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Remark
Remember that matrices can/should be viewed as functions acting on
the vector space.
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A first example

What group is this?

o={6 8 GG SE )

Remember that matrices can/should be viewed as functions acting on
the vector space.

@ Here, each A € Gis associated with F2 — F2: [J] — A- [}].

@ To understand a matrix this way, it's enough to understand what it
does to a basis.
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A first example

What group is this?

o={6 8 GG SE )

Remember that matrices can/should be viewed as functions acting on
the vector space.

@ Here, each A € Gis associated with F2 — F2: [J] — A- [}].

@ To understand a matrix this way, it's enough to understand what it
does to a basis.

@ The standard basis: e; = [} ] = x-axis, e = [ 9] = y-axis
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A first example

What group is this?
1 0| (0 -1 -1 0 0 1

o={lo 70 9)-[0 2[5 o)

i o LetA=[07].
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A first example

What group is this?
G- 1 0] [0 -1] [-1 O 0 1
o 1’1 o|’l0 —-1’|-1 O

i o LetA=[07].

. o)~
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A first example

What group is this?
G- 1 0] [0 -1] [-1 O 0 1
o 1’1 o|’l0 —-1’|-1 O

i o LetA=[27"].
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A first example

What group is this?
G- 1 0] [0 -1] [-1 O 0 1
o 1’1 o|’l0 —-1’|-1 O

i o LetA=[07].

A A
ﬂ ‘I:(\ A acts as a 90° rotation
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A first example

What group is this?
G- 1 0] [0 -1] [-1 O 0 1
o 1t ooffo 17|10

i o LetA=[07].

A A
ﬂ I(\ A acts as a 90° rotation
\’:y . ° LetB:[_o1 —01]-

AS—A
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A first example

What group is this?
G- 1 0] [0 -1] [-1 O 0 1
o 1’1 o|’l0 —-1’|-1 O

i o LetA=[07].

A A
ﬂ I(\ A acts as a 90° rotation
\’:y . ° LetB:[_o1 —01]-
AS—A

B-e=B-[;] =[] =—e
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A first example

What group is this?
G- 1 0] [0 -1] [-1 O 0 1
o 1’1 o|’l0 —-1’|-1 O

B! o LetA=[27"].

ﬁ\l A acts as a 90° rotation

\’:y ' @ LetB=[73"%].

B-e=B-[;] =[] =—e
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A first example

What group is this?
G- 1 0] [0 -1] [-1 O 0 1
o 1t ooffo 17|10

B! o LetA=[0].

ﬁ\l A acts as a 90° rotation

\’e}* ' @ LetB=[73"%].
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A first example

What group is this?
G- 1 0] [0 -1] [-1 O 0 1
o 1t ooffo 17|10

B! o LetA=[0].

ﬁ\l A acts as a 90° rotation

w ' @ LetB=[73"%].
' B-e1=B-[1] = [5'
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A first example

What group is this?
G- 1 0] [0 -1] [-1 O 0 1
1|0 1’|t o|’l0 —1|’|-1 0

B\ o LetA=[97].

ﬁ\l A acts as a 90° rotation

w | olilstis = [0
' B acts as a 180° rotation
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A first example

What group is this?
G- 1 0] [0 -1] [-1 O 0 1
1|0 1’|t o|’l0 —1|’|-1 0

B! o LetA=[27"].

ﬁ\l A acts as a 90° rotation

' B acts as a 180° rotation

o LetCc=[021].
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A first example

What group is this?
G- 1 0] [0 -1] [-1 O 0 1
1|0 1’|t o|’l0 —1|’|-1 0

B! o LetA=[27"].

ﬁ\l A acts as a 90° rotation

' B acts as a 180° rotation

o LetCc=[021].

C acts as a 270° rotation
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A first example

What group is this?
G- 1 0] [0 -1] [-1 O 0 1
1|0 1’|t o|’l0 —1|’|-1 0

o LetA=[27"].

A acts as a 90° rotation

o LetB=[7 %]

B acts as a 180° rotation

o LetCc=[021].
C acts as a 270° rotation
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A first example

o~ {lo ?}’{?'J]’H S ofi= (I o))=

o LetA=[27"].

A acts as a 90° rotation

o LetB=[7 %]

B acts as a 180° rotation

o LetCc=[021].

C acts as a 270° rotation

Joshua Wiscons Representations of Sym(n) 12.07.20 4/28



Representations

Definition

A (linear) representation of G is a homomorphism p : G — GL,(F),
where GL,(F) denotes the invertible n x n matrices with entries in F.
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Representations

Definition

A (linear) representation of G is a homomorphism p : G — GL,(F),
where GL,(F) denotes the invertible n x n matrices with entries in F.

Let C4 = {1, r,r?, r3} be cyclic of order 4. Then
1 0 > -1 0
m[o 1] rH[O _1]
s 0 —1 B 0 1
1 0 -1 0
is a 2-dimensional representation of Cy.
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Another point of view. ..

Joshua Wiscons Representations of Sym(n) 12.07.20 6/28



Modules

Another point of view. ..
Definition

A G-module is a vector space V is together with a multiplication g - v
defined forallg € Gand all v € V such thatg- v € V and
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Modules

Another point of view. ..
Definition

A G-module is a vector space V is together with a multiplication g - v
defined forallg € Gand all v € V such thatg- v € V and

© (9192) - v=01-(92"V)
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Modules

Another point of view. ..

Definition

A G-module is a vector space V is together with a multiplication g - v
defined forallg € Gand all v € V such thatg- v € V and

@ (9192) v=01-(92-V)
e1.-v=v

Joshua Wiscons

Representations of Sym(n) 12.07.20

6/28



Modules

Another point of view. ..
Definition
A G-module is a vector space V is together with a multiplication g - v
defined forallg € Gand all v € V such thatg- v € V and
° (9192) - v=91-(g2V)
el1-v=v

0og-(u+v)=g-u+g-v
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Modules

Another point of view. ..
Definition
A G-module is a vector space V is together with a multiplication g - v
defined forallg € Gand all v € V such thatg- v € V and
° (9192) - v=91-(g2V)
el1-v=v
0og-(u+v)=g-u+g-v
@ g-(cv)=c(g-v)forall scalars ¢
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Modules

Another point of view. ..
Definition
A G-module is a vector space V is together with a multiplication g - v
defined forallg € Gand all v € V such thatg- v € V and
° (9192) - v=91-(92-V)
el1-v=v
°©g-(utv)=g-utg-v
@ g-(cv)=c(g-v)forall scalars ¢
We also say that G acts linearly on V.
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Modules

Another point of view. ..
Definition
A G-module is a vector space V is together with a multiplication g - v
defined forallg € Gand all v € V such thatg- v € V and
° (9192) v=g1-(92V)
el1-v=v
0og-(u+v)=g-u+g-v
@ g-(cv)=c(g-v)forall scalars ¢
We also say that G acts linearly on V.

