Representations of Sym(n) of minimal dimension

Joshua Wiscons

California State University, Sacramento

ANTC

December 7, 2020

Joint work with Luis Jaime Corredor (Bogotá) and Adrien Deloro (Paris)

Representations and Modules

Example

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

Example

What group is this?

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

Remark

Remember that matrices can/should be viewed as functions acting on the vector space.

Example

What group is this?

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

Remark

Remember that matrices can/should be viewed as functions acting on the vector space.

• Here, each $A \in G$ is associated with $F^2 \to F^2 : \begin{bmatrix} x \\ y \end{bmatrix} \mapsto A \cdot \begin{bmatrix} x \\ y \end{bmatrix}$.

Example

What group is this?

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

Remark

Remember that matrices can/should be viewed as functions acting on the vector space.

- Here, each $A \in G$ is associated with $F^2 \to F^2 : \begin{bmatrix} x \\ y \end{bmatrix} \mapsto A \cdot \begin{bmatrix} x \\ y \end{bmatrix}$.
- To understand a matrix this way, it's enough to understand what it does to a basis.

Example

What group is this?

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

Remark

Remember that matrices can/should be viewed as functions acting on the vector space.

- Here, each $A \in G$ is associated with $F^2 \to F^2 : \begin{bmatrix} x \\ y \end{bmatrix} \mapsto A \cdot \begin{bmatrix} x \\ y \end{bmatrix}$.
- To understand a matrix this way, it's enough to understand what it does to a basis.
- The standard basis: $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = x$ -axis, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = y$ -axis

Example

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

Example

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

Example

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

Example

$$\textit{G} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.
 $A \cdot e_1 = A \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Example

$$\textit{G} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.
 $A \cdot e_1 = A \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Example

$$\textit{G} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

$$A \cdot e_1 = A \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = e_2$$

Example

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

$$A \cdot e_1 = A \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = e_2$$

Example

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

$$A \cdot e_1 = A \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = e_2$$

$$A \cdot e_2 = A \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} =$$

Example

$$\textit{G} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

$$A \cdot e_1 = A \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = e_2$$

$$A \cdot e_2 = A \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} = -e_1$$

Example

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

$$A \cdot e_1 = A \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = e_2$$

$$A \cdot e_2 = A \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} = -e_1$$

Example

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

$$A \cdot e_1 = A \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = e_2$$

$$A \cdot e_2 = A \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} = -e_1$$

Example

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

$$A \cdot e_1 = A \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = e_2$$

$$A \cdot e_2 = A \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} = -e_1$$

Example

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

Example

What group is this?

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

Example

What group is this?

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

• Let
$$B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
.

Example

What group is this?

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

• Let
$$B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
.

$$B \cdot e_1 = B \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} = -e_1$$

Example

What group is this?

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

• Let
$$B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
.

$$B \cdot e_1 = B \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} = -e_1$$

Example

What group is this?

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

A acts as a 90° rotation

• Let
$$B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
.

$$B \cdot e_1 = B \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} = -e_1$$

$$B \cdot e_2 = B \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} = -e_2$$

Example

What group is this?

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

A acts as a 90° rotation

• Let
$$B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
.

$$B \cdot e_1 = B \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} = -e_1$$

$$B \cdot e_2 = B \cdot \left[\begin{smallmatrix} 0 \\ 1 \end{smallmatrix} \right] = \left[\begin{smallmatrix} 0 \\ -1 \end{smallmatrix} \right] = -e_2$$

Example

What group is this?

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

A acts as a 90° rotation

• Let
$$B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
.

B acts as a 180° rotation

Example

What group is this?

$$\textit{G} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

A acts as a 90° rotation

• Let
$$B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
.

B acts as a 180° rotation

• Let
$$C = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
.

Example

What group is this?

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

A acts as a 90° rotation

• Let
$$B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
.

B acts as a 180° rotation

• Let
$$C = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
.

C acts as a 270° rotation

Example

What group is this?

$$\textit{G} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

A acts as a 90° rotation

• Let
$$B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
.

B acts as a 180° rotation

• Let
$$C = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
.

C acts as a 270° rotation

Example

What group is this?

$$G = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\} = \left\langle \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right\rangle \cong C_4$$

• Let
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
.

A acts as a 90° rotation

• Let
$$B = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
.

B acts as a 180° rotation

• Let
$$C = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
.

C acts as a 270° rotation

Representations

Definition

A (linear) representation of G is a homomorphism $\rho: G \to GL_n(F)$, where $GL_n(F)$ denotes the invertible $n \times n$ matrices with entries in F.

Representations

Definition

A (linear) representation of G is a homomorphism $\rho: G \to GL_n(F)$, where $GL_n(F)$ denotes the invertible $n \times n$ matrices with entries in F.

Example

Let $C_4 = \{1, r, r^2, r^3\}$ be cyclic of order 4. Then

$$1 \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad r^2 \mapsto \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$r \mapsto \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad r^3 \mapsto \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

is a 2-dimensional representation of C_4 .

Modules

Another point of view...

Modules

Another point of view...

Definition

A *G*-module is a vector space *V* is together with a multiplication $g \cdot v$ defined for all $g \in G$ and all $v \in V$ such that $g \cdot v \in V$ and

Another point of view...

Definition

$$\bullet (g_1g_2) \cdot v = g_1 \cdot (g_2 \cdot v)$$

Another point of view...

Definition

- $\bullet (g_1g_2) \cdot v = g_1 \cdot (g_2 \cdot v)$
- \bullet 1 · v = v

Another point of view...

