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Algebraicity Conjecture: the gap, I , does not exist.
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The Plan

Act I First principles, general theory, and optimism
Act II Obstructions and pessimism
Act III Permutation groups
Act IV Permutation groups (cont’d) and other topics

COMPANION NOTES

webpages.csus.edu/wiscons/research/GFMR-Minicourse-Notes.pdf
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Definability (and interpretability)

Let M be a structure in a first-order language L.

Example

Lsrovp = ('7_1 ) 1) and Lging = (‘h E _70)
o Implicitly, other symbols too: V, 3, A, V, -, parentheses, and variables
@ A group is then an Lgroyp-structure that satisfies the three group axioms.

@ Actually, we allow groups to be L-structures with £ O Lgroup-

| A

Definition

An L-formula is a “well-formed” finite sequence of symbols from £ that
expresses a statement that is either true or false for each L-structure.
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Definability (and interpretability)

Let M be a structure in a first-order language L.

Definition

An L-formula is a “well-formed” finite sequence of symbols from £ that
expresses a statement that is either true or false for each L-structure.

Example
Work in Lgroup- Let G be a group and h € G.
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Let M be a structure in a first-order language L.

Definition

An L-formula is a “well-formed” finite sequence of symbols from £ that
expresses a statement that is either true or false for each L-structure.
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Definability (and interpretability)

Let M be a structure in a first-order language L.

Example
Work in Lgroup- Let G be a group and 4 € G.
Q@ a(x) = (W) (x 'y 'xy = 1) is an Lgroyp-formula.
o The “solution set” is a(G) = {g | (Vy)(g"y"lgy = 1)} = Z(G).
Q B(x) = (3y)(x = y'hy) is an Lgroup(G)-formula.
o The “solution set” is 3(G) = {g | (3y)(g =y~ 'hy)} = hC.
© What about C(h)? ... [G,G]?...G/Z(G)? )
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Definition

A set is M-definable (with parameters) if A = ¢(M") for some
L(M)-formula.
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Definability (and interpretability)

Let M be a structure in a first-order language L.

Definition

A set is M-definable (with parameters) if A = @(M") for some
L(M)-formula.
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Definition

A set A is M-interpretable (with parameters) if
o there is a definable B C M"
o there is a definable equivalence relation £ C B X B
o A=BJE

A We now redefine definable to include interpretable.

Thus, G/Z(G) is G-definable. . . the underlying set and the group operations!
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ERING = (—‘r, Ty Ty 0) Let K be a ﬁeld
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£RING = (+, o9 =4 0) Let K be a field.
Q@ GL,(K) is K-definable
o GLy(K) = {(ki1,ki2, ka1, ka2) € K* | ki1kan — kioka1 # 0}
e Matrix multiplication and inversion can be defined as well

@ SL,(K) is K-definable.
@ PSL,(K) is K-definable.
© The algebraic groups over K are definable

| A

Fact

If K is an algebraically closed field (considered as a Lying-Structure), then
every K-definable set is (in definable bijection with) a constructible set.

v
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Ranked structures

Definition (Borovik-Poizat axioms for ranked structures)

M is ranked if
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M is ranked if there is a function rk from Def(M) — {0} to N satisfying the
following four axioms (for all A, B € Def(M) — ).
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Definition (Borovik-Poizat axioms for ranked structures)

M is ranked if there is a function rk from Def(M) — {0} to N satisfying the
following four axioms (for all A, B € Def(M) — ).

@ (Monotonicity) tk(A) > n+ 1 <~
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Ranked structures

Definition (Borovik-Poizat axioms for ranked structures)

M is ranked if there is a function rk from Def(M) — {0} to N satisfying the
following four axioms (for all A, B € Def(M) — ).

@ (Monotonicity) tk(A) > n+ 1 <= there exists {A;};<,, C Def(M) — {0}
A

1 1
1 1

Ay : Ap :
1 1

1 1
1 1
oA
1 1
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Ranked structures

Definition (Borovik-Poizat axioms for ranked structures)

M is ranked if there is a function rk from Def(M) — {0} to N satisfying the
following four axioms (for all A, B € Def(M) — ).

@ (Monotonicity) tk(A) > n+ 1 <= there exists {A;};<,, C Def(M) — {0}
A

1 1
1 1

Ay : Ap :
1 1

1 1
1 1
oA
1 1

@ (Additivity) If f : A — B is a definable surjection, then
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Ranked structures

Definition (Borovik-Poizat axioms for ranked structures)

M is ranked if there is a function rk from Def(M) — {0} to N satisfying the
following four axioms (for all A, B € Def(M) — ).

@ (Monotonicity) tk(A) > n+ 1 <= there exists {A;};<,, C Def(M) — {0}
A

1 1
1 1
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Ranked structures

Definition (Borovik-Poizat axioms for ranked structures)

M is ranked if there is a function rk from Def(M) — {0} to N satisfying the
following four axioms (for all A, B € Def(M) — ).

@ (Monotonicity) tk(A) > n+ 1 <= there exists {A;};<,, C Def(M) — {0}
A

1 1
1 1

Ay : Ap :
1 1

1 1
1 1
oA
1 1

A B
| __tk=n__| —
f
| __tk=n__| ?
tk =n _—
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Definition (Borovik-Poizat axioms for ranked structures)

M is ranked if there is a function rk from Def(M) — {0} to N satisfying the
following four axioms (for all A, B € Def(M) — ).