@ The axioms mirror the properties of matrices multiplying vectors.
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Modules

Another point of view. ..
Definition
A G-module is a vector space V is together with a multiplication g - v
defined forallg € Gand all v € V such thatg- v € V and
° (9192) - v=91-(92-V)
el1-v=v
0og-(u+v)=g-u+g-v
@ g-(cv)=c(g-v)forall scalars ¢
We also say that G acts linearly on V.

@ The axioms mirror the properties of matrices multiplying vectors.
@ p: G — Vis arepresentation iff p(g) - v makes V a G-module.
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Reuvisiting the first example

Let C4 = {1, r,r?, r3} be cyclic of order 4. Then

1 -1 0
0 0 —1

re |9 7] S I
1 0 -1 0

is a 2-dimensional representation of Cy.

1~

0 2
1 r? —

Joshua Wiscons

Representations of Sym(n)

12.07.20 7/28



Reuvisiting the first example

Let C4 = {1, r,r?, r3} be cyclic of order 4. Then

1 -1 0
0 0 —1

re |9 7] P 0]
1 0 -1 0
is a 2-dimensional representation of C4. The corresponding C4-module
is V = F2 with multiplication defined by

1 ? r2 —
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Reuvisiting the first example

Example

Let C4 = {1, r,r?, r3} be cyclic of order 4. Then
e 2) ? e _01 —01
0 1 . [0 1
1o 71 0

is a 2-dimensional representation of Cy4
is V = F2 with multiplication defined by

_ (1 0 >
1-v_[0 1]-v re -
_ (0 -1 3
r-v_[1 0]-v r

. The corresponding C4-module

Joshua Wiscons

Representations of Sym(n)

12.07.20 7128



Reuvisiting the first example

Let C4 = {1,r,r? r®} be cyclic of order 4. Then

-1 0
0o -1

s 0 —1 A 0 1
1 0 -1 0
is a 2-dimensional representation of C4. The corresponding C4-module
is V = F? with multiplication defined by

10 >
1b—>|:01 r< —
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Reuvisiting the first example

Example
Let C4 = {1,r,r? r®} be cyclic of order 4. Then

10 . [-1 0
=10 1 R
Lo = a0

1 0 10

is a 2-dimensional representation of C4. The corresponding C4-module
is V = F? with multiplication defined by

1.6y =6y r’. ey = —e
1. eo=6 r?.e,=—e
r-eq=e r.e=—e
r-e, = —e r3. e, = e
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Sym(n)-representations and
modules
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Questions

Given a group G. ..
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Questions

Questions

Given a group G. ..
@ How can we find representations of G?
@ Can we find all representations of G?

@ What are the possible dimensions of representations of G?
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Questions

Questions

Given a group G. ..
@ How can we find representations of G?
@ Can we find all representations of G?

@ What are the possible dimensions of representations of G?
@ What are some applications of representation theory?

@ Representation theory is a rich and active area with many
applications, both in math (e.g. the structure of finite groups) and
anywhere else symmetry arises (chemistry, physics,...).
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Questions

Questions

Given a group G...
@ How can we find representations of G?

@ Can we find all representations of G?
@ What are the possible dimensions of representations of G?

@ What are some applications of representation theory?

@ Representation theory is a rich and active area with many
applications, both in math (e.g. the structure of finite groups) and
anywhere else symmetry arises (chemistry, physics,...).

@ We will explore the first three a bit in the context of Sym(n).
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The natural permutation module

Here we develop an “obvious” module for Sym(n). Recall that Sym(n)
consists of all permutations of n-objects.
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The natural permutation module

Here we develop an “obvious” module for Sym(n). Recall that Sym(n)
consists of all permutations of n-objects.

@ Let V = F™ be n-dimensional and fix a basis e, es, ..., e,
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The natural permutation module

Here we develop an “obvious” module for Sym(n). Recall that Sym(n)
consists of all permutations of n-objects.

@ Let V = F™ be n-dimensional and fix a basis e, es, ..., e,

@ Turn V into an Sym(n)-module by letting Sym(n) permute the
basis vectors in the obvious way.
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The natural permutation module

Here we develop an “obvious” module for Sym(n). Recall that Sym(n)
consists of all permutations of n-objects.
@ Let V = F" be n-dimensional and fix a basis eq, es, ..., ep

@ Turn V into an Sym(n)-module by letting Sym(n) permute the
basis vectors in the obvious way.

Definition (Natural Permutation Module)
With V as above, V is a Sym(n)-module with multiplication defined by
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The natural permutation module

Here we develop an “obvious” module for Sym(n). Recall that Sym(n)
consists of all permutations of n-objects.
@ Let V = F" be n-dimensional and fix a basis eq, es, ..., ep

@ Turn V into an Sym(n)-module by letting Sym(n) permute the
basis vectors in the obvious way.

Definition (Natural Permutation Module)
With V as above, V is a Sym(n)-module with multiplication defined by

061 =6;1),0 6 = €52)---,0 " €n= E5n)-
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The natural permutation module

Here we develop an “obvious” module for Sym(n). Recall that Sym(n)
consists of all permutations of n-objects.
@ Let V = F" be n-dimensional and fix a basis eq, es, ..., ep

@ Turn V into an Sym(n)-module by letting Sym(n) permute the
basis vectors in the obvious way.

