A short course on groups of finite Morley rank —Part 1—

Joshua Wiscons
California State University, Sacramento

Hausdorff Institute for Mathematics

November 2018

Groups of finite Morley rank (fMr)

All groups

Groups of finite Morley rank (fMr)

All groups

Groups of finite Morley rank (fMr)

All groups

Groups of finite Morley rank (fMr)

All groups

Groups of finite Morley rank (fMr)

All groups

The world

All groups

The world

All groups

The world

All groups

The world

All groups

Algebraicity Conjecture

All groups

Algebraicity Conjecture:

Algebraicity Conjecture

All groups

Algebraicity Conjecture: the gap, \uparrow, does not exist.

The Plan

The Plan

Act I First principles, general theory, and optimism

The Plan

Act I First principles, general theory, and optimism
Act II Obstructions and pessimism

The Plan

Act I First principles, general theory, and optimism
Act II Obstructions and pessimism
Act III Permutation groups

The Plan

Act I First principles, general theory, and optimism
Act II Obstructions and pessimism
Act III Permutation groups
Act IV Permutation groups (cont'd) and other topics

Act I First principles, general theory, and optimism
Act II Obstructions and pessimism
Act III Permutation groups
Act IV Permutation groups (cont'd) and other topics

Companion Notes

webpages.csus.edu/wiscons/research/GFMR-Minicourse-Notes.pdf

Act I

First principles, general theory, and optimism

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

$$
\begin{aligned}
& \text { Example } \\
& \mathcal{L}_{\text {GROUP }}=\left(\cdot,^{-1}, 1\right) \text { and } \mathcal{L}_{\text {RING }}=(+, \cdot,-, 0)
\end{aligned}
$$

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Example

$\mathcal{L}_{\text {GROUP }}=\left(\cdot,{ }^{-1}, 1\right)$ and $\mathcal{L}_{\text {RING }}=(+, \cdot,-, 0)$

- Implicitly, other symbols too: $\forall, \exists, \wedge, \vee, \neg$, parentheses, and variables

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Example

$\mathcal{L}_{\text {GROUP }}=\left(\cdot,{ }^{-1}, 1\right)$ and $\mathcal{L}_{\text {RING }}=(+, \cdot,-, 0)$

- Implicitly, other symbols too: $\forall, \exists, \wedge, \vee, \neg$, parentheses, and variables
- A group is then an $\mathcal{L}_{\text {Group }}$-structure that satisfies the three group axioms.

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Example

$\mathcal{L}_{\text {GROUP }}=\left(\cdot,{ }^{-1}, 1\right)$ and $\mathcal{L}_{\text {RING }}=(+, \cdot,-, 0)$

- Implicitly, other symbols too: $\forall, \exists, \wedge, \vee, \neg$, parentheses, and variables
- A group is then an $\mathcal{L}_{\text {Group }}$-structure that satisfies the three group axioms.
- Actually, we allow groups to be \mathcal{L}-structures with $\mathcal{L} \supseteq \mathcal{L}_{\text {Group }}$.

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Example

$\mathcal{L}_{\text {GROUP }}=\left(\cdot,^{-1}, 1\right)$ and $\mathcal{L}_{\text {RING }}=(+, \cdot,-, 0)$

- Implicitly, other symbols too: $\forall, \exists, \wedge, \vee, \neg$, parentheses, and variables
- A group is then an $\mathcal{L}_{\text {Group }}$-structure that satisfies the three group axioms.
- Actually, we allow groups to be \mathcal{L}-structures with $\mathcal{L} \supseteq \mathcal{L}_{\text {GRoup }}$.

Definition

An \mathcal{L}-formula is a "well-formed" finite sequence of symbols from \mathcal{L} that expresses a statement that is either true or false for each \mathcal{L}-structure.

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

An \mathcal{L}-formula is a "well-formed" finite sequence of symbols from \mathcal{L} that expresses a statement that is either true or false for each \mathcal{L}-structure.

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

An \mathcal{L}-formula is a "well-formed" finite sequence of symbols from \mathcal{L} that expresses a statement that is either true or false for each \mathcal{L}-structure.

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

An \mathcal{L}-formula is a "well-formed" finite sequence of symbols from \mathcal{L} that expresses a statement that is either true or false for each \mathcal{L}-structure.

Example

Work in $\mathcal{L}_{\text {GRoup }}$. Let G be a group and $h \in G$.

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

An \mathcal{L}-formula is a "well-formed" finite sequence of symbols from \mathcal{L} that expresses a statement that is either true or false for each \mathcal{L}-structure.

Example

Work in $\mathcal{L}_{\text {GRoup }}$. Let G be a group and $h \in G$.
(1) $\alpha(x) \equiv(\forall y)\left(x^{-1} y^{-1} x y=1\right)$ is an $\mathcal{L}_{\text {GROUP }}$-formula.

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

An \mathcal{L}-formula is a "well-formed" finite sequence of symbols from \mathcal{L} that expresses a statement that is either true or false for each \mathcal{L}-structure.

Example

Work in $\mathcal{L}_{\text {GRoup }}$. Let G be a group and $h \in G$.
(1) $\alpha(x) \equiv(\forall y)\left(x^{-1} y^{-1} x y=1\right)$ is an $\mathcal{L}_{\text {GROUP }}$-formula.

- The "solution set" is $\alpha(G)=\left\{g \mid(\forall y)\left(g^{-1} y^{-1} g y=1\right)\right\}$

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

An \mathcal{L}-formula is a "well-formed" finite sequence of symbols from \mathcal{L} that expresses a statement that is either true or false for each \mathcal{L}-structure.

Example

Work in $\mathcal{L}_{\text {Group. }}$ Let G be a group and $h \in G$.
(1) $\alpha(x) \equiv(\forall y)\left(x^{-1} y^{-1} x y=1\right)$ is an $\mathcal{L}_{\text {GROUP }}$-formula.

- The "solution set" is $\alpha(G)=\left\{g \mid(\forall y)\left(g^{-1} y^{-1} g y=1\right)\right\}=Z(G)$.

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

An \mathcal{L}-formula is a "well-formed" finite sequence of symbols from \mathcal{L} that expresses a statement that is either true or false for each \mathcal{L}-structure.

Example

Work in $\mathcal{L}_{\text {GRoup }}$. Let G be a group and $h \in G$.
(1) $\alpha(x) \equiv(\forall y)\left(x^{-1} y^{-1} x y=1\right)$ is an $\mathcal{L}_{\text {GROUP }}$-formula.

- The "solution set" is $\alpha(G)=\left\{g \mid(\forall y)\left(g^{-1} y^{-1} g y=1\right)\right\}=Z(G)$.
(2) $\beta(x) \equiv(\exists y)\left(x=y^{-1} h y\right)$ is an $\mathcal{L}_{\text {GROUP }}(\mathrm{G})$-formula.

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

An \mathcal{L}-formula is a "well-formed" finite sequence of symbols from \mathcal{L} that expresses a statement that is either true or false for each \mathcal{L}-structure.

Example

Work in $\mathcal{L}_{\text {Group. }}$ Let G be a group and $h \in G$.
(1) $\alpha(x) \equiv(\forall y)\left(x^{-1} y^{-1} x y=1\right)$ is an $\mathcal{L}_{\text {GROUP }}$-formula.

- The "solution set" is $\alpha(G)=\left\{g \mid(\forall y)\left(g^{-1} y^{-1} g y=1\right)\right\}=Z(G)$.
(2) $\beta(x) \equiv(\exists y)\left(x=y^{-1} h y\right)$ is an $\mathcal{L}_{\text {GROUP }}(\mathrm{G})$-formula.
- The "solution set" is $\beta(G)=\left\{g \mid(\exists y)\left(g=y^{-1} h y\right)\right\}$

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

An \mathcal{L}-formula is a "well-formed" finite sequence of symbols from \mathcal{L} that expresses a statement that is either true or false for each \mathcal{L}-structure.

Example

Work in $\mathcal{L}_{\text {Group. }}$ Let G be a group and $h \in G$.
(1) $\alpha(x) \equiv(\forall y)\left(x^{-1} y^{-1} x y=1\right)$ is an $\mathcal{L}_{\text {GROUP }}$-formula.

- The "solution set" is $\alpha(G)=\left\{g \mid(\forall y)\left(g^{-1} y^{-1} g y=1\right)\right\}=Z(G)$.
(2) $\beta(x) \equiv(\exists y)\left(x=y^{-1} h y\right)$ is an $\mathcal{L}_{\text {GROUP }}(\mathrm{G})$-formula.
- The "solution set" is $\beta(G)=\left\{g \mid(\exists y)\left(g=y^{-1} h y\right)\right\}=h^{G}$.

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

An \mathcal{L}-formula is a "well-formed" finite sequence of symbols from \mathcal{L} that expresses a statement that is either true or false for each \mathcal{L}-structure.

Example

Work in $\mathcal{L}_{\text {GRoup }}$. Let G be a group and $h \in G$.
(1) $\alpha(x) \equiv(\forall y)\left(x^{-1} y^{-1} x y=1\right)$ is an $\mathcal{L}_{\text {GROUP }}$-formula.

- The "solution set" is $\alpha(G)=\left\{g \mid(\forall y)\left(g^{-1} y^{-1} g y=1\right)\right\}=Z(G)$.
(2) $\beta(x) \equiv(\exists y)\left(x=y^{-1} h y\right)$ is an $\mathcal{L}_{\text {GROUP }}(\mathrm{G})$-formula.
- The "solution set" is $\beta(G)=\left\{g \mid(\exists y)\left(g=y^{-1} h y\right)\right\}=h^{G}$.
(3) What about $C_{G}(h)$?

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

An \mathcal{L}-formula is a "well-formed" finite sequence of symbols from \mathcal{L} that expresses a statement that is either true or false for each \mathcal{L}-structure.

Example

Work in $\mathcal{L}_{\text {GRoup }}$. Let G be a group and $h \in G$.
(1) $\alpha(x) \equiv(\forall y)\left(x^{-1} y^{-1} x y=1\right)$ is an $\mathcal{L}_{\text {GROUP }}$-formula.

- The "solution set" is $\alpha(G)=\left\{g \mid(\forall y)\left(g^{-1} y^{-1} g y=1\right)\right\}=Z(G)$.
(2) $\beta(x) \equiv(\exists y)\left(x=y^{-1} h y\right)$ is an $\mathcal{L}_{\text {GROUP }}(\mathrm{G})$-formula.
- The "solution set" is $\beta(G)=\left\{g \mid(\exists y)\left(g=y^{-1} h y\right)\right\}=h^{G}$.
(3) What about $C_{G}(h)$? $\ldots[G, G]$?

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

An \mathcal{L}-formula is a "well-formed" finite sequence of symbols from \mathcal{L} that expresses a statement that is either true or false for each \mathcal{L}-structure.