@ (Monotonicity) tk(A) > n+ 1 <= there exists {A;};<,, C Def(M) — {0}
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Ranked structures

Definition (Borovik-Poizat axioms for ranked structures)

M is ranked if there is a function rk from Def(M) — {0} to N satisfying the
following four axioms (for all A, B € Def(M) — ).

@ (Monotonicity) tk(A) > n+ 1 <= there exists {A;};<,, C Def(M) — {0}
A

1 1
1 1

Ay : Ap :
1 1

1 1
1 1
oA
1 1

A B
| __tk=n__|—
__________ f —  tk(A) = k(B) + n
| __tk=n__[|—
tk=n E—
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Ranked structures

Definition (Borovik-Poizat axioms for ranked structures (continued))
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Ranked structures

Definition (Borovik-Poizat axioms for ranked structures (continued))

@ (Definability of rank) If f : A — B is definable, then {b € B | tk(f~'(b)) = n}
is definable.

Joshua Wiscons Short course: groups of fMr



Ranked structures

Definition (Borovik-Poizat axioms for ranked structures (continued))

® (Definability of rank) If f : A — B is definable, then {b € B | tk(f~'(b)) = n}
is definable.

@ (Elimination of infinite quantifiers) If f : A — B is definable, then there exists a
finite n such that for every b € B, |[f~'(b)| < norf~!(b) is infinite.
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Ranked structures

Definition (Borovik-Poizat axioms for ranked structures (continued))

® (Definability of rank) If f : A — B is definable, then {b € B | tk(f~'(b)) = n}
is definable.

@ (Elimination of infinite quantifiers) If f : A — B is definable, then there exists a
finite n such that for every b € B, |[f~'(b)| < norf~!(b) is infinite.

Theorem (Poizat)
A group is ranked iff it is a group of finite Morley rank.
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Ranked structures

Definition (Borovik-Poizat axioms for ranked structures (continued))

® (Definability of rank) If f : A — B is definable, then {b € B | tk(f~'(b)) = n}
is definable.

@ (Elimination of infinite quantifiers) If f : A — B is definable, then there exists a
finite n such that for every b € B, |[f~'(b)| < norf~!(b) is infinite.

Theorem (Poizat)
A group is ranked iff it is a group of finite Morley rank.

o We will use the latter terminology. .. and abbreviate it, so

ranked group = group of fMr
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Examples

© Abelian groups of bounded exponent have fMr.

© All torsion-free divisible abelian groups have fMr.
e Gisdivisible if x” = g has a solution for every g € G and every n € N.
e Such a group is of the form P, Q

© All divisible abelian groups with finitely many elements of each finite
order have fMr.

o Example: the Priifer p-group Z,~ = {a € C | @ = 1 for some k € N}
© Any group that is definable over a ranked structure M has fMr.

e So, any definable subgroup of group of fMr is a group of fMr.

o But, definability is still M-definability (using the language for M)!
© (Cherlin-Macintyre) An infinite division ring has fMr if and only if it is

an algebraically closed field.

@ Algebraic groups over algebraically closed fields have fMr.

o Examples: GL,(K), SL,(K), PSL,(K), ...
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Properties of the rank (and degree)

Fact (Existence of degree)
Iftk(A) = n, the degree of A, deg(A), is the maximum d € N such that
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Properties of the rank (and degree)

Fact (Existence of degree)
Iftk(A) = n, the degree of A, deg(A), is the maximum d € N such that

A 1 1 1
Ay : Az TR Aq
1 1 1

k =n k =n tk=n
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Ay : Az TR Aq
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Fact

| A

Let A and B be nonempty definable sets over some ranked structure.
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Iftk(A) = n, the degree of A, deg(A), is the maximum d € N such that
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1 1 1
Ay : Az TR Aq
1 1 1

k =n k =n tk=n

Fact

| A

Let A and B be nonempty definable sets over some ranked structure.
o (Finite sets) A is finite if and only if tk A = 0 and deg A = |A|.
@ (Monotonicity) If A < B, then tkA < rk B.
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Let A and B be nonempty definable sets over some ranked structure.
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Properties of the rank (and degree)
Fact (Existence of degree)

Iftk(A) = n, the degree of A, deg(A), is the maximum d € N such that
A

1 1 1
Ay : Az TR Aq
1 1 1

k =n k =n tk=n

Fact

| \

Let A and B be nonempty definable sets over some ranked structure.
o (Finite sets) A is finite if and only if tk A = 0 and deg A = |A|.
@ (Monotonicity) If A < B, then tkA < rk B.
@ (Unions) tk(A U B) = max(rk A, rk B)
® (Products) k(A x B) = rk A + rk B and deg(A x B) = deg(A) - deg(B)
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Properties of the rank (and degree)
Fact (Existence of degree)

Iftk(A) = n, the degree of A, deg(A), is the maximum d € N such that
A

1 1 1
Ay : Az TR Aq
1 1 1

k =n k =n tk=n

| A

Fact

Let A and B be nonempty definable sets over some ranked structure.
o (Finite sets) A is finite if and only if tk A = 0 and deg A = |A|.
@ (Monotonicity) If A < B, then tkA < rk B.
@ (Unions) tk(A U B) = max(rk A, rk B)
® (Products) k(A x B) = rk A + rk B and deg(A x B) = deg(A) - deg(B)

o (Invariance) Definable bijections preserve rank and degree
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Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups—DCC)

A group of fMr has no infinite descending chains of definable subgroups.
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Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups—DCC)

A group of fMr has no infinite descending chains of definable subgroups.