Definition

- $\bullet (g_1g_2) \cdot v = g_1 \cdot (g_2 \cdot v)$
- \bullet 1 · v = v
- $g \cdot (u+v) = g \cdot u + g \cdot v$

Another point of view...

Definition

- $\bullet (g_1g_2) \cdot v = g_1 \cdot (g_2 \cdot v)$
- \bullet 1 · v = v
- $g \cdot (u+v) = g \cdot u + g \cdot v$
- $g \cdot (cv) = c(g \cdot v)$ for all scalars c

Another point of view...

Definition

A *G*-module is a vector space *V* is together with a multiplication $g \cdot v$ defined for all $g \in G$ and all $v \in V$ such that $g \cdot v \in V$ and

- $\bullet (g_1g_2) \cdot v = g_1 \cdot (g_2 \cdot v)$
- \bullet 1 · v = v
- $g \cdot (u+v) = g \cdot u + g \cdot v$
- $g \cdot (cv) = c(g \cdot v)$ for all scalars c

We also say that G acts linearly on V.

Another point of view...

Definition

A *G*-module is a vector space *V* is together with a multiplication $g \cdot v$ defined for all $g \in G$ and all $v \in V$ such that $g \cdot v \in V$ and

- $\bullet (g_1g_2) \cdot v = g_1 \cdot (g_2 \cdot v)$
- \bullet 1 · v = v
- $g \cdot (cv) = c(g \cdot v)$ for all scalars c

We also say that G acts linearly on V.

Remark

The axioms mirror the properties of matrices multiplying vectors.

Another point of view...

Definition

A *G*-module is a vector space *V* is together with a multiplication $g \cdot v$ defined for all $g \in G$ and all $v \in V$ such that $g \cdot v \in V$ and

- $\bullet (g_1g_2) \cdot v = g_1 \cdot (g_2 \cdot v)$
- \bullet 1 · v = v
- $g \cdot (u+v) = g \cdot u + g \cdot v$
- $g \cdot (cv) = c(g \cdot v)$ for all scalars c

We also say that *G* acts linearly on *V*.

Remark

- The axioms mirror the properties of matrices multiplying vectors.
- $\rho: G \to V$ is a representation iff $\rho(g) \cdot v$ makes V a G-module.

Example

Let $C_4 = \{1, r, r^2, r^3\}$ be cyclic of order 4. Then

$$1 \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad r^2 \mapsto \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$r \mapsto \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad r^3 \mapsto \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

is a 2-dimensional representation of C_4 .

Example

Let $C_4 = \{1, r, r^2, r^3\}$ be cyclic of order 4. Then

$$1 \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad r^2 \mapsto \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$r \mapsto \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad r^3 \mapsto \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Example

Let $C_4 = \{1, r, r^2, r^3\}$ be cyclic of order 4. Then

$$1 \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad r^2 \mapsto \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$r \mapsto \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad r^3 \mapsto \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$1 \cdot v = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot v \qquad r^2 \cdot v = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \cdot v$$
$$r \cdot v = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \cdot v \qquad r^3 \cdot v = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \cdot v$$

Example

Let $C_4 = \{1, r, r^2, r^3\}$ be cyclic of order 4. Then

$$1 \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad r^2 \mapsto \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$r \mapsto \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad r^3 \mapsto \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

Example

Let $C_4 = \{1, r, r^2, r^3\}$ be cyclic of order 4. Then

$$1 \mapsto \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad r^2 \mapsto \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$r \mapsto \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad r^3 \mapsto \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$1 \cdot e_1 = e_1$$
 $r^2 \cdot e_1 = -e_1$
 $1 \cdot e_2 = e_2$ $r^2 \cdot e_2 = -e_2$
 $r \cdot e_1 = e_2$ $r^3 \cdot e_1 = -e_2$
 $r \cdot e_2 = -e_1$ $r^3 \cdot e_2 = e_1$

Sym(*n*)-representations and modules

Questions

Questions

Given a group G...

How can we find representations of G?

Questions

- How can we find representations of G?
- Can we find all representations of G?

Questions

- How can we find representations of G?
- Can we find all representations of G?
- What are the possible dimensions of representations of *G*?

Questions

- How can we find representations of G?
- Can we find all representations of G?
- What are the possible dimensions of representations of G?
- What are some applications of representation theory?

Questions

Given a group G...

- How can we find representations of G?
- Can we find all representations of G?
- What are the possible dimensions of representations of *G*?
- What are some applications of representation theory?

Remarks

Questions

Given a group G...

- How can we find representations of G?
- Can we find all representations of G?
- What are the possible dimensions of representations of G?
- What are some applications of representation theory?

Remarks

 Representation theory is a rich and active area with many applications, both in math (e.g. the structure of finite groups) and anywhere else symmetry arises (chemistry, physics,...).

Questions

Given a group G...

- How can we find representations of G?
- Can we find all representations of G?
- What are the possible dimensions of representations of G?
- What are some applications of representation theory?

Remarks

- Representation theory is a rich and active area with many applications, both in math (e.g. the structure of finite groups) and anywhere else symmetry arises (chemistry, physics,...).
- We will explore the first three a bit in the context of Sym(n).

Here we develop an "obvious" module for Sym(n). Recall that Sym(n) consists of all permutations of n-objects.

Here we develop an "obvious" module for Sym(n). Recall that Sym(n) consists of all permutations of n-objects.