Example

Work in $\mathcal{L}_{\text {GRoup }}$. Let G be a group and $h \in G$.
(1) $\alpha(x) \equiv(\forall y)\left(x^{-1} y^{-1} x y=1\right)$ is an $\mathcal{L}_{\text {GROUP }}$-formula.

- The "solution set" is $\alpha(G)=\left\{g \mid(\forall y)\left(g^{-1} y^{-1} g y=1\right)\right\}=Z(G)$.
(2) $\beta(x) \equiv(\exists y)\left(x=y^{-1} h y\right)$ is an $\mathcal{L}_{\text {GROUP }}(\mathrm{G})$-formula.
- The "solution set" is $\beta(G)=\left\{g \mid(\exists y)\left(g=y^{-1} h y\right)\right\}=h^{G}$.
(3) What about $C_{G}(h)$? $\ldots[G, G]$?... $G / Z(G)$?

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Example

Work in $\mathcal{L}_{\text {Group. }}$ Let G be a group and $h \in G$.
(1) $\alpha(x) \equiv(\forall y)\left(x^{-1} y^{-1} x y=1\right)$ is an $\mathcal{L}_{\text {GROUP }}$-formula.

- The "solution set" is $\alpha(G)=\left\{g \mid(\forall y)\left(g^{-1} y^{-1} g y=1\right)\right\}=Z(G)$.
(2) $\beta(x) \equiv(\exists y)\left(x=y^{-1} h y\right)$ is an $\mathcal{L}_{\text {GROUP }}(\mathrm{G})$-formula.
- The "solution set" is $\beta(G)=\left\{g \mid(\exists y)\left(g=y^{-1} h y\right)\right\}=h^{G}$.
(3) What about $C_{G}(h)$? $\ldots[G, G]$?... $G / Z(G)$?

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Example

Work in $\mathcal{L}_{\text {GRoup }}$. Let G be a group and $h \in G$.
(1) $\alpha(x) \equiv(\forall y)\left(x^{-1} y^{-1} x y=1\right)$ is an $\mathcal{L}_{\text {GROUP }}$-formula.

- The "solution set" is $\alpha(G)=\left\{g \mid(\forall y)\left(g^{-1} y^{-1} g y=1\right)\right\}=Z(G)$.
(2) $\beta(x) \equiv(\exists y)\left(x=y^{-1} h y\right)$ is an $\mathcal{L}_{\text {GROUP }}(\mathrm{G})$-formula.
- The "solution set" is $\beta(G)=\left\{g \mid(\exists y)\left(g=y^{-1} h y\right)\right\}=h^{G}$.
(3) What about $C_{G}(h)$? $\ldots[G, G] ? \ldots G / Z(G)$?

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Example

Work in $\mathcal{L}_{\text {GRoup }}$. Let G be a group and $h \in G$.
(1) $\alpha(x) \equiv(\forall y)\left(x^{-1} y^{-1} x y=1\right)$ is an $\mathcal{L}_{\text {GROUP }}$-formula.

- The "solution set" is $\alpha(G)=\left\{g \mid(\forall y)\left(g^{-1} y^{-1} g y=1\right)\right\}=Z(G)$.
(2) $\beta(x) \equiv(\exists y)\left(x=y^{-1} h y\right)$ is an $\mathcal{L}_{\text {GROUP }}(\mathrm{G})$-formula.
- The "solution set" is $\beta(G)=\left\{g \mid(\exists y)\left(g=y^{-1} h y\right)\right\}=h^{G}$.
(3) What about $C_{G}(h)$? $\ldots[G, G] ? \ldots G / Z(G)$?

Definition

A set is \mathcal{M}-definable (with parameters) if $A=\varphi\left(M^{n}\right)$ for some $\mathcal{L}(M)$-formula.

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition
 A set is \mathcal{M}-definable (with parameters) if $A=\varphi\left(M^{n}\right)$ for some $\mathcal{L}(M)$-formula.

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

A set is \mathcal{M}-definable (with parameters) if $A=\varphi\left(M^{n}\right)$ for some $\mathcal{L}(M)$-formula.

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

A set is \mathcal{M}-definable (with parameters) if $A=\varphi\left(M^{n}\right)$ for some $\mathcal{L}(M)$-formula.

Definition

A set A is \mathcal{M}-interpretable (with parameters) if

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

A set is \mathcal{M}-definable (with parameters) if $A=\varphi\left(M^{n}\right)$ for some $\mathcal{L}(M)$-formula.

Definition

A set A is \mathcal{M}-interpretable (with parameters) if

- there is a definable $B \subseteq M^{n}$

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

A set is \mathcal{M}-definable (with parameters) if $A=\varphi\left(M^{n}\right)$ for some $\mathcal{L}(M)$-formula.

Definition

A set A is \mathcal{M}-interpretable (with parameters) if

- there is a definable $B \subseteq M^{n}$
- there is a definable equivalence relation $E \subseteq B \times B$

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

A set is \mathcal{M}-definable (with parameters) if $A=\varphi\left(M^{n}\right)$ for some $\mathcal{L}(M)$-formula.

Definition

A set A is \mathcal{M}-interpretable (with parameters) if

- there is a definable $B \subseteq M^{n}$
- there is a definable equivalence relation $E \subseteq B \times B$
- $A=B / E$

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

A set is \mathcal{M}-definable (with parameters) if $A=\varphi\left(M^{n}\right)$ for some $\mathcal{L}(M)$-formula.

Definition

A set A is \mathcal{M}-interpretable (with parameters) if

- there is a definable $B \subseteq M^{n}$
- there is a definable equivalence relation $E \subseteq B \times B$
- $A=B / E$

A We now redefine definable to include interpretable.

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

A set is \mathcal{M}-definable (with parameters) if $A=\varphi\left(M^{n}\right)$ for some $\mathcal{L}(M)$-formula.

Definition

A set A is \mathcal{M}-interpretable (with parameters) if

- there is a definable $B \subseteq M^{n}$
- there is a definable equivalence relation $E \subseteq B \times B$
- $A=B / E$

A We now redefine definable to include interpretable.

Example

Thus, $G / Z(G)$ is G-definable

Definability (and interpretability)

Let \mathcal{M} be a structure in a first-order language \mathcal{L}.

Definition

A set is \mathcal{M}-definable (with parameters) if $A=\varphi\left(M^{n}\right)$ for some $\mathcal{L}(M)$-formula.

Definition

A set A is \mathcal{M}-interpretable (with parameters) if

- there is a definable $B \subseteq M^{n}$
- there is a definable equivalence relation $E \subseteq B \times B$
- $A=B / E$

A We now redefine definable to include interpretable.

Example

Thus, $G / Z(G)$ is G-definable. . .the underlying set and the group operations!

Definability: another example

Example
 $\mathcal{L}_{\text {RING }}=(+, \cdot,-, 0)$. Let \mathbb{K} be a field.

Definability: another example

Example
 $\mathcal{L}_{\text {RING }}=(+, \cdot,-, 0)$. Let \mathbb{K} be a field.
 (1) $\mathrm{GL}_{n}(\mathbb{K})$ is \mathbb{K}-definable

Definability: another example

Example

$\mathcal{L}_{\text {RING }}=(+, \cdot,-, 0)$. Let \mathbb{K} be a field.
(1) $\mathrm{GL}_{n}(\mathbb{K})$ is \mathbb{K}-definable

$$
\text { - } \mathrm{GL}_{2}(K)=\left\{\left(k_{11}, k_{12}, k_{21}, k_{22}\right) \in K^{4} \mid k_{11} k_{22}-k_{12} k_{21} \neq 0\right\}
$$

Definability: another example

Example

$\mathcal{L}_{\text {RING }}=(+, \cdot,-, 0)$. Let \mathbb{K} be a field.
(1) $\mathrm{GL}_{n}(\mathbb{K})$ is \mathbb{K}-definable

- $\mathrm{GL}_{2}(K)=\left\{\left(k_{11}, k_{12}, k_{21}, k_{22}\right) \in K^{4} \mid k_{11} k_{22}-k_{12} k_{21} \neq 0\right\}$
- Matrix multiplication and inversion can be defined as well

Definability: another example

Example

$\mathcal{L}_{\text {RING }}=(+, \cdot,-, 0)$. Let \mathbb{K} be a field.
(1) $\mathrm{GL}_{n}(\mathbb{K})$ is \mathbb{K}-definable

- $\mathrm{GL}_{2}(K)=\left\{\left(k_{11}, k_{12}, k_{21}, k_{22}\right) \in K^{4} \mid k_{11} k_{22}-k_{12} k_{21} \neq 0\right\}$
- Matrix multiplication and inversion can be defined as well
(2) $\mathrm{SL}_{n}(\mathbb{K})$ is \mathbb{K}-definable.

Definability: another example

Example

$\mathcal{L}_{\text {RING }}=(+, \cdot,-, 0)$. Let \mathbb{K} be a field.
(1) $\mathrm{GL}_{n}(\mathbb{K})$ is \mathbb{K}-definable

- $\mathrm{GL}_{2}(K)=\left\{\left(k_{11}, k_{12}, k_{21}, k_{22}\right) \in K^{4} \mid k_{11} k_{22}-k_{12} k_{21} \neq 0\right\}$
- Matrix multiplication and inversion can be defined as well
(2) $\mathrm{SL}_{n}(\mathbb{K})$ is \mathbb{K}-definable.
(3) $\mathrm{PSL}_{n}(K)$ is \mathbb{K}-definable.

Definability: another example

Example

$\mathcal{L}_{\text {RING }}=(+, \cdot,-, 0)$. Let \mathbb{K} be a field.
(1) $\mathrm{GL}_{n}(\mathbb{K})$ is \mathbb{K}-definable

- $\mathrm{GL}_{2}(K)=\left\{\left(k_{11}, k_{12}, k_{21}, k_{22}\right) \in K^{4} \mid k_{11} k_{22}-k_{12} k_{21} \neq 0\right\}$
- Matrix multiplication and inversion can be defined as well
(2) $\mathrm{SL}_{n}(\mathbb{K})$ is \mathbb{K}-definable.
(3) $\operatorname{PSL}_{n}(K)$ is \mathbb{K}-definable.
(9) The algebraic groups over \mathbb{K} are definable

Definability: another example

Example

$\mathcal{L}_{\text {RING }}=(+, \cdot,-, 0)$. Let \mathbb{K} be a field.
(1) $\mathrm{GL}_{n}(\mathbb{K})$ is \mathbb{K}-definable

- $\mathrm{GL}_{2}(K)=\left\{\left(k_{11}, k_{12}, k_{21}, k_{22}\right) \in K^{4} \mid k_{11} k_{22}-k_{12} k_{21} \neq 0\right\}$
- Matrix multiplication and inversion can be defined as well
(2) $\mathrm{SL}_{n}(\mathbb{K})$ is \mathbb{K}-definable.
(3) $\operatorname{PSL}_{n}(K)$ is \mathbb{K}-definable.
(9) The algebraic groups over \mathbb{K} are definable

Fact

If \mathbb{K} is an algebraically closed field (considered as a $\mathcal{L}_{\mathrm{RING}}$-structure), then every \mathbb{K}-definable set is (in definable bijection with) a constructible set.