Proof.

Suppose Hy > Hj > - - - is a chain of definable subgroups of G.
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Suppose Hy > Hj > - - - is a chain of definable subgroups of G.
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Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups—DCC)

A group of fMr has no infinite descending chains of definable subgroups.

Suppose Hy > Hj > - - - is a chain of definable subgroups of G.
H;

— rtkH; >r1kH;yordegH; > degH;
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Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups—DCC)

A group of fMr has no infinite descending chains of definable subgroups.
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Proposition (Descending Chain Condition on Definable Subgroups—DCC)

A group of fMr has no infinite descending chains of definable subgroups.

7 does NOT have fMr because
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Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups—DCC)

A group of fMr has no infinite descending chains of definable subgroups.

7. does NOT have fMr because Z > 27, > 47, > 87, > - - -,
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Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups—DCC)

A group of fMr has no infinite descending chains of definable subgroups.

Z does NOT have fMr because Z > 27 > 47 > 8Z > - - -, and mZ is defined
by @m(x) = Iy(x =y +-- - (m times) - - - + y).
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Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups—DCC)
A group of fMr has no infinite descending chains of definable subgroups.

Example
Z does NOT have fMr because Z > 27 > 47 > 87 > - - -, and mZ is defined
by pm(x) = Iy(x =y + - (m times) - - - + y).

| A

Corollary
Let G be a group of fMr.

N,
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Example
Z does NOT have fMr because Z > 27 > 47 > 87 > - - -, and mZ is defined
by pm(x) = Iy(x =y + - (m times) - - - + y).
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Corollary
Let G be a group of fMr.

@ (Connected Component) G has a minimal definable subgroup of finite
index G°. And. ..
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Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups—DCC)
A group of fMr has no infinite descending chains of definable subgroups.

Example
Z does NOT have fMr because Z > 27 > 47 > 87 > - - -, and mZ is defined
by pm(x) = Iy(x =y + - (m times) - - - + y).

| A

Corollary
Let G be a group of fMr.

@ (Connected Component) G has a minimal definable subgroup of finite
index G°. And. ..

G =G° <= G hasdegree | <= “G is connected”

N,
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Descending chain condition

Proposition (Descending Chain Condition on Definable Subgroups—DCC)
A group of fMr has no infinite descending chains of definable subgroups.

Example
Z does NOT have fMr because Z > 27 > 47 > 8Z > - - -, and mZ is defined

| A

Corollary
Let G be a group of fMr.

@ (Connected Component) G has a minimal definable subgroup of finite
index G°. And. ..

G =G° <= G hasdegree | <= “G is connected”

o (Definable Hull) Every subgroup H is contained in a minimal definable
subgroup d(H).

N,
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Quick check-in

Suppose that G is a connected group of fMr. Show that if @ € G has finitely
many conjugates, then a € Z(G).

Joshua Wiscons Short course: groups of fMr



Quick check-in

Suppose that G is a connected group of fMr. Show that if @ € G has finitely
many conjugates, then a € Z(G).

V.

Joshua Wiscons Short course: groups of fMr



Quick check-in

Suppose that G is a connected group of fMr. Show that if @ € G has finitely
many conjugates, then a € Z(G).
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@ Cg(a) has finite index in G
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Quick check-in

Suppose that G is a connected group of fMr. Show that if @ € G has finitely
many conjugates, then a € Z(G).

V.

@ Cg(a) has finite index in G
@ Cg(a) is definable
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Quick check-in

Suppose that G is a connected group of fMr. Show that if @ € G has finitely
many conjugates, then a € Z(G).

V.

@ Cg(a) has finite index in G
@ Cg(a) is definable
@ G = G° = G has no proper definable subgroups of finite index

@ Thus, G = Cg(a)
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Quick check-in

Suppose that G is a connected group of fMr. Show that if @ € G has finitely
many conjugates, then a € Z(G). )
@ Cg(a) has finite index in G
@ Cg(a) is definable
@ G = G° = G has no proper definable subgroups of finite index

@ Thus, G = Cg(a)

Let G be a group of fMr and @ € G. Show that d(a) is abelian.
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Quick check-in

Suppose that G is a connected group of fMr. Show that if @ € G has finitely
many conjugates, then a € Z(G).

Let G be a group of fMr and @ € G. Show that d(a) is abelian.
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Quick check-in

Suppose that G is a connected group of fMr. Show that if @ € G has finitely
many conjugates, then a € Z(G).

Let G be a group of fMr and a € G. Show that d(a) is abelian.

@ a € Cg(a) and Cg(a) is definable
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Quick check-in

Suppose that G is a connected group of fMr. Show that if @ € G has finitely
many conjugates, then a € Z(G).

Let G be a group of fMr and a € G. Show that d(a) is abelian.