• Let $V = F^n$ be *n*-dimensional and fix a basis e_1, e_2, \dots, e_n

Here we develop an "obvious" module for Sym(n). Recall that Sym(n) consists of all permutations of n-objects.

- Let $V = F^n$ be n-dimensional and fix a basis e_1, e_2, \dots, e_n
- Turn V into an Sym(n)-module by letting Sym(n) permute the basis vectors in the obvious way.

Here we develop an "obvious" module for Sym(n). Recall that Sym(n) consists of all permutations of n-objects.

- Let $V = F^n$ be n-dimensional and fix a basis e_1, e_2, \dots, e_n
- Turn V into an Sym(n)-module by letting Sym(n) permute the basis vectors in the obvious way.

Definition (Natural Permutation Module)

With V as above, V is a Sym(n)-module with multiplication defined by

Here we develop an "obvious" module for Sym(n). Recall that Sym(n) consists of all permutations of n-objects.

- Let $V = F^n$ be n-dimensional and fix a basis e_1, e_2, \dots, e_n
- Turn V into an Sym(n)-module by letting Sym(n) permute the basis vectors in the obvious way.

Definition (Natural Permutation Module)

With V as above, V is a Sym(n)-module with multiplication defined by

$$\sigma \cdot e_1 = e_{\sigma(1)}, \sigma \cdot e_2 = e_{\sigma(2)}, \dots, \sigma \cdot e_n = e_{\sigma(n)}.$$

Here we develop an "obvious" module for Sym(n). Recall that Sym(n) consists of all permutations of n-objects.

- Let $V = F^n$ be *n*-dimensional and fix a basis e_1, e_2, \dots, e_n
- Turn V into an Sym(n)-module by letting Sym(n) permute the basis vectors in the obvious way.

Definition (Natural Permutation Module)

With V as above, V is a Sym(n)-module with multiplication defined by

$$\sigma \cdot e_1 = e_{\sigma(1)}, \sigma \cdot e_2 = e_{\sigma(2)}, \dots, \sigma \cdot e_n = e_{\sigma(n)}.$$

We call this the natural permutation module, denoted perm $_F^n$.

Example

Example

$$(12) \cdot e_1 = e_2$$
 $(123) \cdot e_1 = e_2$ $(12) \cdot e_2 = e_1$ $(123) \cdot e_2 = e_3$ $(12) \cdot e_3 = e_3$ $(123) \cdot e_3 = e_1$

Example

Let's look at perm $_F^3$. The module structure is given by

$$(12) \cdot e_1 = e_2$$
 $(123) \cdot e_1 = e_2$
 $(12) \cdot e_2 = e_1$ $(123) \cdot e_2 = e_3$
 $(12) \cdot e_3 = e_3$ $(123) \cdot e_3 = e_1$

The corresponding representation is

$$(12) \mapsto \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (123) \mapsto \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Example

$$(12) \cdot e_1 = e_2$$
 $(123) \cdot e_1 = e_2$
 $(12) \cdot e_2 = e_1$ $(123) \cdot e_2 = e_3$
 $(12) \cdot e_3 = e_3$ $(123) \cdot e_3 = e_1$

Example

$$(12) \cdot e_1 = e_2$$
 $(123) \cdot e_1 = e_2$
 $(12) \cdot e_2 = e_1$ $(123) \cdot e_2 = e_3$
 $(12) \cdot e_3 = e_3$ $(123) \cdot e_3 = e_1$

Example

$$(12) \cdot e_1 = e_2$$
 $(123) \cdot e_1 = e_2$
 $(12) \cdot e_2 = e_1$ $(123) \cdot e_2 = e_3$
 $(12) \cdot e_3 = e_3$ $(123) \cdot e_3 = e_1$

Example

$$(12) \cdot e_1 = e_2$$
 $(123) \cdot e_1 = e_2$
 $(12) \cdot e_2 = e_1$ $(123) \cdot e_2 = e_3$
 $(12) \cdot e_3 = e_3$ $(123) \cdot e_3 = e_1$

Example

Let's look at perm $_F^3$. The module structure is given by

$$(12) \cdot e_1 = e_2$$
 $(123) \cdot e_1 = e_2$
 $(12) \cdot e_2 = e_1$ $(123) \cdot e_2 = e_3$
 $(12) \cdot e_3 = e_3$ $(123) \cdot e_3 = e_1$

But can we find a 2-D module?

Example

$$(12) \cdot e_1 = e_2$$
 $(123) \cdot e_1 = e_2$ $(12) \cdot e_2 = e_1$ $(123) \cdot e_2 = e_3$ $(12) \cdot e_3 = e_1$ $(123) \cdot e_3 = e_1$

- But can we find a 2-D module?
- Notice that there are two invariant subspaces:

Example

$$(12) \cdot e_1 = e_2$$
 $(123) \cdot e_1 = e_2$
 $(12) \cdot e_2 = e_1$ $(123) \cdot e_2 = e_3$
 $(12) \cdot e_3 = e_3$ $(123) \cdot e_3 = e_1$

- But can we find a 2-D module?
- Notice that there are two invariant subspaces:

Example

$$(12) \cdot e_1 = e_2$$
 $(123) \cdot e_1 = e_2$ $(12) \cdot e_2 = e_1$ $(123) \cdot e_2 = e_3$ $(12) \cdot e_3 = e_1$ $(123) \cdot e_3 = e_1$

- But can we find a 2-D module?
- Notice that there are two invariant subspaces:

•
$$Z = \langle e_1 + e_2 + e_3 \rangle$$

Example

$$(12) \cdot e_1 = e_2$$
 $(123) \cdot e_1 = e_2$
 $(12) \cdot e_2 = e_1$ $(123) \cdot e_2 = e_3$
 $(12) \cdot e_3 = e_3$ $(123) \cdot e_3 = e_1$

- But can we find a 2-D module?
- Notice that there are two invariant subspaces:

•
$$Z = \langle e_1 + e_2 + e_3 \rangle$$

Example

$$(12) \cdot e_1 = e_2$$
 $(123) \cdot e_1 = e_2$ $(12) \cdot e_2 = e_1$ $(123) \cdot e_2 = e_3$ $(12) \cdot e_3 = e_3$ $(123) \cdot e_3 = e_1$

- But can we find a 2-D module?
- Notice that there are two invariant subspaces:
 - $Z = \langle e_1 + e_2 + e_3 \rangle$
 - H = {coordinates sum to zero}

Example

Let's look at perm $_F^3$. The module structure is given by

$$(12) \cdot e_1 = e_2$$
 $(123) \cdot e_1 = e_2$ $(12) \cdot e_2 = e_1$ $(123) \cdot e_2 = e_3$ $(12) \cdot e_3 = e_3$ $(123) \cdot e_3 = e_1$

- But can we find a 2-D module?
- Notice that there are two invariant subspaces:

•
$$Z = \langle e_1 + e_2 + e_3 \rangle$$

• $H = \{ \text{coordinates sum to zero} \}$

Example

Let's look at perm $_F^3$. The module structure is given by

$$(12) \cdot e_1 = e_2$$
 $(123) \cdot e_1 = e_2$
 $(12) \cdot e_2 = e_1$ $(123) \cdot e_2 = e_3$
 $(12) \cdot e_3 = e_3$ $(123) \cdot e_3 = e_1$

- But can we find a 2-D module?
- Notice that there are two invariant subspaces:

•
$$Z = \langle e_1 + e_2 + e_3 \rangle$$

• $H = \{\text{coordinates sum to zero}\}\$ = $\langle e_1 - e_3, e_2 - e_3 \rangle$

Example

Let's look at perm $_F^3$. The module structure is given by

$$(12) \cdot e_1 = e_2$$
 $(123) \cdot e_1 = e_2$ $(12) \cdot e_2 = e_1$ $(123) \cdot e_2 = e_3$ $(12) \cdot e_3 = e_1$ $(123) \cdot e_3 = e_1$

- But can we find a 2-D module?
- Notice that there are two invariant subspaces:

•
$$Z = \langle e_1 + e_2 + e_3 \rangle$$

•
$$H = \{\text{coordinates sum to zero}\}\$$

= $\langle e_1 - e_3, e_2 - e_3 \rangle$

These give rise to submodules.

Definition (Standard Module)

Let $V = F^n$ with basis e_1, e_2, \dots, e_n . Define the standard module to be the submodule of permⁿ_F defined as

Definition (Standard Module)

Let $V = F^n$ with basis e_1, e_2, \dots, e_n . Define the standard module to be the submodule of permⁿ_F defined as

 $std_F^n = \{vectors whose coordinates sum to zero\} = H$

Definition (Standard Module)

Let $V = F^n$ with basis e_1, e_2, \dots, e_n . Define the standard module to be the submodule of permⁿ_F defined as

std_Fⁿ = {vectors whose coordinates sum to zero} =
$$H$$

= $\langle \underbrace{e_1 - e_n}_{f_1}, \underbrace{e_2 - e_n}_{f_2}, \dots, \underbrace{e_{n-1} - e_n}_{f_{n-1}} \rangle$.

Definition (Standard Module)

Let $V = F^n$ with basis e_1, e_2, \dots, e_n . Define the standard module to be the submodule of permⁿ_F defined as

std_Fⁿ = {vectors whose coordinates sum to zero} =
$$H$$

= $\langle \underbrace{e_1 - e_n}_{f_1}, \underbrace{e_2 - e_n}_{f_2}, \dots, \underbrace{e_{n-1} - e_n}_{f_{n-1}} \rangle$.

Remark

A G-module (or representation) is called faithful if no nontrivial element of G acts like the identity.

Definition (Standard Module)

Let $V = F^n$ with basis e_1, e_2, \dots, e_n . Define the standard module to be the submodule of permⁿ_F defined as

std_Fⁿ = {vectors whose coordinates sum to zero} =
$$H$$

= $\langle \underbrace{e_1 - e_n}_{f_1}, \underbrace{e_2 - e_n}_{f_2}, \dots, \underbrace{e_{n-1} - e_n}_{f_{n-1}} \rangle$.

Remark

A G-module (or representation) is called faithful if no nontrivial element of G acts like the identity.

• perm $_{F}^{n}$ is a faithful Sym(n)-module of dimension n.

Definition (Standard Module)

Let $V = F^n$ with basis e_1, e_2, \dots, e_n . Define the standard module to be the submodule of permⁿ_F defined as

std_Fⁿ = {vectors whose coordinates sum to zero} =
$$H$$

= $\langle \underbrace{e_1 - e_n}_{f_1}, \underbrace{e_2 - e_n}_{f_2}, \dots, \underbrace{e_{n-1} - e_n}_{f_{n-1}} \rangle$.

Remark

A G-module (or representation) is called faithful if no nontrivial element of G acts like the identity.

- perm $_{F}^{n}$ is a faithful Sym(n)-module of dimension n.
- std_F^n is a faithful $\operatorname{Sym}(n)$ -module of dimension n-1.