Ranked structures

Definition (Borovik-Poizat axioms for ranked structures)

\mathcal{M} is ranked if

Ranked structures

Definition (Borovik-Poizat axioms for ranked structures)

\mathcal{M} is ranked if there is a function rk from $\operatorname{Def}(\mathcal{M})-\{\emptyset\}$ to \mathbb{N} satisfying the following four axioms (for all $A, B \in \operatorname{Def}(\mathcal{M})-\emptyset$).

Ranked structures

Definition (Borovik-Poizat axioms for ranked structures)

\mathcal{M} is ranked if there is a function rk from $\operatorname{Def}(\mathcal{M})-\{\emptyset\}$ to \mathbb{N} satisfying the following four axioms (for all $A, B \in \operatorname{Def}(\mathcal{M})-\emptyset$).

- (Monotonicity) $\operatorname{rk}(A) \geq n+1 \Longleftrightarrow$

Ranked structures

Definition (Borovik-Poizat axioms for ranked structures)

\mathcal{M} is ranked if there is a function rk from $\operatorname{Def}(\mathcal{M})-\{\emptyset\}$ to \mathbb{N} satisfying the following four axioms (for all $A, B \in \operatorname{Def}(\mathcal{M})-\emptyset$).

- (Monotonicity) $\operatorname{rk}(A) \geq n+1 \Longleftrightarrow$ there exists $\left\{A_{i}\right\}_{i<\omega} \subset \operatorname{Def}(\mathcal{M})-\{\emptyset\}$

Ranked structures

Definition (Borovik-Poizat axioms for ranked structures)

\mathcal{M} is ranked if there is a function rk from $\operatorname{Def}(\mathcal{M})-\{\emptyset\}$ to \mathbb{N} satisfying the following four axioms (for all $A, B \in \operatorname{Def}(\mathcal{M})-\emptyset$).

- (Monotonicity) $\operatorname{rk}(A) \geq n+1 \Longleftrightarrow$ there exists $\left\{A_{i}\right\}_{i<\omega} \subset \operatorname{Def}(\mathcal{M})-\{\emptyset\}$

- (Additivity) If $f: A \rightarrow B$ is a definable surjection, then

Ranked structures

Definition (Borovik-Poizat axioms for ranked structures)

\mathcal{M} is ranked if there is a function rk from $\operatorname{Def}(\mathcal{M})-\{\emptyset\}$ to \mathbb{N} satisfying the following four axioms (for all $A, B \in \operatorname{Def}(\mathcal{M})-\emptyset$).

- (Monotonicity) $\operatorname{rk}(A) \geq n+1 \Longleftrightarrow$ there exists $\left\{A_{i}\right\}_{i<\omega} \subset \operatorname{Def}(\mathcal{M})-\{\emptyset\}$

- (Additivity) If $f: A \rightarrow B$ is a definable surjection, then

Ranked structures

Definition (Borovik-Poizat axioms for ranked structures)

\mathcal{M} is ranked if there is a function rk from $\operatorname{Def}(\mathcal{M})-\{\emptyset\}$ to \mathbb{N} satisfying the following four axioms (for all $A, B \in \operatorname{Def}(\mathcal{M})-\emptyset$).

- (Monotonicity) $\operatorname{rk}(A) \geq n+1 \Longleftrightarrow$ there exists $\left\{A_{i}\right\}_{i<\omega} \subset \operatorname{Def}(\mathcal{M})-\{\emptyset\}$

- (Additivity) If $f: A \rightarrow B$ is a definable surjection, then

Ranked structures

Definition (Borovik-Poizat axioms for ranked structures)

\mathcal{M} is ranked if there is a function rk from $\operatorname{Def}(\mathcal{M})-\{\emptyset\}$ to \mathbb{N} satisfying the following four axioms (for all $A, B \in \operatorname{Def}(\mathcal{M})-\emptyset$).

- (Monotonicity) $\operatorname{rk}(A) \geq n+1 \Longleftrightarrow$ there exists $\left\{A_{i}\right\}_{i<\omega} \subset \operatorname{Def}(\mathcal{M})-\{\emptyset\}$

- (Additivity) If $f: A \rightarrow B$ is a definable surjection, then

Ranked structures

Definition (Borovik-Poizat axioms for ranked structures)

\mathcal{M} is ranked if there is a function rk from $\operatorname{Def}(\mathcal{M})-\{\emptyset\}$ to \mathbb{N} satisfying the following four axioms (for all $A, B \in \operatorname{Def}(\mathcal{M})-\emptyset$).

- (Monotonicity) $\operatorname{rk}(A) \geq n+1 \Longleftrightarrow$ there exists $\left\{A_{i}\right\}_{i<\omega} \subset \operatorname{Def}(\mathcal{M})-\{\emptyset\}$

- (Additivity) If $f: A \rightarrow B$ is a definable surjection, then

Ranked structures

Definition (Borovik-Poizat axioms for ranked structures (continued))

Ranked structures

Definition (Borovik-Poizat axioms for ranked structures (continued))

- (Definability of rank) If $f: A \rightarrow B$ is definable, then $\left\{b \in B \mid \operatorname{rk}\left(f^{-1}(b)\right)=n\right\}$ is definable.

Ranked structures

Definition (Borovik-Poizat axioms for ranked structures (continued))

- (Definability of rank) If $f: A \rightarrow B$ is definable, then $\left\{b \in B \mid \operatorname{rk}\left(f^{-1}(b)\right)=n\right\}$ is definable.
- (Elimination of infinite quantifiers) If $f: A \rightarrow B$ is definable, then there exists a finite n such that for every $b \in B,\left|f^{-1}(b)\right| \leq n$ or $f^{-1}(b)$ is infinite.

Ranked structures

Definition (Borovik-Poizat axioms for ranked structures (continued))

- (Definability of rank) If $f: A \rightarrow B$ is definable, then $\left\{b \in B \mid \operatorname{rk}\left(f^{-1}(b)\right)=n\right\}$ is definable.
- (Elimination of infinite quantifiers) If $f: A \rightarrow B$ is definable, then there exists a finite n such that for every $b \in B,\left|f^{-1}(b)\right| \leq n$ or $f^{-1}(b)$ is infinite.

Theorem (Poizat)

A group is ranked iff it is a group of finite Morley rank.

Ranked structures

Definition (Borovik-Poizat axioms for ranked structures (continued))

- (Definability of rank) If $f: A \rightarrow B$ is definable, then $\left\{b \in B \mid \operatorname{rk}\left(f^{-1}(b)\right)=n\right\}$ is definable.
- (Elimination of infinite quantifiers) If $f: A \rightarrow B$ is definable, then there exists a finite n such that for every $b \in B,\left|f^{-1}(b)\right| \leq n$ or $f^{-1}(b)$ is infinite.

Theorem (Poizat)

A group is ranked iff it is a group of finite Morley rank.

- We will use the latter terminology

Ranked structures

Definition (Borovik-Poizat axioms for ranked structures (continued))

- (Definability of rank) If $f: A \rightarrow B$ is definable, then $\left\{b \in B \mid \operatorname{rk}\left(f^{-1}(b)\right)=n\right\}$ is definable.
- (Elimination of infinite quantifiers) If $f: A \rightarrow B$ is definable, then there exists a finite n such that for every $b \in B,\left|f^{-1}(b)\right| \leq n$ or $f^{-1}(b)$ is infinite.

Theorem (Poizat)

A group is ranked iff it is a group of finite Morley rank.

- We will use the latter terminology... and abbreviate it, so

Ranked structures

Definition (Borovik-Poizat axioms for ranked structures (continued))

- (Definability of rank) If $f: A \rightarrow B$ is definable, then $\left\{b \in B \mid \operatorname{rk}\left(f^{-1}(b)\right)=n\right\}$ is definable.
- (Elimination of infinite quantifiers) If $f: A \rightarrow B$ is definable, then there exists a finite n such that for every $b \in B,\left|f^{-1}(b)\right| \leq n$ or $f^{-1}(b)$ is infinite.

Theorem (Poizat)

A group is ranked iff it is a group of finite Morley rank.

- We will use the latter terminology... and abbreviate it, so
ranked group $=$ group of fMr

Examples

Examples

Examples

Examples

(1) Abelian groups of bounded exponent have fMr .

Examples

Examples

(1) Abelian groups of bounded exponent have fMr.
(2) All torsion-free divisible abelian groups have fMr.

Examples

Examples

(1) Abelian groups of bounded exponent have fMr.
(2) All torsion-free divisible abelian groups have fMr .

- G is divisible if $x^{n}=g$ has a solution for every $g \in G$ and every $n \in \mathbb{N}$.

Examples

Examples

(1) Abelian groups of bounded exponent have fMr .
(2) All torsion-free divisible abelian groups have fMr .

- G is divisible if $x^{n}=g$ has a solution for every $g \in G$ and every $n \in \mathbb{N}$.
- Such a group is of the form $\bigoplus_{\kappa} \mathbb{Q}$

Examples

Examples

(1) Abelian groups of bounded exponent have fMr .
(2) All torsion-free divisible abelian groups have fMr .

- G is divisible if $x^{n}=g$ has a solution for every $g \in G$ and every $n \in \mathbb{N}$.
- Such a group is of the form $\bigoplus_{\kappa} \mathbb{Q}$
(3) All divisible abelian groups with finitely many elements of each finite order have fMr.

Examples

Examples

(1) Abelian groups of bounded exponent have fMr .
(2) All torsion-free divisible abelian groups have fMr .

- G is divisible if $x^{n}=g$ has a solution for every $g \in G$ and every $n \in \mathbb{N}$.
- Such a group is of the form $\bigoplus_{\kappa} \mathbb{Q}$
(3) All divisible abelian groups with finitely many elements of each finite order have fMr.
- Example: the Prüfer p-group $\mathbb{Z}_{p \infty}=\left\{a \in \mathbb{C} \mid a^{p^{k}}=1\right.$ for some $\left.k \in \mathbb{N}\right\}$

Examples

Examples

(1) Abelian groups of bounded exponent have fMr .
(2) All torsion-free divisible abelian groups have fMr .

- G is divisible if $x^{n}=g$ has a solution for every $g \in G$ and every $n \in \mathbb{N}$.
- Such a group is of the form $\bigoplus_{\kappa} \mathbb{Q}$
(3) All divisible abelian groups with finitely many elements of each finite order have fMr.
- Example: the Prüfer p-group $\mathbb{Z}_{p \infty}=\left\{a \in \mathbb{C} \mid a^{p^{k}}=1\right.$ for some $\left.k \in \mathbb{N}\right\}$
(9) Any group that is definable over a ranked structure \mathcal{M} has fMr .