@ a € Cg(a) and Cg(a) is definable
@ Thus, d(a) < Cg(a)
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Quick check-in

Suppose that G is a connected group of fMr. Show that if @ € G has finitely
many conjugates, then a € Z(G).

Let G be a group of fMr and a € G. Show that d(a) is abelian.

@ a € Cg(a) and Cg(a) is definable
@ Thus, d(a) < Cg(a)
@ Better yet, a € Z(Cg(a)) and Z(Cg(a)) is definable
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Quick check-in

Suppose that G is a connected group of fMr. Show that if @ € G has finitely
many conjugates, then a € Z(G).

Let G be a group of fMr and a € G. Show that d(a) is abelian.

@ a € Cg(a) and Cg(a) is definable

@ Thus, d(a) < Cg(a)

@ Better yet, a € Z(Cg(a)) and Z(Cg(a)) is definable
@ Thus, d(a) < Z(Cg(a))
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Algebraic analogies: semisimplicity (kind of)

Any divisible abelian p-group (of fMR or not) will be called a p-torus. I
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Any divisible abelian p-group (of fMR or not) will be called a p-torus. I

@ Recall: T is divisible if x* = a has a solution for every a € T and every n.
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@ Recall: T is divisible if x* = a has a solution for every a € T and every n.

@ A p-torus must be of the form @, Z,. (r is the Priifer p-rank)
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Algebraic analogies: semisimplicity (kind of)

Any divisible abelian p-group (of fMR or not) will be called a p-torus. I

@ Recall: T is divisible if x* = a has a solution for every a € T and every n.
@ A p-torus must be of the form @, Z,. (r is the Priifer p-rank)
o K algebraically closed = (charK = p <= K* has no p-torus)
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@ Recall: T is divisible if x* = a has a solution for every a € T and every n.
@ A p-torus must be of the form @, Z,. (r is the Priifer p-rank)

o K algebraically closed = (charK = p <= K* has no p-torus)

@ As subgroups of groups of fMr, p-tori tend to not be definable.
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Any divisible abelian p-group (of fMR or not) will be called a p-torus. I

@ Recall: T is divisible if x* = a has a solution for every a € T and every n.
@ A p-torus must be of the form @, Z,. (r is the Priifer p-rank)
o K algebraically closed = (charK = p <= K* has no p-torus)

o As subgroups of groups of fMr, p-tori tend to not be definable.

A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.
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Algebraic analogies: semisimplicity (kind of)

Any divisible abelian p-group (of fMR or not) will be called a p-torus. I

@ Recall: T is divisible if x* = a has a solution for every a € T and every n.
@ A p-torus must be of the form @, Z,. (r is the Priifer p-rank)
o K algebraically closed = (charK = p <= K* has no p-torus)

o As subgroups of groups of fMr, p-tori tend to not be definable.

A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.

@ Decent tori are divisible, hence connected (exercise!).
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Algebraic analogies: semisimplicity (kind of)

Any divisible abelian p-group (of fMR or not) will be called a p-torus. I

@ Recall: T is divisible if x* = a has a solution for every a € T and every n.
@ A p-torus must be of the form @, Z,. (r is the Priifer p-rank)
o K algebraically closed = (charK = p <= K* has no p-torus)

o As subgroups of groups of fMr, p-tori tend to not be definable.

A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.

@ Decent tori are divisible, hence connected (exercise!).

@ Decent tori have finite Priifer p-rank for all p.
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Algebraic analogies: semisimplicity (kind of)

A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.
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Algebraic analogies: semisimplicity (kind of)

A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.
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Algebraic analogies: semisimplicity (kind of)

A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.

If G is a group of fMr and T < G is a decent torus, then NG (T) = C(T).
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Algebraic analogies: semisimplicity (kind of)

A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.

If G is a group of fMr and T < G is a decent torus, then NG (T) = C(T).
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Algebraic analogies: semisimplicity (kind of)

A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.

If G is a group of fMr and T < G is a decent torus, then NG (T) = C(T).

Solution.
o Want to show T is centralized by N := Ng(7T)
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Algebraic analogies: semisimplicity (kind of)

A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.

If G is a group of fMr and T < G is a decent torus, then NG (T) = C(T).

Solution.
o Want to show T is centralized by N := Ng(7T)
o T = d(Tp) where Ty is the torsion subgroup
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Algebraic analogies: semisimplicity (kind of)

A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.

If G is a group of fMr and T < G is a decent torus, then NG (T) = C(T).

Solution.
o Want to show T is centralized by N := Ng(7T)
o T = d(Tp) where Ty is the torsion subgroup

o Suffices to show T is centralized by N (exercise!)
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Algebraic analogies: semisimplicity (kind of)

A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.

If G is a group of fMr and T < G is a decent torus, then NG (T) = C(T).

o Want to show T is centralized by N := Ng(7T)
o T = d(Tp) where Ty is the torsion subgroup

o Suffices to show T is centralized by N (exercise!)

o Ty = @p (@rp Zpoo) with each r,, finite
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Algebraic analogies: semisimplicity (kind of)

A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.

If G is a group of fMr and T < G is a decent torus, then NG (T) = C(T).