Definition (Standard Module)

Let $V = F^n$ with basis e_1, e_2, \dots, e_n . Define the standard module to be the submodule of permⁿ_F defined as

std_Fⁿ = {vectors whose coordinates sum to zero} =
$$H$$

= $\langle \underbrace{e_1 - e_n}_{f_1}, \underbrace{e_2 - e_n}_{f_2}, \dots, \underbrace{e_{n-1} - e_n}_{f_{n-1}} \rangle$.

Remark

A G-module (or representation) is called faithful if no nontrivial element of G acts like the identity.

- perm $_{F}^{n}$ is a faithful Sym(n)-module of dimension n.
- std_F^n is a faithful Sym(n)-module of dimension n-1.
- The submodule $Z = \langle e_1 + \cdots + e_n \rangle$ is not faithful.

Example

Example

$$(12) \cdot f_1 =$$

$$(12) \cdot f_2 =$$

Example

$$(12) \cdot f_1 = (12) \cdot (e_1 - e_3) = (12) \cdot f_2 =$$

Example

$$(12) \cdot f_1 = (12) \cdot (e_1 - e_3) = e_2 - e_3 = (12) \cdot f_2 =$$

Example

$$(12) \cdot f_1 = (12) \cdot (e_1 - e_3) = e_2 - e_3 = f_2$$

 $(12) \cdot f_2 =$

Example

$$(12) \cdot f_1 = (12) \cdot (e_1 - e_3) = e_2 - e_3 = f_2$$

$$(12) \cdot f_2 = (12) \cdot (e_2 - e_3) =$$

Example

$$(12) \cdot f_1 = (12) \cdot (e_1 - e_3) = e_2 - e_3 = f_2$$

$$(12) \cdot f_2 = (12) \cdot (e_2 - e_3) = e_1 - e_3 = f_1$$

Example

$$(12) \cdot f_1 = (12) \cdot (e_1 - e_3) = e_2 - e_3 = f_2$$

$$(12) \cdot f_2 = (12) \cdot (e_2 - e_3) = e_1 - e_3 = f_1$$

$$(12)\cdot f_1=f_2$$

$$(12) \cdot f_2 = f_1$$

Example

Let's look at std³_F = $\langle f_1, f_2 \rangle$ where $f_1 = e_1 - e_3$ and $f_2 = e_2 - e_3$. The module structure is given by

$$(12) \cdot f_1 = f_2$$

 $(12) \cdot f_2 = f_1$

Example

$$(123) \cdot f_1 = (123) \cdot f_2 =$$

$$(12) \cdot f_1 = f_2$$

 $(12) \cdot f_2 = f_1$

Example

$$(123) \cdot f_1 = (123) \cdot (e_1 - e_3) = e_2 - e_1 = (123) \cdot f_2 =$$

$$(12) \cdot f_1 = f_2$$

 $(12) \cdot f_2 = f_1$

Example

$$(123) \cdot f_1 = (123) \cdot (e_1 - e_3) = e_2 - e_1 = e_2 - e_3 + e_3 - e_1 = (123) \cdot f_2 =$$

$$(12) \cdot f_1 = f_2$$

 $(12) \cdot f_2 = f_1$

Example

$$(123) \cdot f_1 = (123) \cdot (e_1 - e_3) = e_2 - e_1 = e_2 - e_3 + e_3 - e_1 = f_2 - f_1$$

 $(123) \cdot f_2 =$

$$(12) \cdot f_1 = f_2$$

 $(12) \cdot f_2 = f_1$

Example

$$(123) \cdot f_1 = (123) \cdot (e_1 - e_3) = e_2 - e_1 = e_2 - e_3 + e_3 - e_1 = f_2 - f_1$$

$$(123) \cdot f_2 = (123) \cdot (e_2 - e_3) = e_3 - e_1 =$$

$$(12) \cdot f_1 = f_2$$

$$(12) \cdot f_2 = f_1$$

Example

$$(123) \cdot f_1 = (123) \cdot (e_1 - e_3) = e_2 - e_1 = e_2 - e_3 + e_3 - e_1 = f_2 - f_1$$

$$(123) \cdot f_2 = (123) \cdot (e_2 - e_3) = e_3 - e_1 = -f_1$$

$$(12) \cdot f_1 = f_2 (12) \cdot f_2 = f_1$$

Example

$$(123) \cdot f_1 = (123) \cdot (e_1 - e_3) = e_2 - e_1 = e_2 - e_3 + e_3 - e_1 = f_2 - f_1$$

$$(123) \cdot f_2 = (123) \cdot (e_2 - e_3) = e_3 - e_1 = -f_1$$

$$(12) \cdot f_1 = f_2$$

$$(123) \cdot f_1 = -f_1 + f_2$$

$$(12) \cdot f_2 = f_1$$

$$(123) \cdot f_2 = -f_1$$

Example

$$(12) \cdot f_1 = f_2$$

$$(123) \cdot f_1 = -f_1 + f_2$$

$$(12) \cdot f_2 = f_1$$

$$(123) \cdot f_2 = -f_1$$

Example

Let's look at $std_F^3 = \langle f_1, f_2 \rangle$ where $f_1 = e_1 - e_3$ and $f_2 = e_2 - e_3$. The module structure is given by

$$(12) \cdot f_1 = f_2$$

$$(123) \cdot f_1 = -f_1 + f_2$$

$$(12) \cdot f_2 = f_1$$

$$(123) \cdot f_2 = -f_1$$

The corresponding representation is

Example

Let's look at $std_F^3 = \langle f_1, f_2 \rangle$ where $f_1 = e_1 - e_3$ and $f_2 = e_2 - e_3$. The module structure is given by