Definition (Natural Permutation Module)
With V as above, V is a Sym(n)-module with multiplication defined by

061 =6;1),0 6 = €52)---,0 " €n= E5n)-

We call this the natural permutation module, denoted perm..
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The natural permutation module for Sym(3)

Let’s look at perm9,:-. The module structure is given by
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The natural permutation module for Sym(3)

Let’s look at perm9,:-. The module structure is given by

(12)-61262 (123)'61262
(12)'62261 (123)-62263
(12)-63263 (123)'63261
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The natural permutation module for Sym(3)

Let’s look at perm9,:-. The module structure is given by

(12)-61262 (123)'61262
(12)'62261 (123)-62263
(12)-63263 (123)'63261

The corresponding representation is

010 0 0 1
(12)—~ |1 0 0 (123)— [1 0 ©
00 1 010
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The natural permutation module for Sym(3)

Let’s look at perm9,:-. The module structure is given by

(12)-61 = €2 (123)'61 = €2
(12)'62261 (123)-92263
(12)-63293 (123)-63261
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The natural permutation module for Sym(3)

Example
Let’s look at perm9,:-. The module structure is given by
(12)-61 = €eo (123)'61 = €

(12)'62261 (123)-92263
(12)-63293 (123)-63261
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Example
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The natural permutation module for Sym(3)

Example
Let’s look at perm9,:-. The module structure is given by
(12)-61 = €eo (123)'61 = €

(12)'62261 (123)-92263
(12)-63293 (123)-63261

@ But can we find a 2-D module?
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The natural permutation module for Sym(3)

Example
Let’s look at perm9,:-. The module structure is given by
(12)-61 = €eo (123)'61 = €

(12)'62261 (123)-92263
(12)-63293 (123)'63261

' @ But can we find a 2-D module?

@ Notice that there are two invariant
el . subspaces:
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The natural permutation module for Sym(3)

Example
Let’s look at perm9,:-. The module structure is given by
(12)-61 = €eo (123)'61 = €

(12)'62261 (123)-92263
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' @ But can we find a 2-D module?

@ Notice that there are two invariant
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The natural permutation module for Sym(3)

Example
Let’s look at perm9,:-. The module structure is given by
(12)-61 = €eo (123)'61 = €

(12)'62261 (123)-92263
(12)-63293 (123)'63261

' @ But can we find a 2-D module?

@ Notice that there are two invariant
es ‘ subspaces:

________ . o Z=(e1+e+6s)
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The natural permutation module for Sym(3)

Example
Let’s look at perm9,:-. The module structure is given by
(12)-61 = €eo (123)'61 = €

(12)'62261 (123)-92263
(12)-63293 (123)'63261

' @ But can we find a 2-D module?

@ Notice that there are two invariant
€s ‘ subspaces:

________ . o Z=(e1+e+6s)
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The natural permutation module for Sym(3)

Example
Let’s look at perm9,:-. The module structure is given by
(12)-61262 (123)'61262

(12)'62261 (123)-92263
(12)-63293 (123)'63261

' @ But can we find a 2-D module?

@ Notice that there are two invariant
€s ‘ subspaces:

________ 1 == OZ:<61+62+63>
e H = {coordinates sum to zero}

Joshua Wiscons Representations of Sym(n) 12.07.20 12/28



The natural permutation module for Sym(3)

Let’s look at perm9,:-. The module structure is given by

(12)-61 = €2 (123)'61 = €2
(12)'62261 (123)-92263
(12)-63293 (123)'63261

' @ But can we find a 2-D module?

@ Notice that there are two invariant
subspaces:

-- OZ:<61+62+63>
e H = {coordinates sum to zero}

Joshua Wiscons Representations of Sym(n) 12.07.20 12/28



The natural permutation module for Sym(3)

Let’s look at perm9,:-. The module structure is given by

(12)-61 = €2 (123)'61 = €2
(12)'62261 (123)-92263
(12)-63293 (123)'63261

' @ But can we find a 2-D module?

@ Notice that there are two invariant
subspaces:

-- OZ:<61+62+63>
e H = {coordinates sum to zero}
= (e1 —e3,62 — 63)
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The natural permutation module for Sym(3)

Let’s look at perm9,:-. The module structure is given by

(12)-61262 (123)'61262
(12)'62261 (123)-92263
(12)-63293 (123)'63261

' @ But can we find a 2-D module?

@ Notice that there are two invariant
subspaces:

-- OZ:<61+62+63>
e H = {coordinates sum to zero}
= (e1 —e3,62 — 63)

@ These give rise to submodules.
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The standard module for Sym(n)

Definition (Standard Module)

Let V = F™ with basis ey, e, . .., e,. Define the standard module to be
the submodule of perm? defined as
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The standard module for Sym(n)

Definition (Standard Module)

Let V = F™ with basis ey, e, . .., e,. Define the standard module to be
the submodule of perm? defined as

stdZ = {vectors whose coordinates sum to zero} = H
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The standard module for Sym(n)

Definition (Standard Module)

Let V = F™ with basis ey, e, . .., e,. Define the standard module to be
the submodule of perm? defined as

stdZ = {vectors whose coordinates sum to zero} = H
= (€1 —€n, 62 —€n,...,6n 1 — En).
—— —— ——

fy fa fn1
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The standard module for Sym(n)

Definition (Standard Module)

Let V = F™ with basis ey, e, . .., e,. Define the standard module to be
the submodule of perm? defined as

stdZ = {vectors whose coordinates sum to zero} = H
= (€1 —€n, 62 —€n,...,6n 1 — En).
—— —— ——

fy fa fn1

A G-module (or representation) is called faithful if no nontrivial element
of G acts like the identity.
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The standard module for Sym(n)

Definition (Standard Module)

Let V = F™ with basis ey, e, . .., e,. Define the standard module to be
the submodule of perm? defined as

stdZ = {vectors whose coordinates sum to zero} = H
= (€1 —€n, 62 —€n,...,6n 1 — En).
—— —— ——

fy fa fn1

A G-module (or representation) is called faithful if no nontrivial element
of G acts like the identity.

@ perm¢ is a faithful Sym(n)-module of dimension n.
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The standard module for Sym(n)

Definition (Standard Module)

Let V = F™ with basis ey, e, . .., e,. Define the standard module to be
the submodule of perm? defined as

stdZ = {vectors whose coordinates sum to zero} = H
= (€1 —€n, 62 —€n,...,6n 1 — En).
—— —— ——

fy fa fn1

Remark

A G-module (or representation) is called faithful if no nontrivial element
of G acts like the identity.

@ perm¢ is a faithful Sym(n)-module of dimension n.
o std? is a faithful Sym(n)-module of dimension n — 1.
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The standard module for Sym(n)

Definition (Standard Module)

Let V = F™ with basis ey, e, . .., e,. Define the standard module to be
the submodule of perm? defined as

stdZ = {vectors whose coordinates sum to zero} = H
= (€1 —€n, 62 —€n,...,6n 1 — En).
—— —— ——

fy fa fn1

Remark

A G-module (or representation) is called faithful if no nontrivial element
of G acts like the identity.