Solution.
o Want to show T is centralized by N := Ng(7T)
o T = d(Tp) where Ty is the torsion subgroup

o Suffices to show T is centralized by N (exercise!)

o Ty = @p (@rp Zpoo) with each r,, finite
o Thus, Ty has finitely many elements of each finite order
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Algebraic analogies: semisimplicity (kind of)

A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.

If G is a group of fMr and T < G is a decent torus, then NG (T) = C(T).

Solution.
Want to show T is centralized by N := N(7T)
T = d(Ty) where Ty is the torsion subgroup

(]

(]

Suffices to show T is centralized by N (exercise!)

Ty = @p (@rp Zpoo) with each r,, finite

Thus, T has finitely many elements of each finite order
Thus, every a € Ty has a finitely many N-conjugates, so a € Z(N)

Ol

v
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Algebraic analogies: semisimplicity (kind of)

A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.

If G is a group of fMr and T < G is a decent torus, then NG (T) = C(T).
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Algebraic analogies: semisimplicity (kind of)

A definable subgroup of a group of fMr is called a decent torus if it is
divisible, abelian, and equal to the definable hull of its torsion subgroup.

If G is a group of fMr and T < G is a decent torus, then NG (T) = C(T).

Fact (Conjugacy of Maximal Tori, Cherlin—2005)

Any two maximal decent tori of a group of fMr are conjugate.
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Algebraic analogies: unipotence (kind of)

Let p be a prime. A definable subgroup of a group of fMr G is called
p-unipotent if it is a connected nilpotent p-group of bounded exponent.
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Algebraic analogies: unipotence (kind of)

Let p be a prime. A definable subgroup of a group of fMr G is called
p-unipotent if it is a connected nilpotent p-group of bounded exponent.

o K algebraically closed = (charK = p <= K™ is p-unipotent)
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Algebraic analogies: unipotence (kind of)

Let p be a prime. A definable subgroup of a group of fMr G is called
p-unipotent if it is a connected nilpotent p-group of bounded exponent.

o K algebraically closed = (charK = p <= K™ is p-unipotent)

Let K be algebraically closed of characteristic p. Then subgroup of GL,(K)
of upper-triangular matrices with all 1’s on the main diagonal is p-unipotent.
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Algebraic analogies: unipotence (kind of)

Let p be a prime. A definable subgroup of a group of fMr G is called
p-unipotent if it is a connected nilpotent p-group of bounded exponent.

o K algebraically closed = (charK = p <= K™ is p-unipotent)

Example

Let K be algebraically closed of characteristic p. Then subgroup of GL,(K)
of upper-triangular matrices with all 1’s on the main diagonal is p-unipotent.

Fact (Burdges-Cherlin—2009)

Let p be a prime. If G is a connected group of fMr with no nontrivial
p-unipotent subgroup, then every p-element of G is contained in a p-torus.
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Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)

If G is a group of fMr; then the following subgroups are definable:
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Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)

If G is a group of fMr; then the following subgroups are definable:
o the Fitting subgroup F(G) (generated by all normal nilpotent subgroups)
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Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)

If G is a group of fMr; then the following subgroups are definable:
o the Fitting subgroup F(G) (generated by all normal nilpotent subgroups)

@ the solvable radical o(G) (generated by all normal solvable subgroups)
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Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)

If G is a group of fMr; then the following subgroups are definable:
o the Fitting subgroup F(G) (generated by all normal nilpotent subgroups)
@ the solvable radical o(G) (generated by all normal solvable subgroups)

o the commutator subgroup G'
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Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)

If G is a group of fMr; then the following subgroups are definable:
o the Fitting subgroup F(G) (generated by all normal nilpotent subgroups)
@ the solvable radical o(G) (generated by all normal solvable subgroups)

o the commutator subgroup G'

Fact (Structure of solvable groups)

Let G be a connected solvable group of fMr. Then
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Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)

If G is a group of fMr; then the following subgroups are definable:
o the Fitting subgroup F(G) (generated by all normal nilpotent subgroups)
@ the solvable radical o(G) (generated by all normal solvable subgroups)

o the commutator subgroup G'

Fact (Structure of solvable groups)

Let G be a connected solvable group of fMr. Then
o F°(G) contains G’ and all p-unipotent radicals of G,
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Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)

If G is a group of fMr; then the following subgroups are definable:
o the Fitting subgroup F(G) (generated by all normal nilpotent subgroups)
@ the solvable radical o(G) (generated by all normal solvable subgroups)

o the commutator subgroup G'

Fact (Structure of solvable groups)

Let G be a connected solvable group of fMr. Then
o F°(G) contains G’ and all p-unipotent radicals of G,
o G/F°(G) is divisible abelian (like a torus), and
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Algebraic analogies: Borel subgroups

Fact (Definability of some good friends)

If G is a group of fMr; then the following subgroups are definable:
o the Fitting subgroup F(G) (generated by all normal nilpotent subgroups)
@ the solvable radical o(G) (generated by all normal solvable subgroups)

o the commutator subgroup G'

Fact (Structure of solvable groups)

Let G be a connected solvable group of fMr. Then
o F°(G) contains G’ and all p-unipotent radicals of G,
o G/F°(G) is divisible abelian (like a torus), and
o (Fitting’s Theorem) G/Z(F(G)) < Aut(F(G)).
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Algebraic analogies: Borel subgroups