Examples

Examples

(1) Abelian groups of bounded exponent have fMr.
(2) All torsion-free divisible abelian groups have fMr .

- G is divisible if $x^{n}=g$ has a solution for every $g \in G$ and every $n \in \mathbb{N}$.
- Such a group is of the form $\bigoplus_{\kappa} \mathbb{Q}$
(3) All divisible abelian groups with finitely many elements of each finite order have fMr.
- Example: the Prüfer p-group $\mathbb{Z}_{p \infty}=\left\{a \in \mathbb{C} \mid a^{p^{k}}=1\right.$ for some $\left.k \in \mathbb{N}\right\}$
(9) Any group that is definable over a ranked structure \mathcal{M} has fMr .
- So, any definable subgroup of group of fMr is a group of fMr .

Examples

Examples

(1) Abelian groups of bounded exponent have fMr .
(2) All torsion-free divisible abelian groups have fMr .

- G is divisible if $x^{n}=g$ has a solution for every $g \in G$ and every $n \in \mathbb{N}$.
- Such a group is of the form $\bigoplus_{\kappa} \mathbb{Q}$
(3) All divisible abelian groups with finitely many elements of each finite order have fMr.
- Example: the Prüfer p-group $\mathbb{Z}_{p \infty}=\left\{a \in \mathbb{C} \mid a^{p^{k}}=1\right.$ for some $\left.k \in \mathbb{N}\right\}$
(9) Any group that is definable over a ranked structure \mathcal{M} has fMr .
- So, any definable subgroup of group of fMr is a group of fMr .
- But, definability is still \mathcal{M}-definability (using the language for \mathcal{M})!

Examples

Examples

(1) Abelian groups of bounded exponent have fMr.
(2) All torsion-free divisible abelian groups have fMr .

- G is divisible if $x^{n}=g$ has a solution for every $g \in G$ and every $n \in \mathbb{N}$.
- Such a group is of the form $\bigoplus_{\kappa} \mathbb{Q}$
(3) All divisible abelian groups with finitely many elements of each finite order have fMr .
- Example: the Prüfer p-group $\mathbb{Z}_{p \infty}=\left\{a \in \mathbb{C} \mid a^{p^{k}}=1\right.$ for some $\left.k \in \mathbb{N}\right\}$
(9) Any group that is definable over a ranked structure \mathcal{M} has fMr .
- So, any definable subgroup of group of fMr is a group of fMr .
- But, definability is still \mathcal{M}-definability (using the language for \mathcal{M})!
(3) (Cherlin-Macintyre) An infinite division ring has fMr if and only if it is an algebraically closed field.

Examples

Examples

(1) Abelian groups of bounded exponent have fMr.
(2) All torsion-free divisible abelian groups have fMr .

- G is divisible if $x^{n}=g$ has a solution for every $g \in G$ and every $n \in \mathbb{N}$.
- Such a group is of the form $\bigoplus_{\kappa} \mathbb{Q}$
(3) All divisible abelian groups with finitely many elements of each finite order have fMr .
- Example: the Prüfer p-group $\mathbb{Z}_{p \infty}=\left\{a \in \mathbb{C} \mid a^{p^{k}}=1\right.$ for some $\left.k \in \mathbb{N}\right\}$
(9) Any group that is definable over a ranked structure \mathcal{M} has fMr .
- So, any definable subgroup of group of fMr is a group of fMr .
- But, definability is still \mathcal{M}-definability (using the language for \mathcal{M})!
(3) (Cherlin-Macintyre) An infinite division ring has fMr if and only if it is an algebraically closed field.
(1) Algebraic groups over algebraically closed fields have fMr.

Examples

Examples

(1) Abelian groups of bounded exponent have fMr.
(2) All torsion-free divisible abelian groups have fMr .

- G is divisible if $x^{n}=g$ has a solution for every $g \in G$ and every $n \in \mathbb{N}$.
- Such a group is of the form $\bigoplus_{\kappa} \mathbb{Q}$
(3) All divisible abelian groups with finitely many elements of each finite order have fMr .
- Example: the Prüfer p-group $\mathbb{Z}_{p \infty}=\left\{a \in \mathbb{C} \mid a^{p^{k}}=1\right.$ for some $\left.k \in \mathbb{N}\right\}$
(9) Any group that is definable over a ranked structure \mathcal{M} has fMr .
- So, any definable subgroup of group of fMr is a group of fMr .
- But, definability is still \mathcal{M}-definability (using the language for \mathcal{M})!
(3) (Cherlin-Macintyre) An infinite division ring has fMr if and only if it is an algebraically closed field.
(1) Algebraic groups over algebraically closed fields have fMr.
- Examples: $\mathrm{GL}_{n}(\mathbb{K}), \mathrm{SL}_{n}(\mathbb{K}), \mathrm{PSL}_{n}(\mathbb{K}), \ldots$

Properties of the rank (and degree)

Fact (Existence of degree)

If $\operatorname{rk}(A)=n$, the degree of $A, \operatorname{deg}(A)$, is the maximum $d \in \mathbb{N}$ such that

Properties of the rank (and degree)

Fact (Existence of degree)

If $\operatorname{rk}(A)=n$, the degree of $A, \operatorname{deg}(A)$, is the maximum $d \in \mathbb{N}$ such that A

Properties of the rank (and degree)

Fact (Existence of degree)

If $\operatorname{rk}(A)=n$, the degree of $A, \operatorname{deg}(A)$, is the maximum $d \in \mathbb{N}$ such that

Properties of the rank (and degree)

Fact (Existence of degree)

If $\operatorname{rk}(A)=n$, the degree of $A, \operatorname{deg}(A)$, is the maximum $d \in \mathbb{N}$ such that

Fact

Let A and B be nonempty definable sets over some ranked structure.

Properties of the rank (and degree)

Fact (Existence of degree)

If $\operatorname{rk}(A)=n$, the degree of $A, \operatorname{deg}(A)$, is the maximum $d \in \mathbb{N}$ such that

Fact

Let A and B be nonempty definable sets over some ranked structure.

- (Finite sets) A is finite if and only if $\mathrm{rk} A=0$ and $\operatorname{deg} A=|A|$.

Properties of the rank (and degree)

Fact (Existence of degree)

If $\operatorname{rk}(A)=n$, the degree of $A, \operatorname{deg}(A)$, is the maximum $d \in \mathbb{N}$ such that

Fact

Let A and B be nonempty definable sets over some ranked structure.

- (Finite sets) A is finite if and only if $\mathrm{rk} A=0$ and $\operatorname{deg} A=|A|$.
- (Monotonicity) If $A \leq B$, then $\operatorname{rk} A \leq \operatorname{rk} B$.

Properties of the rank (and degree)

Fact (Existence of degree)

If $\operatorname{rk}(A)=n$, the degree of $A, \operatorname{deg}(A)$, is the maximum $d \in \mathbb{N}$ such that

Fact

Let A and B be nonempty definable sets over some ranked structure.

- (Finite sets) A is finite if and only if $\mathrm{rk} A=0$ and $\operatorname{deg} A=|A|$.
- (Monotonicity) If $A \leq B$, then $\operatorname{rk} A \leq \operatorname{rk} B$.
- (Unions) $\operatorname{rk}(A \cup B)=\max (\operatorname{rk} A, \operatorname{rk} B)$

Properties of the rank (and degree)

Fact (Existence of degree)

If $\operatorname{rk}(A)=n$, the degree of $A, \operatorname{deg}(A)$, is the maximum $d \in \mathbb{N}$ such that

A			
A_{1}	A_{2}	\cdots	A_{d}
$\mathrm{rk}=n$	$\mathrm{rk}=n$		$\mathrm{rk}=n$

Fact

Let A and B be nonempty definable sets over some ranked structure.

- (Finite sets) A is finite if and only if $\mathrm{rk} A=0$ and $\operatorname{deg} A=|A|$.
- (Monotonicity) If $A \leq B$, then $\operatorname{rk} A \leq \operatorname{rk} B$.
- (Unions) $\operatorname{rk}(A \cup B)=\max (\operatorname{rk} A, \operatorname{rk} B)$
- (Products) $\operatorname{rk}(A \times B)=\operatorname{rk} A+\operatorname{rk} B$ and $\operatorname{deg}(A \times B)=\operatorname{deg}(A) \cdot \operatorname{deg}(B)$

Properties of the rank (and degree)

Fact (Existence of degree)

If $\operatorname{rk}(A)=n$, the degree of $A, \operatorname{deg}(A)$, is the maximum $d \in \mathbb{N}$ such that

A	A_{1}	A_{2}	\cdots
		A_{d}	

Fact

Let A and B be nonempty definable sets over some ranked structure.

- (Finite sets) A is finite if and only if $\mathrm{rk} A=0$ and $\operatorname{deg} A=|A|$.
- (Monotonicity) If $A \leq B$, then $\operatorname{rk} A \leq \operatorname{rk} B$.
- (Unions) $\operatorname{rk}(A \cup B)=\max (\operatorname{rk} A, \operatorname{rk} B)$
- (Products) $\operatorname{rk}(A \times B)=\operatorname{rk} A+\operatorname{rk} B$ and $\operatorname{deg}(A \times B)=\operatorname{deg}(A) \cdot \operatorname{deg}(B)$
- (Invariance) Definable bijections preserve rank and degree

Descending chain condition

Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups-DCC)

A group of fMr has no infinite descending chains of definable subgroups.

Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups-DCC)

A group of fMr has no infinite descending chains of definable subgroups.

Proof.

Suppose $H_{0}>H_{1}>\cdots$ is a chain of definable subgroups of G.

Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups-DCC)

A group of fMr has no infinite descending chains of definable subgroups.

Proof.

Suppose $H_{0}>H_{1}>\cdots$ is a chain of definable subgroups of G.

Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups-DCC)

A group of fMr has no infinite descending chains of definable subgroups.

Proof.

Suppose $H_{0}>H_{1}>\cdots$ is a chain of definable subgroups of G.

Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups-DCC)

A group of fMr has no infinite descending chains of definable subgroups.

Proof.

Suppose $H_{0}>H_{1}>\cdots$ is a chain of definable subgroups of G.

$$
\Longrightarrow \quad \text { rk } H_{i}>\operatorname{rk} H_{i+1} \text { or } \operatorname{deg} H_{i}>\operatorname{deg} H_{i+1}
$$

Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups-DCC)

A group of fMr has no infinite descending chains of definable subgroups.

Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups-DCC)

A group of fMr has no infinite descending chains of definable subgroups.

Example

\mathbb{Z} does NOT have fMr because

Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups-DCC)

A group of fMr has no infinite descending chains of definable subgroups.

```
Example
Z}\mathrm{ does NOT have fMr because }\mathbb{Z}>2\mathbb{Z}>4\mathbb{Z}>8\mathbb{Z}>\cdots
```


Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups-DCC)

A group of fMr has no infinite descending chains of definable subgroups.