@ perm¢ is a faithful Sym(n)-module of dimension n.
o std? is a faithful Sym(n)-module of dimension n — 1.
@ The submodule Z = (ey + - - - + ep) is not faithful.
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(12) - fi =

(12)- =

Joshua Wiscons Representations of Sym(n) 12.07.20 14/28



The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(12) -1 =(12) - (e1 —e3) =

(12) L=
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(12)-h=(12)-(e1 —e3) =2 — €3 =

(12) - =
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(12)~f1 2(12)-(61—63)2 2—63=f2

(12)- =
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(12)-fi=(12)- (61 —e3)=ex—e3=1

(12) £ =(12) - (e2 — &3) =
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(12)~f1 2(12)-(61—63)2 2—63=f2

(12)~f2 = (12)-(62—63) =61 —63= fi
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(12)~f1 2(12)-(61—63)2 2—63=f2

(12)~f2 = (12)-(62—63) =61 —63= fi

(12) - f = £,
(12) - £ = f
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(12) - £ = £,
(12) - £ = f
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(123) - f; =

(123) - f =

(12) - f = £,
(12) - fp = f
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(123) . f1 = (123) . (61 — 63) = €6 — €1 =

(123) - f =

(12) - f = £,
(12) - fp = f
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(123)-f1=(123)~(e1—63)= > — €61 = 62— 63+ 63— 61 =
(123) - f, =

(12) - f = £,
(12) - £ = f
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(123)-f1=(123)~(e1—63)= b — 6 =€ — €63+ 63— =Fh—fi
(123) - f, =

(12)-f; = £,
(12) - f, = f
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by
(123)-f1 :(123)~(e1 —63)2 b — 6 =€ — €63+ 63— =Fh—fi
(128) - £, =(128) - (e —€3) = €3 — €1 =

(12) - f = £,
(12) - £ = f
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by
(123)-f1 :(123)~(e1 —63)2 b — 6 =€ — €63+ 63— =Fh—fi
(123) -, =(123) - (e2 —€3) = €3 — €1 = — 1

(12) - f = £,
(12) - £ = f
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by
(123)-f1 :(123)~(e1 —63)2 b — 6 =€ — €63+ 63— =Fh—fi
(123) -, =(123) - (e2 —€3) = €3 — €1 = — 1

(12)-f1:f2 (123)-f1:—f1+f2
(12) - o = f, (123) - f = —f
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(12)-f1:f2 (123)-f1:—f1+f2
(12) - o = f, (123) - f = —f,
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(12)-f1:f2 (123)~f1:—f1-|-f2
(12) & = f, (123) - = —f,

The corresponding representation is
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(12)-f1:f2 (123)~f1:—f1-|-f2
(12) & = f, (123) - = —f,

The corresponding representation is

(12) - [? (1)]
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(12)-f1:f2 (123)~f1:—f1-|-f2
(12) & = f, (123) - = —f,

The corresponding representation is

(12) — [(1) (1)] (123) — [‘11 _01]

Joshua Wiscons Representations of Sym(n) 12.07.20 14/28



The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(12)-f1:f2 (123)~f1:—f1-|-f2
(12) & = f, (123) - = —f,

The corresponding representation is

(12) — [(1) 2)] (123) — [‘11 _01]

Is there a faithful Sym(3)-module of even smaller dimension?
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The standard module for Sym(3)

Let’s look at std = (fi,f) where fy = e; —ezand b = ex — e3. The
module structure is given by

(12)-f1:f2 (123)~f1:—f1-|-f2
(12) & = f, (123) - = —f,

The corresponding representation is

(12) — [(1) 2)] (123) — [‘11 _01]

Is there a faithful Sym(3)-module of even smaller dimension? No.
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Reducing the standard module for Sym(n)

However. . .
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Reducing the standard module for Sym(n)

However. . .in certain situations is there is a smaller module to
consider, but it won’t be faithful unless n > 5.
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Reducing the standard module for Sym(n)

However. . .in certain situations is there is a smaller module to
consider, but it won’t be faithful unless n > 5.
@ Assume F has characteristic p. (Think F = Z/pZ.)
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Reducing the standard module for Sym(n)

However. . .in certain situations is there is a smaller module to
consider, but it won’t be faithful unless n > 5.
@ Assume F has characteristic p. (Think F = Z/pZ.)
o Eg.,ifp=5,
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Reducing the standard module for Sym(n)

However. . .in certain situations is there is a smaller module to
consider, but it won’t be faithful unless n > 5.
@ Assume F has characteristic p. (Think F = Z/pZ.)
o Eg.,ifp=5,
i+b+h+1h
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Reducing the standard module for Sym(n)

However. . .in certain situations is there is a smaller module to
consider, but it won’t be faithful unless n > 5.
@ Assume F has characteristic p. (Think F = Z/pZ.)
o Eg.,ifp=5,
i+hb+hB+fh=(61—6)+ -+ (es—e5)+ (e — &)
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Reducing the standard module for Sym(n)

However. . .in certain situations is there is a smaller module to
consider, but it won’t be faithful unless n > 5.
@ Assume F has characteristic p. (Think F = Z/pZ.)
o Eg.,ifp=5,
i+hb+hB+fh=(61—6)+ -+ (es—e5)+ (e — &)
=€+ 6 +e3+e4+ 65— 5es
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Reducing the standard module for Sym(n)

However. .. in certain situations is there is a smaller module to
consider, but it won’t be faithful unless n > 5.
@ Assume F has characteristic p. (Think F = Z/pZ.)
o Eg.,ifp=5,
fitht+h+fh=(e1—€s)+ -+ (es— €5)+ (5 — €5)
=€+ 6 +e3+e4+ 65— 5es
=€ +6ex+e3+e4+ 65
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Reducing the standard module for Sym(n)

However. .. in certain situations is there is a smaller module to
consider, but it won’t be faithful unless n > 5.
@ Assume F has characteristic p. (Think F = Z/pZ.)
o Eg.,ifp=5,
fitht+h+fh=(e1—€s)+ -+ (es— €5)+ (5 — €5)
=€+ 6 +e3+e4+ 65— 5es
=€ +6ex+e3+e4+ 65
@ Recall:

e std? = {vectors whose coordinates sum to zero}
o Z=(e1+---+en)
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Reducing the standard module for Sym(n)