$$(12) \cdot f_1 = f_2$$

$$(123) \cdot f_1 = -f_1 + f_2$$

$$(12) \cdot f_2 = f_1$$

$$(123) \cdot f_2 = -f_1$$

The corresponding representation is

$$(12) \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Example

Let's look at $std_F^3 = \langle f_1, f_2 \rangle$ where $f_1 = e_1 - e_3$ and $f_2 = e_2 - e_3$. The module structure is given by

$$(12) \cdot f_1 = f_2$$

$$(123) \cdot f_1 = -f_1 + f_2$$

$$(12) \cdot f_2 = f_1$$

$$(123) \cdot f_2 = -f_1$$

The corresponding representation is

$$(12) \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad (123) \mapsto \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$$

Example

Let's look at $std_F^3 = \langle f_1, f_2 \rangle$ where $f_1 = e_1 - e_3$ and $f_2 = e_2 - e_3$. The module structure is given by

$$(12) \cdot f_1 = f_2$$

$$(123) \cdot f_1 = -f_1 + f_2$$

$$(12) \cdot f_2 = f_1$$

$$(123) \cdot f_2 = -f_1$$

The corresponding representation is

$$(12) \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad (123) \mapsto \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$$

Question

Is there a faithful Sym(3)-module of even smaller dimension?

Example

Let's look at $std_F^3 = \langle f_1, f_2 \rangle$ where $f_1 = e_1 - e_3$ and $f_2 = e_2 - e_3$. The module structure is given by

$$(12) \cdot f_1 = f_2$$

$$(123) \cdot f_1 = -f_1 + f_2$$

$$(12) \cdot f_2 = f_1$$

$$(123) \cdot f_2 = -f_1$$

The corresponding representation is

$$(12) \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad (123) \mapsto \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$$

Question

Is there a faithful Sym(3)-module of even smaller dimension? No.

However...

However...in certain situations is there is a smaller module to consider, but it won't be faithful unless $n \ge 5$.

• Assume F has characteristic p. (Think $F = \mathbb{Z}/p\mathbb{Z}$.)

- Assume F has characteristic p. (Think $F = \mathbb{Z}/p\mathbb{Z}$.)
 - E.g., if *p* = 5,

- Assume F has characteristic p. (Think $F = \mathbb{Z}/p\mathbb{Z}$.)
 - E.g., if p = 5, $f_1 + f_2 + f_3 + f_4$

- Assume F has characteristic p. (Think $F = \mathbb{Z}/p\mathbb{Z}$.)
 - E.g., if p = 5, $f_1 + f_2 + f_3 + f_4 = (e_1 - e_5) + \cdots + (e_4 - e_5) + (e_5 - e_5)$

- Assume F has characteristic p. (Think $F = \mathbb{Z}/p\mathbb{Z}$.)
 - E.g., if p = 5, $f_1 + f_2 + f_3 + f_4 = (e_1 - e_5) + \dots + (e_4 - e_5) + (e_5 - e_5)$ $= e_1 + e_2 + e_3 + e_4 + e_5 - 5e_5$

However...in certain situations is there is a smaller module to consider, but it won't be faithful unless $n \ge 5$.

• Assume F has characteristic p. (Think $F = \mathbb{Z}/p\mathbb{Z}$.)

• E.g., if
$$p = 5$$
,
 $f_1 + f_2 + f_3 + f_4 = (e_1 - e_5) + \dots + (e_4 - e_5) + (e_5 - e_5)$
 $= e_1 + e_2 + e_3 + e_4 + e_5 - 5e_5$
 $= e_1 + e_2 + e_3 + e_4 + e_5$

- Assume F has characteristic p. (Think $F = \mathbb{Z}/p\mathbb{Z}$.)
 - E.g., if p = 5, $f_1 + f_2 + f_3 + f_4 = (e_1 - e_5) + \dots + (e_4 - e_5) + (e_5 - e_5)$ $= e_1 + e_2 + e_3 + e_4 + e_5 - 5e_5$ $= e_1 + e_2 + e_3 + e_4 + e_5$
- Recall:
 - $std_F^n = \{vectors whose coordinates sum to zero\}$
 - $Z = \langle e_1 + \cdots + e_n \rangle$

However...in certain situations is there is a smaller module to consider, but it won't be faithful unless $n \ge 5$.

- Assume F has characteristic p. (Think $F = \mathbb{Z}/p\mathbb{Z}$.)
 - E.g., if p = 5, $f_1 + f_2 + f_3 + f_4 = (e_1 - e_5) + \dots + (e_4 - e_5) + (e_5 - e_5)$ $= e_1 + e_2 + e_3 + e_4 + e_5 - 5e_5$ $= e_1 + e_2 + e_3 + e_4 + e_5$
- Recall:
 - $std_F^n = \{vectors whose coordinates sum to zero\}$
 - $Z = \langle e_1 + \cdots + e_n \rangle$

So if $p \mid n$, then

However...in certain situations is there is a smaller module to consider, but it won't be faithful unless $n \ge 5$.