Example

\mathbb{Z} does NOT have fMr because $\mathbb{Z}>2 \mathbb{Z}>4 \mathbb{Z}>8 \mathbb{Z}>\cdots$, and $m \mathbb{Z}$ is defined by $\varphi_{m}(x) \equiv \exists y(x=y+\cdots(m$ times $) \cdots+y)$.

Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups-DCC)

A group of fMr has no infinite descending chains of definable subgroups.

Example

\mathbb{Z} does NOT have fMr because $\mathbb{Z}>2 \mathbb{Z}>4 \mathbb{Z}>8 \mathbb{Z}>\cdots$, and $m \mathbb{Z}$ is defined by $\varphi_{m}(x) \equiv \exists y(x=y+\cdots(m$ times $) \cdots+y)$.

Corollary

Let G be a group of fMr.

Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups-DCC)

A group of fMr has no infinite descending chains of definable subgroups.

Example

\mathbb{Z} does NOT have fMr because $\mathbb{Z}>2 \mathbb{Z}>4 \mathbb{Z}>8 \mathbb{Z}>\cdots$, and $m \mathbb{Z}$ is defined by $\varphi_{m}(x) \equiv \exists y(x=y+\cdots(m$ times $) \cdots+y)$.

Corollary

Let G be a group of fMr.

- (Connected Component) G has a minimal definable subgroup of finite index G°. And. . .

Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups-DCC)

A group of fMr has no infinite descending chains of definable subgroups.

Example

\mathbb{Z} does NOT have fMr because $\mathbb{Z}>2 \mathbb{Z}>4 \mathbb{Z}>8 \mathbb{Z}>\cdots$, and $m \mathbb{Z}$ is defined by $\varphi_{m}(x) \equiv \exists y(x=y+\cdots(m$ times $) \cdots+y)$.

Corollary

Let G be a group of fMr.

- (Connected Component) G has a minimal definable subgroup of finite index G°. And...

$$
G=G^{\circ} \Longleftrightarrow G \text { has degree } 1 \Longleftrightarrow \text { " } G \text { is connected" }
$$

Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups-DCC)

A group of fMr has no infinite descending chains of definable subgroups.

Example

\mathbb{Z} does NOT have fMr because $\mathbb{Z}>2 \mathbb{Z}>4 \mathbb{Z}>8 \mathbb{Z}>\cdots$, and $m \mathbb{Z}$ is defined by $\varphi_{m}(x) \equiv \exists y(x=y+\cdots(m$ times $) \cdots+y)$.

Corollary

Let G be a group of fMr.

- (Connected Component) G has a minimal definable subgroup of finite index G°. And. . .

$$
G=G^{\circ} \Longleftrightarrow G \text { has degree } 1 \Longleftrightarrow \text { " } G \text { is connected" }
$$

- (Definable Hull) Every subgroup H is contained in a minimal definable subgroup $\mathrm{d}(H)$.

Quick check-in

Exercise

Suppose that G is a connected group of fMr. Show that if $a \in G$ has finitely many conjugates, then $a \in Z(G)$.

Quick check-in

Exercise

Suppose that G is a connected group of fMr. Show that if $a \in G$ has finitely many conjugates, then $a \in Z(G)$.

Solution.

Quick check-in

Exercise

Suppose that G is a connected group of fMr. Show that if $a \in G$ has finitely many conjugates, then $a \in Z(G)$.

Solution.

- $C_{G}(a)$ has finite index in G

Quick check-in

Exercise

Suppose that G is a connected group of fMr. Show that if $a \in G$ has finitely many conjugates, then $a \in Z(G)$.

Solution.

- $C_{G}(a)$ has finite index in G
- $C_{G}(a)$ is definable

Quick check-in

Exercise

Suppose that G is a connected group of fMr. Show that if $a \in G$ has finitely many conjugates, then $a \in Z(G)$.

Solution.

- $C_{G}(a)$ has finite index in G
- $C_{G}(a)$ is definable
- $G=G^{\circ} \Longrightarrow G$ has no proper definable subgroups of finite index

Quick check-in

Exercise

Suppose that G is a connected group of fMr. Show that if $a \in G$ has finitely many conjugates, then $a \in Z(G)$.

Solution.

- $C_{G}(a)$ has finite index in G
- $C_{G}(a)$ is definable
- $G=G^{\circ} \Longrightarrow G$ has no proper definable subgroups of finite index
- Thus, $G=C_{G}(a)$

Quick check-in

Exercise

Suppose that G is a connected group of fMr. Show that if $a \in G$ has finitely many conjugates, then $a \in Z(G)$.

Solution.

- $C_{G}(a)$ has finite index in G
- $C_{G}(a)$ is definable
- $G=G^{\circ} \Longrightarrow G$ has no proper definable subgroups of finite index
- Thus, $G=C_{G}(a)$

Exercise

Let G be a group of fMr and $a \in G$. Show that $\mathrm{d}(a)$ is abelian.

Quick check-in

Exercise

Suppose that G is a connected group of fMr. Show that if $a \in G$ has finitely many conjugates, then $a \in Z(G)$.

Exercise

Let G be a group of fMr and $a \in G$. Show that $\mathrm{d}(a)$ is abelian.

Quick check-in

Exercise

Suppose that G is a connected group of fMr. Show that if $a \in G$ has finitely many conjugates, then $a \in Z(G)$.

Exercise

Let G be a group of fMr and $a \in G$. Show that $\mathrm{d}(a)$ is abelian.

Quick check-in

Exercise

Suppose that G is a connected group of fMr. Show that if $a \in G$ has finitely many conjugates, then $a \in Z(G)$.

Exercise

Let G be a group of fMr and $a \in G$. Show that $\mathrm{d}(a)$ is abelian.

Solution.

Quick check-in

Exercise

Suppose that G is a connected group of fMr. Show that if $a \in G$ has finitely many conjugates, then $a \in Z(G)$.

Exercise

Let G be a group of fMr and $a \in G$. Show that $\mathrm{d}(a)$ is abelian.

Solution.

- $a \in C_{G}(a)$ and $C_{G}(a)$ is definable

Quick check-in

Exercise

Suppose that G is a connected group of fMr. Show that if $a \in G$ has finitely many conjugates, then $a \in Z(G)$.

Exercise

Let G be a group of fMr and $a \in G$. Show that $\mathrm{d}(a)$ is abelian.

Solution.

- $a \in C_{G}(a)$ and $C_{G}(a)$ is definable
- Thus, $\mathrm{d}(a) \leq C_{G}(a)$

Quick check-in

Exercise

Suppose that G is a connected group of fMr. Show that if $a \in G$ has finitely many conjugates, then $a \in Z(G)$.

Exercise

Let G be a group of fMr and $a \in G$. Show that $\mathrm{d}(a)$ is abelian.

Solution.

- $a \in C_{G}(a)$ and $C_{G}(a)$ is definable
- Thus, $\mathrm{d}(a) \leq C_{G}(a)$
- Better yet, $a \in Z\left(C_{G}(a)\right)$ and $Z\left(C_{G}(a)\right)$ is definable

Quick check-in

Exercise

Suppose that G is a connected group of fMr. Show that if $a \in G$ has finitely many conjugates, then $a \in Z(G)$.

Exercise

Let G be a group of fMr and $a \in G$. Show that $\mathrm{d}(a)$ is abelian.

Solution.

- $a \in C_{G}(a)$ and $C_{G}(a)$ is definable
- Thus, $\mathrm{d}(a) \leq C_{G}(a)$
- Better yet, $a \in Z\left(C_{G}(a)\right)$ and $Z\left(C_{G}(a)\right)$ is definable
- Thus, $\mathrm{d}(a) \leq Z\left(C_{G}(a)\right)$

Algebraic analogies: semisimplicity (kind of)

Definition

Any divisible abelian p-group (of fMR or not) will be called a p-torus.

Algebraic analogies: semisimplicity (kind of)

Definition

Any divisible abelian p-group (of fMR or not) will be called a p-torus.

- Recall: T is divisible if $x^{n}=a$ has a solution for every $a \in T$ and every n.

Algebraic analogies: semisimplicity (kind of)

Definition

Any divisible abelian p-group (of fMR or not) will be called a p-torus.

- Recall: T is divisible if $x^{n}=a$ has a solution for every $a \in T$ and every n.
- A p-torus must be of the form $\bigoplus_{r} \mathbb{Z}_{p^{\infty}}$. (r is the Prüfer p-rank)

Algebraic analogies: semisimplicity (kind of)

Definition

Any divisible abelian p-group (of fMR or not) will be called a p-torus.

- Recall: T is divisible if $x^{n}=a$ has a solution for every $a \in T$ and every n.
- A p-torus must be of the form $\bigoplus_{r} \mathbb{Z}_{p \infty}$. (r is the Prüfer p-rank)
- \mathbb{K} algebraically closed $\Longrightarrow\left(\operatorname{char} \mathbb{K}=p \Longleftrightarrow \mathbb{K}^{\times}\right.$has no p-torus $)$

Algebraic analogies: semisimplicity (kind of)

Definition

Any divisible abelian p-group (of fMR or not) will be called a p-torus.

- Recall: T is divisible if $x^{n}=a$ has a solution for every $a \in T$ and every n.
- A p-torus must be of the form $\bigoplus_{r} \mathbb{Z}_{p \infty}$. (r is the Prüfer p-rank)
- \mathbb{K} algebraically closed \Longrightarrow (char $\mathbb{K}=p \Longleftrightarrow \mathbb{K}^{\times}$has no p-torus $)$
- As subgroups of groups of fMr, p-tori tend to not be definable.

Algebraic analogies: semisimplicity (kind of)

Definition

Any divisible abelian p-group (of fMR or not) will be called a p-torus.

- Recall: T is divisible if $x^{n}=a$ has a solution for every $a \in T$ and every n.
- A p-torus must be of the form $\bigoplus_{r} \mathbb{Z}_{p^{\infty}}$. (r is the Prüfer p-rank)
- \mathbb{K} algebraically closed $\Longrightarrow\left(\operatorname{char} \mathbb{K}=p \Longleftrightarrow \mathbb{K}^{\times}\right.$has no p-torus $)$
- As subgroups of groups of fMr, p-tori tend to not be definable.

Definition

A definable subgroup of a group of fMr is called a decent torus if it is divisible, abelian, and equal to the definable hull of its torsion subgroup.

Algebraic analogies: semisimplicity (kind of)

Definition

Any divisible abelian p-group (of fMR or not) will be called a p-torus.

- Recall: T is divisible if $x^{n}=a$ has a solution for every $a \in T$ and every n.
- A p-torus must be of the form $\bigoplus_{r} \mathbb{Z}_{p^{\infty}}$. (r is the Prüfer p-rank)
- \mathbb{K} algebraically closed $\Longrightarrow\left(\operatorname{char} \mathbb{K}=p \Longleftrightarrow \mathbb{K}^{\times}\right.$has no p-torus $)$
- As subgroups of groups of fMr, p-tori tend to not be definable.