However. .. in certain situations is there is a smaller module to
consider, but it won’t be faithful unless n > 5.
@ Assume F has characteristic p. (Think F = Z/pZ.)
o Eg.,ifp=5,
fitht+h+fh=(e1—€s)+ -+ (es— €5)+ (5 — €5)
=€+ 6 +e3+e4+ 65— 5es
=€ +6ex+e3+e4+ 65
@ Recall:

e std? = {vectors whose coordinates sum to zero}
o Z=(e1+---+en)

Soif p | n, then
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Reducing the standard module for Sym(n)

However. .. in certain situations is there is a smaller module to
consider, but it won’t be faithful unless n > 5.
@ Assume F has characteristic p. (Think F = Z/pZ.)
o Eg.,ifp=5,
fitht+h+fh=(e1—€s)+ -+ (es— €5)+ (5 — €5)
=€+ 6 +e3+e4+ 65— 5es
=€ +6ex+e3+e4+ 65
@ Recall:

e std? = {vectors whose coordinates sum to zero}
o Z=(e1+---+en)

Soif p| n,then|Z < std}|.
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Reducing the standard module for Sym(n)

However. .. in certain situations is there is a smaller module to
consider, but it won’t be faithful unless n > 5.
@ Assume F has characteristic p. (Think F = Z/pZ.)
o Eg.,ifp=5,
fitht+h+fh=(e1—€s)+ -+ (es— €5)+ (5 — €5)
=€+ 6 +e3+e4+ 65— 5es
=€ +6ex+e3+e4+ 65
@ Recall:

e std? = {vectors whose coordinates sum to zero}
o Z=(e1+---+en)

Soif p| n,then|Z < std}|.

Definition (Reduced Standard Module)

When chiF | n, we define the reduced standard module to be the
quotient std? = std /(e1 + - - - + en).
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Reducing the standard module for Sym(n)

However. .. in certain situations is there is a smaller module to
consider, but it won’t be faithful unless n > 5.
@ Assume F has characteristic p. (Think F = Z/pZ.)
o Eg.,ifp=5,
fitht+h+fh=(e1—€s)+ -+ (es— €5)+ (5 — €5)
=€+ 6 +e3+e4+ 65— 5es
:e1+eg+eg+e4+e550inst?_-
@ Recall:

e std? = {vectors whose coordinates sum to zero}
o Z=(e1+---+en)

Soif p| n,then|Z < std}|.

Definition (Reduced Standard Module)

When chiF | n, we define the reduced standard module to be the
quotient std? = std /(e1 + - - - + en).
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The reduced standard module for Sym(5)

Let F = Z/5Z Let’s look at Sles_- = <f1, f2, f3, f4>/<61 + -+ 65>.
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The reduced standard module for Sym(5)

Let F:Z/5Z Let’s look at Sles_- = <f1,f2,f3,f4>/<61 + .- —|-65>.
@ fi+h+hh+fh=€e+e+es+es+e=0
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fi+h+hh+fh=€e+e+es+es+e=0
o fh=-fi—-hbh—F
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fi+h+hh+fh=€e+e+es+es+e=0
o fh=-fi—-hbh—F
o S = (7 7, 7
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fitht+th+thh=€e1+et+e3+e4+6e5=0
() f4E—f1 —f2—f3
o §168 = (h, B, )
The module structure is given by
(12) £ =
(12) - f, =
(12) - f =
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fi+h+hh+fh=€e+e+es+es+e=0
() f4E—f1 —f2—f3
o §168 = (h, B, )
The module structure is given by
(12) -fi = (12) : (61 = 65) =
(12) - f, =
(12) - =

Joshua Wiscons Representations of Sym(n) 12.07.20 16/28



The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fitht+th+thh=€e1+et+e3+e4+6e5=0
() f4E—f1 —f2—f3
o §168 = (h, B, )
The module structure is given by
(12)~f1 2(12)-(61—65)292—95=f2
(12)- L =
(12) - f =
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fi+h+hh+fh=€e+e+es+es+e=0
() f4E—f1 —f2—f3
o §168 = (h, B, )
The module structure is given by
(12)~f1 2(12)-(61—65)292—95=f2
(12)~f2=(12)'(62—65):
(12) - f =

Joshua Wiscons Representations of Sym(n) 12.07.20 16/28



The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fitht+th+thh=€e1+et+e3+e4+6e5=0
() f4E—f1—f2—f3
o §168 = (h, B, )

The module structure is given by
(12)~f12(12)-(61—65)292—95=f2
(12)~f2:(12)~(62—65):e1—65=f1
(12) - f =
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fi+h+hh+fh=€e+e+es+es+e=0
() f4E—f1—f2—f3
o §168 = (h, B, )

The module structure is given by
(12)-i=(12) - (e1 —€5) = €2 — €5 =
(12)~f2:(12)~(62—65):e1—65=f1
(12)-f3=(12)-(63—65)=
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fitht+th+thh=€e1+et+e3+e4+6e5=0
() f4E—f1—f2—f3
o §168 = (h, B, )

The module structure is given by
(12)~f12(12)-(61—65)292—95=f2
(12)~f2:(12)~(62—65):e1—65=f1
(12)-h=(12)- (es—e5) =3 —E5=13
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fitht+th+thh=€e1+et+e3+e4+6e5=0
o fhu=—-fi—fh—1f
o §td3 = (7, 7o, )
The module structure is given by
(12)-f=(12)-(e1—e5) =€ —65=1>
(12)- L =(12)-(ec—e5) =e1 —e5 = fy
(12) - 5 =(12) - (es—e5) =e3—e5 =13

(12)-f =46
(12)- b =H
(12) =1
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fi+h+hh+fh=€e+e+es+es+e=0
o fp=-fi—h—1H
o §td3 = (7, 7o, )

The module structure is given by

(12345) - f; =

(12345) - f, =

(12345) - f5 =
(12)-h=£
(12)- h=Hf
(12)- =1
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fi+h+hh+fh=€e+e+es+es+e=0
o fp=-fi—h—1H
o §td3 = (7, 7o, )
The module structure is given by
(12345) - f; = (12345) - (e, — &5) =

(12345) - f, =

(12345) - f5 =
(12)-f="h
(12) =1
(12) =1
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fi+h+hh+fh=€e+e+es+es+e=0
o fp=-fi—h—1H
o §td3 = (7, 7o, )
The module structure is given by
(12345) - f; = (12345) - (e1 —e5) = &0 — €1 =