Fact (Structure of solvable groups)

Let G be a connected solvable group of fMr. Then
e F°(G) contains G’ and all p-unipotent radicals of G,
o G/F°(G) is divisible abelian (like a torus), and
o (Fitting’s Theorem) G/Z(F(G)) < Aut(F(G)).
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Algebraic analogies: Borel subgroups

Fact (Structure of solvable groups)
Let G be a connected solvable group of fMr. Then

e F°(G) contains G' and all p-unipotent radicals of G,
o G/F°(G) is divisible abelian (like a torus), and
o (Fitting’s Theorem) G/Z(F(G)) < Aut(F(G)).
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Algebraic analogies: Borel subgroups

Fact (Structure of solvable groups)
Let G be a connected solvable group of fMr. Then

e F°(G) contains G' and all p-unipotent radicals of G,
o G/F°(G) is divisible abelian (like a torus), and
o (Fitting’s Theorem) G/Z(F(G)) < Aut(F(G)).

Any maximal connected definable solvable subgroup of a group of fMr is
called a Borel subgroup.
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Algebraic analogies: Borel subgroups

Fact (Structure of solvable groups)
Let G be a connected solvable group of fMr. Then

e F°(G) contains G' and all p-unipotent radicals of G,
o G/F°(G) is divisible abelian (like a torus), and
o (Fitting’s Theorem) G/Z(F(G)) < Aut(F(G)).

Any maximal connected definable solvable subgroup of a group of fMr is
called a Borel subgroup.

@ So, we know a bit about the structure of Borel subgroups.
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Algebraic analogies: Borel subgroups

Fact (Structure of solvable groups)
Let G be a connected solvable group of fMr. Then

e F°(G) contains G' and all p-unipotent radicals of G,
o G/F°(G) is divisible abelian (like a torus), and
o (Fitting’s Theorem) G/Z(F(G)) < Aut(F(G)).

Any maximal connected definable solvable subgroup of a group of fMr is
called a Borel subgroup.

@ So, we know a bit about the structure of Borel subgroups.

o But not enough!
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Algebraic analogies: Borel subgroups

Fact (Structure of solvable groups)
Let G be a connected solvable group of fMr. Then

e F°(G) contains G' and all p-unipotent radicals of G,
o G/F°(G) is divisible abelian (like a torus), and
o (Fitting’s Theorem) G/Z(F(G)) < Aut(F(G)).

Any maximal connected definable solvable subgroup of a group of fMr is
called a Borel subgroup.

@ So, we know a bit about the structure of Borel subgroups.
o But not enough!

@ And crucially, we do not know if they are conjugate
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Algebraic analogies: Borel subgroups

Fact (Structure of solvable groups)
Let G be a connected solvable group of fMr. Then

e F°(G) contains G' and all p-unipotent radicals of G,
o G/F°(G) is divisible abelian (like a torus), and
o (Fitting’s Theorem) G/Z(F(G)) < Aut(F(G)).

Any maximal connected definable solvable subgroup of a group of fMr is
called a Borel subgroup.

@ So, we know a bit about the structure of Borel subgroups.
o But not enough!

e And crucially, we do not know if they are conjugate. .. sadness @
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Sylow Theory

A Sylow 2-subgroup of a group is just a maximal 2-subgroup. I
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Sylow Theory

A Sylow 2-subgroup of a group is just a maximal 2-subgroup. \

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)

In any group of fMr, the Sylow 2-subgroups are conjugate!
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Sylow Theory

A Sylow 2-subgroup of a group is just a maximal 2-subgroup. \

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)

In any group of fMr, the Sylow 2-subgroups are conjugate!

@ That’s right—we only know this for the prime 2...®
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Sylow Theory

A Sylow 2-subgroup of a group is just a maximal 2-subgroup. \

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)

In any group of fMr, the Sylow 2-subgroups are conjugate!

@ That’s right—we only know this for the prime 2...®

Fact (Structure of Sylow 2-subgroups)

In any group of fMr, the connected component of a Sylow 2-subgroup is (a
central product) of the form U x T where U is 2-unipotent and T is a 2-torus.
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Sylow Theory

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)

In any group of fMr, the Sylow 2-subgroups are conjugate!

Fact (Structure of Sylow 2-subgroups)

In any group of fMr, the connected component of a Sylow 2-subgroup is (a
central product) of the form U x T where U is 2-unipotent and T is a 2-torus.
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Sylow Theory

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)

In any group of fMr, the Sylow 2-subgroups are conjugate!

Fact (Structure of Sylow 2-subgroups)

In any group of fMr; the connected component of a Sylow 2-subgroup is (a
central product) of the form U x T where U is 2-unipotent and T is a 2-torus.
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Sylow Theory

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)

In any group of fMr, the Sylow 2-subgroups are conjugate!

Fact (Structure of Sylow 2-subgroups)

In any group of fMr; the connected component of a Sylow 2-subgroup is (a
central product) of the form U x T where U is 2-unipotent and T is a 2-torus.

Definition

| A\

A group of fMr is said to be of odd, even, mixed, or degenerate type
according to the structure of a Sylow 2-subgroup P:
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Sylow Theory

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)

In any group of fMr, the Sylow 2-subgroups are conjugate!