Definition

A definable subgroup of a group of fMr is called a decent torus if it is divisible, abelian, and equal to the definable hull of its torsion subgroup.

- Decent tori are divisible, hence connected (exercise!).

Algebraic analogies: semisimplicity (kind of)

Definition

Any divisible abelian p-group (of fMR or not) will be called a p-torus.

- Recall: T is divisible if $x^{n}=a$ has a solution for every $a \in T$ and every n.
- A p-torus must be of the form $\bigoplus_{r} \mathbb{Z}_{p^{\infty}}$. (r is the Prüfer p-rank)
- \mathbb{K} algebraically closed $\Longrightarrow\left(\operatorname{char} \mathbb{K}=p \Longleftrightarrow \mathbb{K}^{\times}\right.$has no p-torus $)$
- As subgroups of groups of fMr, p-tori tend to not be definable.

Definition

A definable subgroup of a group of fMr is called a decent torus if it is divisible, abelian, and equal to the definable hull of its torsion subgroup.

- Decent tori are divisible, hence connected (exercise!).
- Decent tori have finite Prüfer p-rank for all p.

Algebraic analogies: semisimplicity (kind of)

Definition

A definable subgroup of a group of fMr is called a decent torus if it is divisible, abelian, and equal to the definable hull of its torsion subgroup.

Algebraic analogies: semisimplicity (kind of)

Definition

A definable subgroup of a group of fMr is called a decent torus if it is divisible, abelian, and equal to the definable hull of its torsion subgroup.

Algebraic analogies: semisimplicity (kind of)

Definition

A definable subgroup of a group of fMr is called a decent torus if it is divisible, abelian, and equal to the definable hull of its torsion subgroup.

Exercise

If G is a group of fMr and $T \leq G$ is a decent torus, then $N_{G}^{\circ}(T)=C_{G}^{\circ}(T)$.

Algebraic analogies: semisimplicity (kind of)

Definition

A definable subgroup of a group of fMr is called a decent torus if it is divisible, abelian, and equal to the definable hull of its torsion subgroup.

Exercise

If G is a group of fMr and $T \leq G$ is a decent torus, then $N_{G}^{\circ}(T)=C_{G}^{\circ}(T)$.

Solution.

Algebraic analogies: semisimplicity (kind of)

Definition

A definable subgroup of a group of fMr is called a decent torus if it is divisible, abelian, and equal to the definable hull of its torsion subgroup.

Exercise

If G is a group of fMr and $T \leq G$ is a decent torus, then $N_{G}^{\circ}(T)=C_{G}^{\circ}(T)$.

Solution.

- Want to show T is centralized by $N:=N_{G}^{\circ}(T)$

Algebraic analogies: semisimplicity (kind of)

Definition

A definable subgroup of a group of fMr is called a decent torus if it is divisible, abelian, and equal to the definable hull of its torsion subgroup.

Exercise

If G is a group of fMr and $T \leq G$ is a decent torus, then $N_{G}^{\circ}(T)=C_{G}^{\circ}(T)$.

Solution.

- Want to show T is centralized by $N:=N_{G}^{\circ}(T)$
- $T=\mathrm{d}\left(T_{0}\right)$ where T_{0} is the torsion subgroup

Algebraic analogies: semisimplicity (kind of)

Definition

A definable subgroup of a group of fMr is called a decent torus if it is divisible, abelian, and equal to the definable hull of its torsion subgroup.

Exercise

If G is a group of fMr and $T \leq G$ is a decent torus, then $N_{G}^{\circ}(T)=C_{G}^{\circ}(T)$.

Solution.

- Want to show T is centralized by $N:=N_{G}^{\circ}(T)$
- $T=\mathrm{d}\left(T_{0}\right)$ where T_{0} is the torsion subgroup
- Suffices to show T_{0} is centralized by N (exercise!)

Algebraic analogies: semisimplicity (kind of)

Definition

A definable subgroup of a group of fMr is called a decent torus if it is divisible, abelian, and equal to the definable hull of its torsion subgroup.

Exercise

If G is a group of fMr and $T \leq G$ is a decent torus, then $N_{G}^{\circ}(T)=C_{G}^{\circ}(T)$.

Solution.

- Want to show T is centralized by $N:=N_{G}^{\circ}(T)$
- $T=\mathrm{d}\left(T_{0}\right)$ where T_{0} is the torsion subgroup
- Suffices to show T_{0} is centralized by N (exercise!)
- $T_{0}=\bigoplus_{p}\left(\bigoplus_{r_{p}} \mathbb{Z}_{p \infty}\right)$ with each r_{p} finite

Algebraic analogies: semisimplicity (kind of)

Definition

A definable subgroup of a group of fMr is called a decent torus if it is divisible, abelian, and equal to the definable hull of its torsion subgroup.

Exercise

If G is a group of fMr and $T \leq G$ is a decent torus, then $N_{G}^{\circ}(T)=C_{G}^{\circ}(T)$.

Solution.

- Want to show T is centralized by $N:=N_{G}^{\circ}(T)$
- $T=\mathrm{d}\left(T_{0}\right)$ where T_{0} is the torsion subgroup
- Suffices to show T_{0} is centralized by N (exercise!)
- $T_{0}=\bigoplus_{p}\left(\bigoplus_{r_{p}} \mathbb{Z}_{p \infty}\right)$ with each r_{p} finite
- Thus, T_{0} has finitely many elements of each finite order

Algebraic analogies: semisimplicity (kind of)

Definition

A definable subgroup of a group of fMr is called a decent torus if it is divisible, abelian, and equal to the definable hull of its torsion subgroup.

Exercise

If G is a group of fMr and $T \leq G$ is a decent torus, then $N_{G}^{\circ}(T)=C_{G}^{\circ}(T)$.

Solution.

- Want to show T is centralized by $N:=N_{G}^{\circ}(T)$
- $T=\mathrm{d}\left(T_{0}\right)$ where T_{0} is the torsion subgroup
- Suffices to show T_{0} is centralized by N (exercise!)
- $T_{0}=\bigoplus_{p}\left(\bigoplus_{r_{p}} \mathbb{Z}_{p \infty}\right)$ with each r_{p} finite
- Thus, T_{0} has finitely many elements of each finite order
- Thus, every $a \in T_{0}$ has a finitely many N-conjugates, so $a \in Z(N)$

Algebraic analogies: semisimplicity (kind of)

Definition

A definable subgroup of a group of fMr is called a decent torus if it is divisible, abelian, and equal to the definable hull of its torsion subgroup.

Exercise

If G is a group of fMr and $T \leq G$ is a decent torus, then $N_{G}^{\circ}(T)=C_{G}^{\circ}(T)$.

Algebraic analogies: semisimplicity (kind of)

Definition

A definable subgroup of a group of fMr is called a decent torus if it is divisible, abelian, and equal to the definable hull of its torsion subgroup.

Exercise

If G is a group of fMr and $T \leq G$ is a decent torus, then $N_{G}^{\circ}(T)=C_{G}^{\circ}(T)$.

Fact (Conjugacy of Maximal Tori, Cherlin-2005)

Any two maximal decent tori of a group of fMr are conjugate.

Algebraic analogies: unipotence (kind of)

Definition

Let p be a prime. A definable subgroup of a group of $\mathrm{fMr} G$ is called p-unipotent if it is a connected nilpotent p-group of bounded exponent.

Algebraic analogies: unipotence (kind of)

Definition

Let p be a prime. A definable subgroup of a group of $\mathrm{fMr} G$ is called p-unipotent if it is a connected nilpotent p-group of bounded exponent.

- \mathbb{K} algebraically closed $\Longrightarrow\left(\operatorname{char} \mathbb{K}=p \Longleftrightarrow \mathbb{K}^{+}\right.$is p-unipotent $)$

Algebraic analogies: unipotence (kind of)

Definition

Let p be a prime. A definable subgroup of a group of $\mathrm{fMr} G$ is called p-unipotent if it is a connected nilpotent p-group of bounded exponent.

- \mathbb{K} algebraically closed $\Longrightarrow\left(\operatorname{char} \mathbb{K}=p \Longleftrightarrow \mathbb{K}^{+}\right.$is p-unipotent $)$

Example

Let \mathbb{K} be algebraically closed of characteristic p. Then subgroup of $\mathrm{GL}_{n}(\mathbb{K})$ of upper-triangular matrices with all 1 's on the main diagonal is p-unipotent.

Algebraic analogies: unipotence (kind of)

Definition

Let p be a prime. A definable subgroup of a group of $\mathrm{fMr} G$ is called p-unipotent if it is a connected nilpotent p-group of bounded exponent.

- \mathbb{K} algebraically closed $\Longrightarrow\left(\operatorname{char} \mathbb{K}=p \Longleftrightarrow \mathbb{K}^{+}\right.$is p-unipotent $)$

Example

Let \mathbb{K} be algebraically closed of characteristic p. Then subgroup of $\mathrm{GL}_{n}(\mathbb{K})$ of upper-triangular matrices with all 1 's on the main diagonal is p-unipotent.

Fact (Burdges-Cherlin-2009)

Let p be a prime. If G is a connected group of $f M r$ with no nontrivial p-unipotent subgroup, then every p-element of G is contained in a p-torus.

Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)

If G is a group of $f M r$, then the following subgroups are definable:

Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)

If G is a group of fMr, then the following subgroups are definable:

- the Fitting subgroup $F(G)$ (generated by all normal nilpotent subgroups)

Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)

If G is a group of fMr, then the following subgroups are definable:

- the Fitting subgroup $F(G)$ (generated by all normal nilpotent subgroups)
- the solvable radical $\sigma(G)$ (generated by all normal solvable subgroups)

Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)

If G is a group of fMr, then the following subgroups are definable:

- the Fitting subgroup $F(G)$ (generated by all normal nilpotent subgroups)
- the solvable radical $\sigma(G)$ (generated by all normal solvable subgroups)
- the commutator subgroup G^{\prime}

Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)

If G is a group of $f M r$, then the following subgroups are definable:

- the Fitting subgroup $F(G)$ (generated by all normal nilpotent subgroups)
- the solvable radical $\sigma(G)$ (generated by all normal solvable subgroups)
- the commutator subgroup G^{\prime}

Fact (Structure of solvable groups)

Let G be a connected solvable group of fMr. Then

Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)

If G is a group of fMr, then the following subgroups are definable:

- the Fitting subgroup $F(G)$ (generated by all normal nilpotent subgroups)
- the solvable radical $\sigma(G)$ (generated by all normal solvable subgroups)
- the commutator subgroup G^{\prime}

Fact (Structure of solvable groups)

Let G be a connected solvable group of fMr. Then

- $F^{\circ}(G)$ contains G^{\prime} and all p-unipotent radicals of G,

Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)

If G is a group of fMr, then the following subgroups are definable:

- the Fitting subgroup $F(G)$ (generated by all normal nilpotent subgroups)
- the solvable radical $\sigma(G)$ (generated by all normal solvable subgroups)
- the commutator subgroup G^{\prime}

Fact (Structure of solvable groups)

Let G be a connected solvable group of fMr. Then

- $F^{\circ}(G)$ contains G^{\prime} and all p-unipotent radicals of G,
- $G / F^{\circ}(G)$ is divisible abelian (like a torus), and

Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)

If G is a group of fMr, then the following subgroups are definable:

- the Fitting subgroup $F(G)$ (generated by all normal nilpotent subgroups)
- the solvable radical $\sigma(G)$ (generated by all normal solvable subgroups)
- the commutator subgroup G^{\prime}

Fact (Structure of solvable groups)

Let G be a connected solvable group of fMr. Then

- $F^{\circ}(G)$ contains G^{\prime} and all p-unipotent radicals of G,
- $G / F^{\circ}(G)$ is divisible abelian (like a torus), and
- (Fitting's Theorem) $G / Z(F(G)) \leq \operatorname{Aut}(F(G))$.