(12345) - f, =

(12345) - f5 =
(12)-f="h
(12) =1
(12) =1

Joshua Wiscons Representations of Sym(n) 12.07.20

16/28



The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fi+h+hh+fh=€e+e+es+es+e=0
o fp=-fi—h—1H
o §td3 = (7, 7o, )

The module structure is given by
(12345) - fi = (12345) - (e1 —e5) = e —e1 =€ — €5+ 65 — 81 =
(12345) - f, =

(12345) - f5 =
(12)-f="h
(12) =1
(12) =1
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fi+h+hh+fh=€e+e+es+es+e=0
o fp=-fi—h—1H
o §td3 = (7, 7o, )

The module structure is given by

(12345) -fi = (12345)~ (61 = 65) —e—e1 =6 —65+65—6e =h—f

(12345) - f, =

(12345) - f5 =
(12)-f="h
(12) b =f
(12) =1
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fi+h+hh+fh=€e+e+es+es+e=0
o fp=-fi—h—1H
o §td3 = (7, 7o, )

The module structure is given by

(12345)-f1 :(12345)~(e1 —65)262—61 =6 —6es+es—e =h—f

(12345) - f, = (12345) - (&2 — €5) =

(12345) - f5 =
(12)-f="h
(12) b =f
(12) =1
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fi+h+hh+fh=€e+e+es+es+e=0
o fp=-fi—h—1H
o §td3 = (7, 7o, )

The module structure is given by

(12345)-f1 :(12345)~(e1 —65)262—61 =6 —6es+es—e =h—f

(12345) - f, = (12345) - (6, — €5) = -+ = f3 — fy
(12345) - f5 =

(12) F = f

(12) - K =

(12) - =13
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Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fi+h+hh+fh=€e+e+es+es+e=0
() f4E—f1 —fg—f3
o St = (F;, b, &)
The module structure is given by
(12345) - f; = (12345) - (e —es) =ex—€e1 =€ — 65+ 65 — 61 = fr — fy
(12345) - f, = (12345) - (6 —€5) = --- = f3 — f4
(12345) - f3 = (12345) - (e3 — e5) =

(12)-f="h
(12) - =1
(12) =1
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fi+h+hh+fh=€e+e+es+es+e=0
o fhu=—-fi—fh—1f
o §td3 = (7, 7o, )
The module structure is given by
(12345) - f; = (12345) - (e —es) =ex—€e1 =€ — 65+ 65 — 61 = fr — fy

(12345) - f, = (12345) - (6, — €5) = -+ = f3 — fy
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(12) F = f
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + €5).
@ fi+h+hh+fh=€e+e+es+es+e=0
o fhu=—-fi—fh—1f
o §td3 = (7, 7o, )
The module structure is given by
(12345) - f; = (12345) - (e —es) =ex—€e1 =€ — 65+ 65 — 61 = fr — fy

(12345) - f, = (12345) - (6o — €5) = --- = f — f
(12345)f3=(12345)(€3—€5)= o=fh—f=-2f—-F6h—1f
(12)-7~
(12) b =1,
(12)- s =1
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let’s look at Sles_- = (fi,h,f3,f4)/(€1 4+ + €5).
@ fitht+th+thh=€e1+et+e3+e4+6e5=0

() f4E—f1 —fg—f3
o §168 = (h, B, )
The module structure is given by

(12345)-f1 :(12345)~(e1 —65)262—61 =6 —6es+es—e =h—f

(12345) - f, = (12345) - (6o — €5) = --- = f — f
(12345)f3=(12345)(€3—€5)= o=fh—f=-2f—-F6h—1f
(12)-fi=1h (12345) - f = —f + I
(12)-h =1, (12345) b= —f +f
(12) - f = f (12345) . f, = —2f, —fh— &
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + e€5).

The module structure is given by
(12)-f=h (12345) - f; = —f, + f
(12)- % = f, (12345) - fp = —f, + f3
(12)-h=f  (12345) h=—2h —h—1f

P

The corresponding representation is
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The reduced standard module for Sym(5)

Let F = Z/5Z. Let's look at std2 = (f;, f, f5, f4) /(€1 + - - - + e€5).
The module structure is given by
(12)-h=f  (12345)-fi=—Ff+h
(12)-h=fi  (12345)- b= —F +1f
(12) h=h  (12345)-h=-2f - -1f

The corresponding representation is

010
(12)— [1 0 0
0 0 1
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The reduced standard module for Sym(5)

Let F = Z/5Z Let’s look at SY’?_— = <f1, fg, f3, f4)/<e1 + -+ e5>.
The module structure is given by

(12)-h =1 (12345) - fi = —fi + f
(12)- b =f (12345) - fo=—fr+f
(12) - =1f (12345) - = —2f — b — f

The corresponding representation is

010 -1 -1 -2
(12)— |1 0 O (12345) — (1 0 —1
0 0 1 o 1 -1
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Irreducibility of the (reduced) standard module

Is there a faithful Sym(5)-module of even smaller dimension? \
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Is there a faithful Sym(5)-module of even smaller dimension?
Definition
A G-module V is irreducible if the only submodules are 0 and V.
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Is there a faithful Sym(5)-module of even smaller dimension?

Definition
A G-module V is irreducible if the only submodules are 0 and V.

Assume n > 5.
o When char F | n, std? is irreducible and faithful.
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Irreducibility of the (reduced) standard module

Is there a faithful Sym(5)-module of even smaller dimension?

Definition
A G-module V is irreducible if the only submodules are 0 and V.

Assume n > 5.
o When char F | n, std? is irreducible and faithful.
@ When char F 1 n, std} is irreducible and faithful.
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Irreducibility of the (reduced) standard module

Is there a faithful Sym(5)-module of even smaller dimension?

Definition
A G-module V is irreducible if the only submodules are 0 and V.

Assume n > 5.
@ Whenchar F | n, std? is irreducible and faithful.
@ When char F 1 n, std} is irreducible and faithful.

This only says std (char F | n) and std} (char F t n) can't be “reduced”
further. It doesn’t say smaller modules can’t be found other ways.
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Questions

Questions
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o E.g. consult G.D. James (1976) about boxes.

o W. Burnside (1911) addressed this to some degree without boxes.
@ Did we find the faithful Sym(n)-modules of smallest dimension?
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o Yes, we (essentially) found all (A. Wagner, 1976,77).
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o Yes, though it requires skill in organizing boxes into a corner.
o E.g. consult G.D. James (1976) about boxes.
o W. Burnside (1911) addressed this to some degree without boxes.
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o Yes, though it requires skill in organizing boxes into a corner.
o E.g. consult G.D. James (1976) about boxes.
o W. Burnside (1911) addressed this to some degree without boxes.