Fact (Structure of Sylow 2-subgroups)

In any group of fMr; the connected component of a Sylow 2-subgroup is (a
central product) of the form U x T where U is 2-unipotent and T is a 2-torus.

Definition

| A\

A group of fMr is said to be of odd, even, mixed, or degenerate type
according to the structure of a Sylow 2-subgroup P:

Even type: P° is 2-unipotent;
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Sylow Theory

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)

In any group of fMr, the Sylow 2-subgroups are conjugate!

Fact (Structure of Sylow 2-subgroups)

In any group of fMr; the connected component of a Sylow 2-subgroup is (a
central product) of the form U x T where U is 2-unipotent and T is a 2-torus.

Definition

| A\

A group of fMr is said to be of odd, even, mixed, or degenerate type
according to the structure of a Sylow 2-subgroup P:

Even type: P° is 2-unipotent;
Odd type: P° is a 2-tori;
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Sylow Theory

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)

In any group of fMr, the Sylow 2-subgroups are conjugate!

Fact (Structure of Sylow 2-subgroups)

In any group of fMr; the connected component of a Sylow 2-subgroup is (a
central product) of the form U x T where U is 2-unipotent and T is a 2-torus.

Definition

| A\

A group of fMr is said to be of odd, even, mixed, or degenerate type
according to the structure of a Sylow 2-subgroup P:

Even type: P° is 2-unipotent;
Odd type: P° is a 2-tori;

Mixed type: P° contains a 2-unipotent subgroup and a 2-torus;
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Sylow Theory

Fact (Conjugacy of Sylow 2-subgroups, Borovik-Poizat—1990)

In any group of fMr, the Sylow 2-subgroups are conjugate!

Fact (Structure of Sylow 2-subgroups)

In any group of fMr; the connected component of a Sylow 2-subgroup is (a
central product) of the form U x T where U is 2-unipotent and T is a 2-torus.

Definition

| A\

A group of fMr is said to be of odd, even, mixed, or degenerate type
according to the structure of a Sylow 2-subgroup P:

Even type: P° is 2-unipotent;
Odd type: P° is a 2-tori;

Mixed type: P° contains a 2-unipotent subgroup and a 2-torus;

Degenerate type: P° =1 (i.e. P is finite).
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Algebraicity Conjecture

Algebraicity Conjecture (Cherlin-Zilber)

An infinite simple group of finite Morley rank is isomorphic to an algebraic
group over an algebraically closed field.
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Algebraicity Conjecture

Algebraicity Conjecture (Cherlin-Zilber)

An infinite simple group of finite Morley rank is isomorphic to an algebraic
group over an algebraically closed field.

Analysis breaks into the 4 types.
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Algebraicity Conjecture

Algebraicity Conjecture (Cherlin-Zilber)

An infinite simple group of finite Morley rank is isomorphic to an algebraic
group over an algebraically closed field.

Analysis breaks into the 4 types.

does NOT contain P, _, Z>

contains P, ., Z»
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Algebraicity Conjecture

Algebraicity Conjecture (Cherlin-Zilber)

An infinite simple group of finite Morley rank is isomorphic to an algebraic
group over an algebraically closed field.

Analysis breaks into the 4 types.

does NOT contain Zj~ contains Zypco

does NOT contain P, _, Z>

contains €, _ , Z

i<w
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Algebraicity Conjecture

Algebraicity Conjecture (Cherlin-Zilber)

An infinite simple group of finite Morley rank is isomorphic to an algebraic
group over an algebraically closed field.

Analysis breaks into the 4 types.

does NOT contain Zj~ contains Zypco

does NOT contain P, _, Z> odd

contains P, ., Z» even
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Algebraicity Conjecture

Algebraicity Conjecture (Cherlin-Zilber)

An infinite simple group of finite Morley rank is isomorphic to an algebraic
group over an algebraically closed field.

Analysis breaks into the 4 types.

does NOT contain Zj~ contains Zypco

does NOT contain @, _ , Z> deg. odd

contains €, _, Zo even mixed
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Algebraicity Conjecture

Algebraicity Conjecture (Cherlin-Zilber)

An infinite simple group of finite Morley rank is isomorphic to an algebraic
group over an algebraically closed field.

Analysis breaks into the 4 types.

does NOT contain Zj~ contains Zypco
does NOT contain @, _ , Z> deg. odd
contains €, _, Zo even mixed

Fact (Altinel-Borovik-Cherlin—2008)

There are no infinite simple groups of finite Morley rank of mixed type and
those of even type are indeed algebraic.
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Algebraicity Conjecture

Groups of fMr

Simple groups of fMr

Algebraic
groups

Fact (Altinel-Borovik-Cherlin—2008)

There are no infinite simple groups of finite Morley rank of mixed type and
those of even type are indeed algebraic.
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Algebraicity Conjecture

Groups of fMr

Simple groups of fMr

Algebraic
groups

Fact (Altinel-Borovik-Cherlin—2008)

There are no infinite simple groups of finite Morley rank of mixed type and
those of even type are indeed algebraic.
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Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of degenerate type.
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Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of degenerate type.

@ Recall: degenerate type if Sylow 2-subgroups are finite.

Joshua Wiscons Short course: groups of fMr



Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of degenerate type.
@ Recall: degenerate type if Sylow 2-subgroups are finite.