Algebraic analogies: Borel subgroups

Fact (Structure of solvable groups)

Let G be a connected solvable group of fMr. Then

- $F^{\circ}(G)$ contains G^{\prime} and all p-unipotent radicals of G,
- $G / F^{\circ}(G)$ is divisible abelian (like a torus), and
- (Fitting's Theorem) $G / Z(F(G)) \leq \operatorname{Aut}(F(G))$.

Algebraic analogies: Borel subgroups

Fact (Structure of solvable groups)

Let G be a connected solvable group of fMr. Then

- $F^{\circ}(G)$ contains G^{\prime} and all p-unipotent radicals of G,
- $G / F^{\circ}(G)$ is divisible abelian (like a torus), and
- (Fitting's Theorem) $G / Z(F(G)) \leq \operatorname{Aut}(F(G))$.

Algebraic analogies: Borel subgroups

Fact (Structure of solvable groups)

Let G be a connected solvable group of fMr. Then

- $F^{\circ}(G)$ contains G^{\prime} and all p-unipotent radicals of G,
- $G / F^{\circ}(G)$ is divisible abelian (like a torus), and
- (Fitting's Theorem) $G / Z(F(G)) \leq \operatorname{Aut}(F(G))$.

Definition

Any maximal connected definable solvable subgroup of a group of fMr is called a Borel subgroup.

Algebraic analogies: Borel subgroups

Fact (Structure of solvable groups)

Let G be a connected solvable group of fMr. Then

- $F^{\circ}(G)$ contains G^{\prime} and all p-unipotent radicals of G,
- $G / F^{\circ}(G)$ is divisible abelian (like a torus), and
- (Fitting's Theorem) $G / Z(F(G)) \leq \operatorname{Aut}(F(G))$.

Definition

Any maximal connected definable solvable subgroup of a group of fMr is called a Borel subgroup.

- So, we know a bit about the structure of Borel subgroups.

Algebraic analogies: Borel subgroups

Fact (Structure of solvable groups)

Let G be a connected solvable group of fMr. Then

- $F^{\circ}(G)$ contains G^{\prime} and all p-unipotent radicals of G,
- $G / F^{\circ}(G)$ is divisible abelian (like a torus), and
- (Fitting's Theorem) $G / Z(F(G)) \leq \operatorname{Aut}(F(G))$.

Definition

Any maximal connected definable solvable subgroup of a group of fMr is called a Borel subgroup.

- So, we know a bit about the structure of Borel subgroups.
- But not enough!

Algebraic analogies: Borel subgroups

Fact (Structure of solvable groups)

Let G be a connected solvable group of fMr. Then

- $F^{\circ}(G)$ contains G^{\prime} and all p-unipotent radicals of G,
- $G / F^{\circ}(G)$ is divisible abelian (like a torus), and
- (Fitting's Theorem) $G / Z(F(G)) \leq \operatorname{Aut}(F(G))$.

Definition

Any maximal connected definable solvable subgroup of a group of fMr is called a Borel subgroup.

- So, we know a bit about the structure of Borel subgroups.
- But not enough!
- And crucially, we do not know if they are conjugate

Algebraic analogies: Borel subgroups

Fact (Structure of solvable groups)

Let G be a connected solvable group of fMr. Then

- $F^{\circ}(G)$ contains G^{\prime} and all p-unipotent radicals of G,
- $G / F^{\circ}(G)$ is divisible abelian (like a torus), and
- (Fitting's Theorem) $G / Z(F(G)) \leq \operatorname{Aut}(F(G))$.

Definition

Any maximal connected definable solvable subgroup of a group of fMr is called a Borel subgroup.

- So, we know a bit about the structure of Borel subgroups.
- But not enough!
- And crucially, we do not know if they are conjugate. . . sadness $) \cdot$

Sylow Theory

Definition

A Sylow 2-subgroup of a group is just a maximal 2-subgroup.

Sylow Theory

Definition

A Sylow 2-subgroup of a group is just a maximal 2-subgroup.

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)
 In any group of fMr, the Sylow 2-subgroups are conjugate!

Sylow Theory

Definition

A Sylow 2-subgroup of a group is just a maximal 2-subgroup.

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)
 In any group of fMr, the Sylow 2-subgroups are conjugate!

- That's right—we only know this for the prime $2 \ldots$...)

Sylow Theory

Definition

A Sylow 2-subgroup of a group is just a maximal 2-subgroup.

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)
 In any group of fMr, the Sylow 2-subgroups are conjugate!

- That's right-we only know this for the prime $2 \ldots$...

Fact (Structure of Sylow 2-subgroups)

In any group of fMr, the connected component of a Sylow 2-subgroup is (a central product) of the form $U * T$ where U is 2-unipotent and T is a 2-torus.

Sylow Theory

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)
 In any group of fMr, the Sylow 2-subgroups are conjugate!

Fact (Structure of Sylow 2-subgroups)

In any group of fMr, the connected component of a Sylow 2-subgroup is (a central product) of the form $U * T$ where U is 2-unipotent and T is a 2-torus.

Sylow Theory

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat-1990)

In any group of fMr, the Sylow 2-subgroups are conjugate!

Fact (Structure of Sylow 2-subgroups)

In any group of fMr, the connected component of a Sylow 2-subgroup is (a central product) of the form $U * T$ where U is 2-unipotent and T is a 2-torus.

Sylow Theory

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)

In any group of fMr, the Sylow 2-subgroups are conjugate!

Fact (Structure of Sylow 2-subgroups)

In any group of fMr, the connected component of a Sylow 2-subgroup is (a central product) of the form $U * T$ where U is 2-unipotent and T is a 2-torus.

Definition

A group of fMr is said to be of odd, even, mixed, or degenerate type according to the structure of a Sylow 2-subgroup P :

Sylow Theory

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)

In any group of fMr, the Sylow 2-subgroups are conjugate!

Fact (Structure of Sylow 2-subgroups)

In any group of fMr, the connected component of a Sylow 2-subgroup is (a central product) of the form $U * T$ where U is 2-unipotent and T is a 2-torus.

Definition

A group of fMr is said to be of odd, even, mixed, or degenerate type according to the structure of a Sylow 2-subgroup P :

Even type: P° is 2-unipotent;

Sylow Theory

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)

In any group of fMr, the Sylow 2-subgroups are conjugate!

Fact (Structure of Sylow 2-subgroups)

In any group of fMr, the connected component of a Sylow 2-subgroup is (a central product) of the form $U * T$ where U is 2-unipotent and T is a 2-torus.

Definition

A group of fMr is said to be of odd, even, mixed, or degenerate type according to the structure of a Sylow 2-subgroup P :

Even type: P° is 2-unipotent;
Odd type: P° is a 2-tori;

Sylow Theory

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)

In any group of fMr, the Sylow 2-subgroups are conjugate!

Fact (Structure of Sylow 2-subgroups)

In any group of fMr, the connected component of a Sylow 2-subgroup is (a central product) of the form $U * T$ where U is 2-unipotent and T is a 2-torus.

Definition

A group of fMr is said to be of odd, even, mixed, or degenerate type according to the structure of a Sylow 2-subgroup P :

Even type: P° is 2-unipotent;
Odd type: P° is a 2-tori;
Mixed type: P° contains a 2-unipotent subgroup and a 2-torus;

Sylow Theory

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)

In any group of fMr, the Sylow 2-subgroups are conjugate!

Fact (Structure of Sylow 2-subgroups)

In any group of fMr, the connected component of a Sylow 2-subgroup is (a central product) of the form $U * T$ where U is 2-unipotent and T is a 2-torus.

Definition

A group of fMr is said to be of odd, even, mixed, or degenerate type according to the structure of a Sylow 2-subgroup P :

Even type: P° is 2-unipotent;
Odd type: P° is a 2-tori;
Mixed type: P° contains a 2-unipotent subgroup and a 2-torus;
Degenerate type: $P^{\circ}=1$ (i.e. P is finite).

Algebraicity Conjecture

Algebraicity Conjecture (Cherlin-Zilber)

An infinite simple group of finite Morley rank is isomorphic to an algebraic group over an algebraically closed field.

Algebraicity Conjecture

Algebraicity Conjecture (Cherlin-Zilber)

An infinite simple group of finite Morley rank is isomorphic to an algebraic group over an algebraically closed field.

Analysis breaks into the 4 types.

Algebraicity Conjecture

Algebraicity Conjecture (Cherlin-Zilber)

An infinite simple group of finite Morley rank is isomorphic to an algebraic group over an algebraically closed field.

Analysis breaks into the 4 types.

Algebraicity Conjecture

Algebraicity Conjecture (Cherlin-Zilber)

An infinite simple group of finite Morley rank is isomorphic to an algebraic group over an algebraically closed field.

Analysis breaks into the 4 types.

	does NOT contain $\mathbb{Z}_{2} \infty$	contains $\mathbb{Z}_{2} \infty$
does NOT contain $\oplus_{i<\omega} \mathbb{Z}_{2}$		
contains $\oplus_{i<\omega} \mathbb{Z}_{2}$		

Algebraicity Conjecture

Algebraicity Conjecture (Cherlin-Zilber)

An infinite simple group of finite Morley rank is isomorphic to an algebraic group over an algebraically closed field.

Analysis breaks into the 4 types.

	does NOT contain $\mathbb{Z}_{2} \infty$	contains $\mathbb{Z}_{2} \infty$
does NOT contain $\bigoplus_{i<\omega} \mathbb{Z}_{2}$		odd
contains $\bigoplus_{i<\omega} \mathbb{Z}_{2}$	even	

Algebraicity Conjecture

Algebraicity Conjecture (Cherlin-Zilber)

An infinite simple group of finite Morley rank is isomorphic to an algebraic group over an algebraically closed field.