@ Did we find the faithful Sym(n)-modules of smallest dimension?
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Questions

Questions

@ Can we find other Sym(n)-modules?

o Yes, though it requires skill in organizing boxes into a corner.
o E.g. consult G.D. James (1976) about boxes.
o W. Burnside (1911) addressed this to some degree without boxes.

@ Did we find the faithful Sym(n)-modules of smallest dimension?
o Yes, they have smallest possible dimension (L. Dickson, 1907).
o Yes, we (essentially) found all (A. Wagner, 1976,77).

@ What about Alt(n)-modules?

@ What about modules in a more general context where we have a
notion of dimension but (a priori) no field?

o E.g. Morley rank, o-minimal dimension, Prufer p-rank
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A new context: G-modules with
an additive dimension
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Modules with an additive dimension

We redefine a G-module to be a vector space V together with a
multiplication g - v satisfying the axioms from before.
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@ there is an “additive dimension” dim on certain groups definable
from V;
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Modules with an additive dimension

We redefine a G-module to be a abelian group V together with a
multiplication g - v satisfying the axioms from before. Additionally,

@ there is an “additive dimension” dim on certain groups definable
from V;
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Modules with an additive dimension

We redefine a G-module to be a abelian group V together with a
multiplication g - v satisfying the axioms from before. Additionally,

@ there is an “additive dimension” dim on certain groups definable
from V;

@ Definability is a (natural) notion from logic. E.g., the following are
definable: Qy(V) = {v | pv = 0},
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Modules with an additive dimension

We redefine a G-module to be a abelian group V together with a
multiplication g - v satisfying the axioms from before. Additionally,

@ there is an “additive dimension” dim on certain groups definable
from V;

@ multiplication by g is definable for all g € G;

@ Definability is a (natural) notion from logic. E.g., the following are
definable: Qp(V) ={v|pv =0}, Cy(9)={v|g-v=v},
By(g) = {v — g v} (assuming g-multiplication is definable).
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Modules with an additive dimension

We redefine a G-module to be a abelian group V together with a
multiplication g - v satisfying the axioms from before. Additionally,

@ there is an “additive dimension” dim on certain groups definable
from V;

@ multiplication by g is definable for all g € G;
@ proper definable subgroups of V have smaller dimension than V.

@ Definability is a (natural) notion from logic. E.g., the following are
definable: Qp(V) ={v|pv =0}, Cv(g) ={v|g v =y},
By(g) = {v — g v} (assuming g-multiplication is definable).
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Modules with an additive dimension

We redefine a G-module to be a abelian group V together with a
multiplication g - v satisfying the axioms from before. Additionally,

@ there is an “additive dimension” dim on certain groups definable
from V;

@ multiplication by g is definable for all g € G;
@ proper definable subgroups of V have smaller dimension than V.

@ Definability is a (natural) notion from logic. E.g., the following are
definable: Qp(V) ={v|pv =0}, Cv(g) ={v|g v =y},
By(g) = {v — g v} (assuming g-multiplication is definable).

@ The final axiom is referred to as dim-connectedness of V.
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Modules with an additive dimension

Let V be a module. Define the characteristic of V as follows:
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Let V be a module. Define the characteristic of V as follows:

@ char V = pif all nontrivial elements have order p
@ charV =0 if Vis divisible
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Let V be a module. Define the characteristic of V as follows:
@ char V = pif all nontrivial elements have order p
@ char V = 0if V is divisible
e Forallve Vandne Z.g, there exists w € V such that nw = v
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@ char V is undefined otherwise
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@ char V = pif all nontrivial elements have order p
@ char V = 0 if V is divisible
o Forall ve Vand ne Z-y, there exists w € V such that nw = v

@ char V is undefined otherwise

Fact (Sample lemma: an eigenspace decomposition)

Let V be a (a)-module with |a| = 2. Let
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o Forall ve Vand ne Z-y, there exists w € V such that nw = v

@ char V is undefined otherwise
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Let V be a module. Define the characteristic of V as follows:

@ char V = pif all nontrivial elements have order p
@ char V = 0 if V is divisible
o Forall ve Vand ne Z-y, there exists w € V such that nw = v

@ char V is undefined otherwise

Fact (Sample lemma: an eigenspace decomposition)

Let V be a (a)-module with |a| = 2. Let
0 C=Cy(a)={v|a-v=v}=E
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Modules with an additive dimension

Let V be a module. Define the characteristic of V as follows:

@ char V = pif all nontrivial elements have order p
@ char V = 0 if V is divisible
o Forall ve Vand ne Z-y, there exists w € V such that nw = v

@ char V is undefined otherwise

Fact (Sample lemma: an eigenspace decomposition)

Let V be a (a)-module with |a| = 2. Let
0 C=Cy(a)={v|a-v=v}=E
@ B=By(a)={w—a-w} ={v|a-v=—v}
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Modules with an additive dimension

Let V be a module. Define the characteristic of V as follows:

@ char V = pif all nontrivial elements have order p
@ char V = 0 if V is divisible
o Forall ve Vand ne Z-y, there exists w € V such that nw = v

@ char V is undefined otherwise

Fact (Sample lemma: an eigenspace decomposition)

Let V be a (a)-module with |a| = 2. Let
0 C=Cy(a)={v|a-v=v}=E
@ B=By(la)={w—a-w} ={v|a-v=—-v}=E
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Modules with an additive dimension

Let V be a module. Define the characteristic of V as follows:

@ char V = pif all nontrivial elements have order p
@ char V = 0 if V is divisible
o Forall ve Vand ne Z-y, there exists w € V such that nw = v

@ char V is undefined otherwise

Fact (Sample lemma: an eigenspace decomposition)

Let V be a («)-module with |o| = 2. Let
0 C=Cy(a)={v]a-v=v}=E
@ B=By(a)={w—a-w} ={v|a-v=—v}=E4
Ifchar V exists andchar V # 2, then V = B+ C anddimBn C = 0.
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Modules with an additive dimension

Fact (Sample lemma: an eigenspace decomposition)

Let V be a (r)-module with |T| = 2. Let
@ C=Cy(r)={v|T-v=v}=E(7)
@ B=By(r)={w—7-w}={v|T-v=—v}=E (1)
Ifchar V exists andchar V #£ 2, then V = B+ C anddimBn C = 0.
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Let V be a (r)-module with |T| = 2. Let
@ C=Cy(r)={v|T-v=v}=E(7)
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Modules with an additive dimension

Fact (Sample lemma: an eigenspace decomposition)

Let V be a (r)-module with |T| = 2. Let
@ C=Cy(r)={v|T-v=v}=E(7)
@ B=By(r)={w—7-w}={v|T-v=—v}=E (1)
Ifchar V exists andchar V #£ 2, then V = B+ C anddimBn C = 0.