- Assume F has characteristic p. (Think $F = \mathbb{Z}/p\mathbb{Z}$.)
 - E.g., if p = 5, $f_1 + f_2 + f_3 + f_4 = (e_1 - e_5) + \dots + (e_4 - e_5) + (e_5 - e_5)$ $= e_1 + e_2 + e_3 + e_4 + e_5 - 5e_5$ $= e_1 + e_2 + e_3 + e_4 + e_5$
- Recall:
 - $std_F^n = \{vectors whose coordinates sum to zero\}$
 - $Z = \langle e_1 + \cdots + e_n \rangle$

So if $p \mid n$, then $Z \leq \operatorname{std}_F^n$.

However...in certain situations is there is a smaller module to consider, but it won't be faithful unless $n \ge 5$.

- Assume F has characteristic p. (Think $F = \mathbb{Z}/p\mathbb{Z}$.)
 - E.g., if p = 5, $f_1 + f_2 + f_3 + f_4 = (e_1 - e_5) + \dots + (e_4 - e_5) + (e_5 - e_5)$ $= e_1 + e_2 + e_3 + e_4 + e_5 - 5e_5$ $= e_1 + e_2 + e_3 + e_4 + e_5$
- Recall:
 - $std_F^n = \{vectors whose coordinates sum to zero\}$
 - $Z = \langle e_1 + \cdots + e_n \rangle$

So if $p \mid n$, then $Z \leq \operatorname{std}_F^n$.

Definition (Reduced Standard Module)

When char $F \mid n$, we define the reduced standard module to be the quotient $\overline{\operatorname{std}}_F^n = \operatorname{std}_F^n / \langle e_1 + \cdots + e_n \rangle$.

However...in certain situations is there is a smaller module to consider, but it won't be faithful unless $n \ge 5$.

- Assume F has characteristic p. (Think $F = \mathbb{Z}/p\mathbb{Z}$.)
 - E.g., if p = 5, $f_1 + f_2 + f_3 + f_4 = (e_1 - e_5) + \dots + (e_4 - e_5) + (e_5 - e_5)$ $= e_1 + e_2 + e_3 + e_4 + e_5 = 5e_5$ $= e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0 \text{ in } \overline{\text{std}}_F^5$
- Recall:
 - $std_F^n = \{vectors whose coordinates sum to zero\}$
 - $Z = \langle e_1 + \cdots + e_n \rangle$

So if $p \mid n$, then $Z \leq \operatorname{std}_F^n$.

Definition (Reduced Standard Module)

When char $F \mid n$, we define the reduced standard module to be the quotient $\overline{\operatorname{std}}_F^n = \operatorname{std}_F^n/\langle e_1 + \cdots + e_n \rangle$.

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\text{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

•
$$f_4 \equiv -f_1 - f_2 - f_3$$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

- $f_4 \equiv -f_1 f_2 f_3$
- $\bullet \ \overline{\mathsf{std}}_F^5 = \langle \bar{f}_1, \bar{f}_2, \bar{f}_3 \rangle$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

- $f_4 \equiv -f_1 f_2 f_3$
- $\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$

$$(12) \cdot f_1 =$$

$$(12) \cdot f_2 =$$

$$(12) \cdot f_3 =$$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

- $f_4 \equiv -f_1 f_2 f_3$
- $\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$

$$(12) \cdot f_1 = (12) \cdot (e_1 - e_5) =$$

 $(12) \cdot f_2 =$
 $(12) \cdot f_3 =$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

- $f_4 \equiv -f_1 f_2 f_3$
- $\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$

$$(12) \cdot f_1 = (12) \cdot (e_1 - e_5) = e_2 - e_5 = f_2$$

$$(12)\cdot f_2=$$

$$(12) \cdot f_3 =$$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

- $f_4 \equiv -f_1 f_2 f_3$
- $\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$

$$(12) \cdot f_1 = (12) \cdot (e_1 - e_5) = e_2 - e_5 = f_2$$

$$(12) \cdot f_2 = (12) \cdot (e_2 - e_5) =$$

$$(12) \cdot f_3 =$$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

- $f_4 \equiv -f_1 f_2 f_3$
- $\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$

$$(12) \cdot f_1 = (12) \cdot (e_1 - e_5) = e_2 - e_5 = f_2$$

$$(12) \cdot f_2 = (12) \cdot (e_2 - e_5) = e_1 - e_5 = f_1$$

$$(12) \cdot f_3 =$$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

- $f_4 \equiv -f_1 f_2 f_3$
- $\overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$

$$(12) \cdot f_1 = (12) \cdot (e_1 - e_5) = e_2 - e_5 = f_2$$

$$(12) \cdot f_2 = (12) \cdot (e_2 - e_5) = e_1 - e_5 = f_1$$

$$(12) \cdot f_3 = (12) \cdot (e_3 - e_5) =$$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

- $f_4 \equiv -f_1 f_2 f_3$
- $\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$

$$(12) \cdot f_1 = (12) \cdot (e_1 - e_5) = e_2 - e_5 = f_2$$

 $(12) \cdot f_2 = (12) \cdot (e_2 - e_5) = e_1 - e_5 = f_1$
 $(12) \cdot f_3 = (12) \cdot (e_3 - e_5) = e_3 - e_5 = f_3$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

•
$$f_4 \equiv -f_1 - f_2 - f_3$$

$$\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$$

$$(12) \cdot f_1 = (12) \cdot (e_1 - e_5) = e_2 - e_5 = f_2$$

$$(12) \cdot f_2 = (12) \cdot (e_2 - e_5) = e_1 - e_5 = f_1$$

$$(12) \cdot f_3 = (12) \cdot (e_3 - e_5) = e_3 - e_5 = f_3$$

$$\begin{array}{l} (12) \cdot \bar{f}_1 = \bar{f}_2 \\ (12) \cdot \bar{f}_2 = \bar{f}_1 \\ (12) \cdot \bar{f}_3 = \bar{f}_3 \end{array}$$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