Analysis breaks into the 4 types.

	does NOT contain $\mathbb{Z}_{2} \infty$	contains $\mathbb{Z}_{2} \infty$
does NOT contain $\bigoplus_{i<\omega} \mathbb{Z}_{2}$	deg.	odd
contains $\bigoplus_{i<\omega} \mathbb{Z}_{2}$	even	mixed

Algebraicity Conjecture

Algebraicity Conjecture (Cherlin-Zilber)

An infinite simple group of finite Morley rank is isomorphic to an algebraic group over an algebraically closed field.

Analysis breaks into the 4 types.

	does NOT contain $\mathbb{Z}_{2} \infty$	contains $\mathbb{Z}_{2} \infty$
does NOT contain $\oplus_{i<\omega} \mathbb{Z}_{2}$	deg.	odd
contains $\oplus_{i<\omega} \mathbb{Z}_{2}$	even	mixed

Fact (Altınel-Borovik-Cherlin-2008)

There are no infinite simple groups of finite Morley rank of mixed type and those of even type are indeed algebraic.

Algebraicity Conjecture

Fact (Altınel-Borovik-Cherlin-2008)

There are no infinite simple groups of finite Morley rank of mixed type and those of even type are indeed algebraic.

Algebraicity Conjecture

Fact (Altınel-Borovik-Cherlin-2008)

There are no infinite simple groups of finite Morley rank of mixed type and those of even type are indeed algebraic.

Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of degenerate type.

Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of degenerate type.

- Recall: degenerate type if Sylow 2-subgroups are finite.

Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of degenerate type.

- Recall: degenerate type if Sylow 2-subgroups are finite.
- Recall: according to the Algebraicity Conjecture, G should not exist.

Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of degenerate type.

- Recall: degenerate type if Sylow 2-subgroups are finite.
- Recall: according to the Algebraicity Conjecture, G should not exist.

Fact (Borovik-Burdges-Cherlin—2007)

A connected group of fMr of degenerate type has no involutions at all.

Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of degenerate type.

- Recall: degenerate type if Sylow 2-subgroups are finite.
- Recall: according to the Algebraicity Conjecture, G should not exist.

Fact (Borovik-Burdges-Cherlin—2007)

A connected group of fMr of degenerate type has no involutions at all.

- Thus, showing such a G does not exist amounts to proving a Feit-Thompson for groups of fMr.

Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of degenerate type.

- Recall: degenerate type if Sylow 2-subgroups are finite.
- Recall: according to the Algebraicity Conjecture, G should not exist.

Fact (Borovik-Burdges-Cherlin-2007)

A connected group of fMr of degenerate type has no involutions at all.

- Thus, showing such a G does not exist amounts to proving a Feit-Thompson for groups of fMr .
- And that's more-or-less it, except in some special cases...

Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of degenerate type.

- Recall: degenerate type if Sylow 2-subgroups are finite.
- Recall: according to the Algebraicity Conjecture, G should not exist.

Fact (Borovik-Burdges-Cherlin—2007)

A connected group of fMr of degenerate type has no involutions at all.

- Thus, showing such a G does not exist amounts to proving a Feit-Thompson for groups of fMr.
- And that's more-or-less it, except in some special cases...

Fact (Frécon-2018)

The group G cannot have rank 3 .

Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.

Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.

- Recall: odd type if the Sylow ${ }^{\circ}$ 2-subgroups are 2-tori.

Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.

- Recall: odd type if the $S^{\circ}{ }^{\circ}$ 2-subgroups are 2-tori.
- Thus, the Sylow ${ }^{\circ}$ 2-subgroups are of the form $\bigoplus_{r} \mathbb{Z}_{2^{\infty}}$.

Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.

- Recall: odd type if the Sylow ${ }^{\circ}$ 2-subgroups are 2-tori.
- Thus, the Sylow ${ }^{\circ}$-subgroups are of the form $\bigoplus_{r} \mathbb{Z}_{2 \infty}$.
- Recall: according to the Algebraicity Conjecture, G should be algebraic in characteristic not 2 .

Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.

- Recall: odd type if the Sylow ${ }^{\circ}$ 2-subgroups are 2-tori.
- Thus, the Sylow ${ }^{\circ}$-subgroups are of the form $\bigoplus_{r} \mathbb{Z}_{2 \infty}$.
- Recall: according to the Algebraicity Conjecture, G should be algebraic in characteristic not 2 .

Fact (High Prüfer Rank Theorem, Burdges-2009)

In an inductive setting where every simple definable section of G is algebraic, G is known to be algebraic when r (the Prüfer 2-rank) is at least 3.

Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.

- Recall: odd type if the Sylow ${ }^{\circ}$ 2-subgroups are 2-tori.
- Thus, the Sylow ${ }^{\circ}$-subgroups are of the form $\bigoplus_{r} \mathbb{Z}_{2 \infty}$.
- Recall: according to the Algebraicity Conjecture, G should be algebraic in characteristic not 2 .

Fact (High Prüfer Rank Theorem, Burdges-2009)

In an inductive setting where every simple definable section of G is algebraic, G is known to be algebraic when r (the Prüfer 2-rank) is at least 3.

- The assumption includes that simple definable degenerate sections of G are algebraic!

Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.

- Recall: odd type if the Sylow ${ }^{\circ}$ 2-subgroups are 2-tori.
- Thus, the Sylow ${ }^{\circ}$-subgroups are of the form $\bigoplus_{r} \mathbb{Z}_{2 \infty}$.
- Recall: according to the Algebraicity Conjecture, G should be algebraic in characteristic not 2 .

Fact (High Prüfer Rank Theorem, Burdges-2009)

In an inductive setting where every simple definable section of G is algebraic, G is known to be algebraic when r (the Prüfer 2-rank) is at least 3.

- The assumption includes that simple definable degenerate sections of G are algebraic!
- There is a corresponding theory assuming that only the simple definable odd type sections of G are algebraic...

Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.

- Recall: odd type if the Sylow ${ }^{\circ}$ 2-subgroups are 2-tori.
- Thus, the Sylow ${ }^{\circ}$-subgroups are of the form $\bigoplus_{r} \mathbb{Z}_{2 \infty}$.
- Recall: according to the Algebraicity Conjecture, G should be algebraic in characteristic not 2 .

Fact (High Prüfer Rank Theorem, Burdges-2009)

In an inductive setting where every simple definable section of G is algebraic, G is known to be algebraic when r (the Prüfer 2-rank) is at least 3.

- The assumption includes that simple definable degenerate sections of G are algebraic!
- There is a corresponding theory assuming that only the simple definable odd type sections of G are algebraic. . . but it's less developed.

Final exercise: automorphisms of order 2

Final exercise: automorphisms of order 2

Let G be a connected group of fMr .

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G ;$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$,

Final exercise: automorphisms of order 2

Let G be a connected group of fMr .

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

$$
\text { - Let } X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G \text {; if } a \in X \text {, then } a^{\alpha}=a^{-1}
$$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

$$
\text { - Let } X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G \text {; if } a \in X \text {, then } a^{\alpha}=a^{-1}
$$

$$
\left(g^{-1} g^{\alpha}\right)^{\alpha}=
$$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

$$
\text { - Let } X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G \text {; if } a \in X \text {, then } a^{\alpha}=a^{-1}
$$

$$
\left(g^{-1} g^{\alpha}\right)^{\alpha}=\left(g^{-1}\right)^{\alpha} g^{\alpha \alpha}=
$$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

$$
\text { - Let } X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G \text {; if } a \in X \text {, then } a^{\alpha}=a^{-1}
$$

$$
\left(g^{-1} g^{\alpha}\right)^{\alpha}=\left(g^{-1}\right)^{\alpha} g^{\alpha \alpha}=\left(g^{\alpha}\right)^{-1} g=
$$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

$$
\text { - Let } X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G \text {; if } a \in X \text {, then } a^{\alpha}=a^{-1}
$$

$$
\left(g^{-1} g^{\alpha}\right)^{\alpha}=\left(g^{-1}\right)^{\alpha} g^{\alpha \alpha}=\left(g^{\alpha}\right)^{-1} g=\left(g^{-1} g^{\alpha}\right)^{-1}
$$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: \operatorname{rk} X=\operatorname{rk} G$
scratch

$$
\left(g^{-1} g^{\alpha}\right)^{\alpha}=\left(g^{-1}\right)^{\alpha} g^{\alpha \alpha}=\left(g^{\alpha}\right)^{-1} g=\left(g^{-1} g^{\alpha}\right)^{-1}
$$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: \operatorname{rk} X=\operatorname{rk} G$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: ~ r k X=\operatorname{rk} G$
scratch

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: \operatorname{rk} X=\operatorname{rk} G$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr .

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: ~ r k X=\operatorname{rk} G$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: ~ r k X=\operatorname{rk} G$
scratch

Final exercise: automorphisms of order 2

Let G be a connected group of fMr .

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: ~ r k X=\operatorname{rk} G$
scratch

Final exercise: automorphisms of order 2

Let G be a connected group of fMr .

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: ~ r k X=\operatorname{rk} G$
scratch

Final exercise: automorphisms of order 2

Let G be a connected group of fMr .

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: ~ r k X=\operatorname{rk} G$
scratch

Final exercise: automorphisms of order 2

Let G be a connected group of fMr .

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: ~ r k X=\operatorname{rk} G$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr .

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: ~ r k X=\operatorname{rk} G$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: ~ \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G)$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: ~ \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G)$
scratch

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: ~ \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G)$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: ~ \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G)$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr .

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: ~ \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G)$
scratch

Final exercise: automorphisms of order 2

Let G be a connected group of fMr .

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G)$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G)$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G)$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G)$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G)$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G)$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G)$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G)$

$$
\begin{aligned}
& \text { scratch } \\
& x^{-1} a^{-1}=(a x)^{\alpha}=a^{\alpha} x^{\alpha}=a^{-1} x^{-1} \\
& x \in C_{G}(a) \Longrightarrow a x \in C_{G}(a) \\
& \Longrightarrow Y \subseteq C_{G}(a)
\end{aligned}
$$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G)$

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G) \Longrightarrow Z(G)$ is generic in G

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: ~ \mathrm{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G) \Longrightarrow Z(G)$ is generic in G
- G is abelian

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: ~ \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G) \Longrightarrow Z(G)$ is generic in G
- G is abelian $\Longrightarrow X$ is a generic subgroup

Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Fact

Let $\alpha \in \operatorname{Aut}(G)$ be definable. If $|\alpha|=2$ and $C_{G}(\alpha)$ is finite, then α inverts G.

- Let $X:=\left\{g^{-1} g^{\alpha}: g \in G\right\} \subseteq G$; if $a \in X$, then $a^{\alpha}=a^{-1}$
- X is generic in $G: ~ \operatorname{rk} X=\operatorname{rk} G$
- $X \subseteq Z(G) \Longrightarrow Z(G)$ is generic in G
- G is abelian $\Longrightarrow X$ is a generic subgroup $\Longrightarrow X=G$

The End-Thank You