4

@ Nontrivial elements of C N B have order 2, forcingdimBN C =0
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Modules with an additive dimension

Fact (Sample lemma: an eigenspace decomposition)

Let V be a (r)-module with |T| = 2. Let
@ C=Cy(r)={v|T-v=v}=E(7)
@ B=By(r)={w—7-w}={v|T-v=—v}=E (1)
Ifchar V exists andchar V #£ 2, then V = B+ C anddimBn C = 0.

Proof.
@ Nontrivial elements of C N B have order 2, forcingdimBN C =0
@ Bis the image of 1 — 7 (by definition)
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Modules with an additive dimension

Fact (Sample lemma: an eigenspace decomposition)

Let V be a (r)-module with |T| = 2. Let
@ C=Cy(r)={v|T-v=v}=E(7)
@ B=By(r)={w—7-w}={v|T-v=—v}=E (1)
Ifchar V exists andchar V #£ 2, then V = B+ C anddimBn C = 0.

Proof.
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Modules with an additive dimension

Fact (Sample lemma: an eigenspace decomposition)

Let V be a (r)-module with |T| = 2. Let
@ C=Cy(r)={v|T-v=v}=E(7)
@ B=By(r)={w—7-w}={v|T-v=—v}=E (1)
Ifchar V exists andchar V #£ 2, then V = B+ C anddimBn C = 0.

Proof.
Nontrivial elements of C N B have order 2, forcingdmBnN C =0
@ Bis the image of 1 — 7 (by definition)

@ Cisthekernelof 1 — 7 (sincev—7-v=0iff 7-v=v)

@ By additivity, dim V = dim B + dim C = dim(B + C)

@ By dim-connectedness of V, V=B+C
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Sym(n)-modules of minimal
dimension
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The standard module for Sym(n) — CDW-remix

Definition (Standard Module)
Let perm?, be defined analogously to before.
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The standard module for Sym(n) — CDW-remix

Definition (Standard Module)

Let perm?, be defined analogously to before. For any abelian group A,
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The standard module for Sym(n) — CDW-remix

Definition (Standard Module)

Let perm?, be defined analogously to before. For any abelian group A,
we then define

@ permj =permyRA={e1®a +---+e,®an| a €A}
ostdi=stdj0A={e1®ai+---+e,®an| g €AY a=0}
oZ={e1®a+ --+ep®alacA}

o std? = std} /(Z Nstd})

These all carry a Sym(n)-multiplication as before.
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The minimal faithful modules

Theorem (Corredor-Deloro-W 2018-2020)

Suppose V is faithful and dim-irreducible Sym(n)-module with
charV =qganddimV =d < n.
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The minimal faithful modules

Theorem (Corredor-Deloro-W 2018-2020)

Suppose V is faithful and dim-irreducible Sym(n)-module with
charV=qganddimV =d < n. Ifn>7, then

q d
g>0andq|n | n-2

Structure of V

isomorphic to std? or sgn @ std?

g>0andqgtn | n—1

isomorphic to std] or sgn ® std]
g=>0 n—1

covered by std] or sgn ® std]
for some 1-dimensional L < V.
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The minimal faithful modules

Theorem (Corredor-Deloro-W 2018-2020)

Suppose V is faithful and dim-irreducible Sym(n)-module with
charV=qganddmV =d < n. Ifn>7, then

q d
g>0andq|n | n-2

Structure of V

isomorphic to std} or sgn ® std]

g>0andqgtn | n—1

isomorphic to std] or sgn ® std]
g=>0 n—1

covered by std] or sgn ® std]
for some 1-dimensional L < V.

Theorem (Corredor-Deloro-W 2018-2020)

The same is true for Alt(n)-modules provided n > 10 when q = 2.
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cases to disentangle.

@ This began in 2018 with only a lower bound on the dimension (not
identification), only for Sym(n), and only in a context of finite
Morley rank.

@ The proof...

o d < nforces dim By((12)(34)) =2

e dim By((12)(384)) = 2 forces a geometric condition on By ((12)(34))
o this ensures V is a Sym(n)-module (if not already), and
@ By((12)) satisfies a similar geometric condition
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Comments

@ Some results are know for smaller n, but there are exceptional
cases to disentangle.

@ This began in 2018 with only a lower bound on the dimension (not
identification), only for Sym(n), and only in a context of finite
Morley rank.

@ The proof...

o d < nforces dim By((12)(34)) =2
e dim By((12)(384)) = 2 forces a geometric condition on By ((12)(34))
o this ensures V is a Sym(n)-module (if not already), and
@ By((12)) satisfies a similar geometric condition
e The geometric condition on By((12)) leads to recognition of stdj or
std? with L = By((12))
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1. Can one deal with the remaining small values of n? There are
other (interesting, natural) modules that will come into the picture.

2. The Theorem assumes d < n; can this be relaxed? One expects
to not encounter the “second smallest” modules until d ~ (’2’)

3. What about G-modules for other G (in this new context)?

4. What about G-modules where the “module” is nonabelian? There
are applications for this.

Love groups? Want to learn more about representations/modules in
the classical sense? In the new context? Want to start exploring some
of these questions?
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Questions

Questions

1. Can one deal with the remaining small values of n? There are
other (interesting, natural) modules that will come into the picture.

2. The Theorem assumes d < n; can this be relaxed? One expects
to not encounter the “second smallest” modules until d ~ (’2’)

3. What about G-modules for other G (in this new context)?

4. What about G-modules where the “module” is nonabelian? There
are applications for this.

Love groups? Want to learn more about representations/modules in
the classical sense? In the new context? Want to start exploring some
of these questions? There will be a focused series of talks in Spring
2021 on this topic. Email joshua.wiscons@csus.edu for info.
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