@ Recall: according to the Algebraicity Conjecture, G should not exist.
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Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of degenerate type.
@ Recall: degenerate type if Sylow 2-subgroups are finite.
@ Recall: according to the Algebraicity Conjecture, G should not exist.

Fact (Borovik-Burdges-Cherlin—2007)
A connected group of fMr of degenerate type has no involutions at all.
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Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of degenerate type.
@ Recall: degenerate type if Sylow 2-subgroups are finite.
@ Recall: according to the Algebraicity Conjecture, G should not exist.

Fact (Borovik-Burdges-Cherlin—2007)
A connected group of fMr of degenerate type has no involutions at all.

@ Thus, showing such a G does not exist amounts to proving a
Feit-Thompson for groups of fMr.
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Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of degenerate type.
@ Recall: degenerate type if Sylow 2-subgroups are finite.
@ Recall: according to the Algebraicity Conjecture, G should not exist.

Fact (Borovik-Burdges-Cherlin—2007)
A connected group of fMr of degenerate type has no involutions at all.

@ Thus, showing such a G does not exist amounts to proving a
Feit-Thompson for groups of fMr.
@ And that’s more-or-less it, except in some special cases. . .
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Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of degenerate type.
@ Recall: degenerate type if Sylow 2-subgroups are finite.
@ Recall: according to the Algebraicity Conjecture, G should not exist.

Fact (Borovik-Burdges-Cherlin—2007)
A connected group of fMr of degenerate type has no involutions at all.

@ Thus, showing such a G does not exist amounts to proving a
Feit-Thompson for groups of fMr.

@ And that’s more-or-less it, except in some special cases. . .

Fact (Frécon—2018)
The group G cannot have rank 3.

Joshua Wiscons Short course: groups of fMr



Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.
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Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.
@ Recall: odd type if the Sylow® 2-subgroups are 2-tori.
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Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.
@ Recall: odd type if the Sylow® 2-subgroups are 2-tori.
@ Thus, the Sylow® 2-subgroups are of the form €, Zpe.
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Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.
@ Recall: odd type if the Sylow® 2-subgroups are 2-tori.
@ Thus, the Sylow® 2-subgroups are of the form €, Zpe.

@ Recall: according to the Algebraicity Conjecture, G should be algebraic
in characteristic not 2.

Joshua Wiscons Short course: groups of fMr



Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.
@ Recall: odd type if the Sylow® 2-subgroups are 2-tori.
@ Thus, the Sylow® 2-subgroups are of the form €, Zpe.

@ Recall: according to the Algebraicity Conjecture, G should be algebraic
in characteristic not 2.

Fact (High Priifer Rank Theorem, Burdges—2009)

In an inductive setting where every simple definable section of G is algebraic,
G is known to be algebraic when r (the Priifer 2-rank) is at least 3.
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Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.
@ Recall: odd type if the Sylow® 2-subgroups are 2-tori.
@ Thus, the Sylow® 2-subgroups are of the form €, Zpe.

@ Recall: according to the Algebraicity Conjecture, G should be algebraic
in characteristic not 2.

Fact (High Priifer Rank Theorem, Burdges—2009)

In an inductive setting where every simple definable section of G is algebraic,
G is known to be algebraic when r (the Priifer 2-rank) is at least 3.

@ The assumption includes that simple definable degenerate sections of G
are algebraic!
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Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.
@ Recall: odd type if the Sylow® 2-subgroups are 2-tori.
@ Thus, the Sylow® 2-subgroups are of the form €, Zpe.

@ Recall: according to the Algebraicity Conjecture, G should be algebraic
in characteristic not 2.

Fact (High Priifer Rank Theorem, Burdges—2009)

In an inductive setting where every simple definable section of G is algebraic,
G is known to be algebraic when r (the Priifer 2-rank) is at least 3.

@ The assumption includes that simple definable degenerate sections of G
are algebraic!

o There is a corresponding theory assuming that only the simple definable
odd type sections of G are algebraic. ..
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Algebraicity Conjecture: Status

Suppose G is an infinite simple group of fMr of odd type.
@ Recall: odd type if the Sylow® 2-subgroups are 2-tori.
@ Thus, the Sylow® 2-subgroups are of the form €, Zpe.

@ Recall: according to the Algebraicity Conjecture, G should be algebraic
in characteristic not 2.

Fact (High Priifer Rank Theorem, Burdges—2009)

In an inductive setting where every simple definable section of G is algebraic,
G is known to be algebraic when r (the Priifer 2-rank) is at least 3.

@ The assumption includes that simple definable degenerate sections of G
are algebraic!

o There is a corresponding theory assuming that only the simple definable
odd type sections of G are algebraic. .. but it’s less developed.
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Final exercise: automorphisms of order 2
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Final exercise: automorphisms of order 2

Let G be a connected group of fMr.
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Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If || = 2 and Cg(«v) is finite, then
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Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

Joshua Wiscons Short course: groups of fMr



Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

o LetX :={g'g*: g€ G} CG;
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Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.

o LetX :={g'g*: g€ G} CG:ifack,
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Final exercise: automorphisms of order 2

Let G be a connected group of fMr.

Let o € Aut(G) be definable. If |a| = 2 and Cg(«v) is finite, then o inverts G.
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The End—Thank You




