained in a p-torus.
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Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)
If G is a group of fMr, then the following subgroups are definable:

the Fitting subgroup F(G) (generated by all normal nilpotent subgroups)

the solvable radical σ(G) (generated by all normal solvable subgroups)

the commutator subgroup G′

Fact (Structure of solvable groups)
Let G be a connected solvable group of fMr. Then

F◦(G) contains G′ and all p-unipotent radicals of G,

G/F◦(G) is divisible abelian (like a torus), and

(Fitting’s Theorem) G/Z(F(G)) ≤ Aut(F(G)).
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Algebraic analogies: Borel subgroups

Fact (Structure of solvable groups)
Let G be a connected solvable group of fMr. Then

F◦(G) contains G′ and all p-unipotent radicals of G,

G/F◦(G) is divisible abelian (like a torus), and

(Fitting’s Theorem) G/Z(F(G)) ≤ Aut(F(G)).

Definition
Any maximal connected definable solvable subgroup of a group of fMr is
called a Borel subgroup.

So, we know a bit about the structure of Borel subgroups.

But not enough!

And crucially, we do not know if they are conjugate

. . . sadness �
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Sylow Theory

Definition
A Sylow 2-subgroup of a group is just a maximal 2-subgroup.

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)
In any group of fMr, the Sylow 2-subgroups are conjugate!

That’s right—we only know this for the prime 2. . .�

Fact (Structure of Sylow 2-subgroups)
In any group of fMr, the connected component of a Sylow 2-subgroup is (a
central product) of the form U ∗ T where U is 2-unipotent and T is a 2-torus.
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Algebraicity Conjecture

Algebraicity Conjecture (Cherlin-Zilber)
An infinite simple group of finite Morley rank is isomorphic to an algebraic
group over an algebraically closed field.

Analysis breaks into the 4 types.

does NOT contain
⊕

i<ω Z2

contains
⊕

i<ω Z2

does NOT contain Z2∞ contains Z2∞

even

odddeg.

mixed

Fact (Altınel-Borovik-Cherlin—2008)
There are no infinite simple groups of finite Morley rank of mixed type and
those of even type are indeed algebraic.
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Fact (Altınel-Borovik-Cherlin—2008)
There are no infinite simple groups of finite Morley rank of mixed type and
those of even type are indeed algebraic.

Joshua Wiscons Short course: groups of fMr



Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of degenerate type.

Recall: degenerate type if Sylow 2-subgroups are finite.

Recall: according to the Algebraicity Conjecture, G should not exist.

Fact (Borovik-Burdges-Cherlin—2007)
A connected group of fMr of degenerate type has no involutions at all.

Thus, showing such a G does not exist amounts to proving a
Feit-Thompson for groups of fMr.

And that’s more-or-less it, except in some special cases. . .

Fact (Frécon—2018)
The group G cannot have rank 3.
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Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.

Recall: odd type if the Sylow◦ 2-subgroups are 2-tori.

Thus, the Sylow◦ 2-subgroups are of the form
⊕

r Z2∞ .

Recall: according to the Algebraicity Conjecture, G should be algebraic
in characteristic not 2.

Fact (High Prüfer Rank Theorem, Burdges—2009)
In an inductive setting where every simple definable section of G is algebraic,
G is known to be algebraic when r (the Prüfer 2-rank) is at least 3.

The assumption includes that simple definable degenerate sections of G
are algebraic!

There is a corresponding theory assuming that only the simple definable
odd type sections of G are algebraic. . .

but it’s less developed.
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Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact
Let α ∈ Aut(G) be definable. If |α| = 2 and CG(α) is finite, then

α inverts G.

Let X := {g−1gα : g ∈ G} ⊆ G;

if a ∈ X, then aα = a−1

X is generic in G: rk X = rk G

X ⊆ Z(G)

=⇒ Z(G) is generic in G

G is abelian

=⇒ X is a generic subgroup =⇒ X = G
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X ⊆ Z(G)

=⇒ Z(G) is generic in G

G is abelian

=⇒ X is a generic subgroup =⇒ X = G

scratch

(g−1gα)α =(g−1gα)α = (g−1)αgαα =(g−1gα)α = (g−1)αgαα = (gα)−1g =(g−1gα)α = (g−1)αgαα = (gα)−1g = (g−1gα)−1

rk = nrk = 0
rk = nrk = 0

rk = nrk = 0

...
...

A

G

B

X

f

g 7→ g−1gα

=⇒ rk A = rk B + n=⇒ rk G = rk X + n=⇒ rk G = rk X + 0

cosets of CG(α)

G

Y

X

aX

a

= (ax)α == (ax)α = aαxα == (ax)α = aαxα = a−1x−1x−1a−1

x ∈ CG(a) =⇒ ax ∈ CG(a)

=⇒ Y ⊆ CG(a)

=⇒ a ∈ Z(G)
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The End—Thank You
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