•
$$f_4 \equiv -f_1 - f_2 - f_3$$

$$\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$$

$$(12345) \cdot f_1 =$$

$$(12345) \cdot f_2 =$$

$$(12345) \cdot f_3 =$$

$$(12)\cdot \bar{\mathit{f}}_{1} = \bar{\mathit{f}}_{2}$$

$$(12) \cdot \bar{f}_2 = \bar{f}_1$$

$$(12)\cdot \bar{f}_3=\bar{f}_3$$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

•
$$f_4 \equiv -f_1 - f_2 - f_3$$

$$\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$$

$$(12345) \cdot f_1 = (12345) \cdot (e_1 - e_5) =$$

$$(12345) \cdot f_2 =$$

$$(12345) \cdot f_3 =$$

$$(12)\cdot \bar{\mathit{f}}_{1} = \bar{\mathit{f}}_{2}$$

$$(12)\cdot \bar{f}_2=\bar{f}_1$$

$$(12)\cdot \bar{f}_3=\bar{f}_3$$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

•
$$f_4 \equiv -f_1 - f_2 - f_3$$

$$\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$$

$$(12345) \cdot f_1 = (12345) \cdot (e_1 - e_5) = e_2 - e_1 = (12345) \cdot f_2 - e_3 = e_4 - e_5$$

$$(12345) \cdot f_2 =$$

$$(12345) \cdot f_3 =$$

$$(12)\cdot \bar{f}_{\underline{1}}=\bar{f}_{\underline{2}}$$

$$(12)\cdot \bar{f}_2=\bar{f}_1$$

$$(12)\cdot \bar{f}_3=\bar{f}_3$$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

•
$$f_4 \equiv -f_1 - f_2 - f_3$$

$$\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$$

$$(12345) \cdot f_1 = (12345) \cdot (e_1 - e_5) = e_2 - e_1 = e_2 - e_5 + e_5 - e_1 = (12345) \cdot f_1 = (12345) \cdot f_2 = (12345) \cdot f_3 = (12345) \cdot f_4 = (12345) \cdot f_4 = (12345) \cdot f_5 =$$

$$(12345) \cdot f_2 =$$

$$(12345) \cdot f_3 =$$

$$(12) \cdot \bar{f}_1 = \bar{f}_2$$

 $(12) \cdot \bar{f}_2 = \bar{f}_1$
 $(12) \cdot \bar{f}_3 = \bar{f}_3$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

•
$$f_4 \equiv -f_1 - f_2 - f_3$$

$$\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$$

$$(12345) \cdot f_1 = (12345) \cdot (e_1 - e_5) = e_2 - e_1 = e_2 - e_5 + e_5 - e_1 = f_2 - f_1$$

 $(12345) \cdot f_2 =$

$$(12345) \cdot f_3 =$$

$$(12) \cdot \bar{f}_1 = \bar{f}_2$$

 $(12) \cdot \bar{f}_2 = \bar{f}_1$
 $(12) \cdot \bar{f}_3 = \bar{f}_3$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

•
$$f_4 \equiv -f_1 - f_2 - f_3$$

$$\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$$

$$(12345) \cdot f_1 = (12345) \cdot (e_1 - e_5) = e_2 - e_1 = e_2 - e_5 + e_5 - e_1 = f_2 - f_1$$

 $(12345) \cdot f_2 = (12345) \cdot (e_2 - e_5) =$
 $(12345) \cdot f_3 =$

$$\begin{array}{l} (12) \cdot \bar{f}_1 = \bar{f}_2 \\ (12) \cdot \bar{f}_2 = \bar{f}_1 \\ (12) \cdot \bar{f}_3 = \bar{f}_3 \end{array}$$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

•
$$f_4 \equiv -f_1 - f_2 - f_3$$

$$\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$$

$$(12345) \cdot f_1 = (12345) \cdot (e_1 - e_5) = e_2 - e_1 = e_2 - e_5 + e_5 - e_1 = f_2 - f_1$$

 $(12345) \cdot f_2 = (12345) \cdot (e_2 - e_5) = \cdots = f_3 - f_1$
 $(12345) \cdot f_3 =$

$$(12) \cdot \bar{f}_1 = \bar{f}_2$$

 $(12) \cdot \bar{f}_2 = \bar{f}_1$
 $(12) \cdot \bar{f}_3 = \bar{f}_3$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

•
$$f_4 \equiv -f_1 - f_2 - f_3$$

$$\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$$

$$(12345) \cdot f_1 = (12345) \cdot (e_1 - e_5) = e_2 - e_1 = e_2 - e_5 + e_5 - e_1 = f_2 - f_1$$

$$(12345) \cdot f_2 = (12345) \cdot (e_2 - e_5) = \cdots = f_3 - f_1$$

$$(12345) \cdot f_3 = (12345) \cdot (e_3 - e_5) =$$

$$(12) \cdot \bar{f}_1 = \bar{f}_2$$

$$(12) \cdot \bar{f}_2 = \bar{f}_1$$

$$(12) \cdot \bar{f}_3 = \bar{f}_3$$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

•
$$f_4 \equiv -f_1 - f_2 - f_3$$

$$\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$$

$$(12345) \cdot f_1 = (12345) \cdot (e_1 - e_5) = e_2 - e_1 = e_2 - e_5 + e_5 - e_1 = f_2 - f_1$$

$$(12345) \cdot f_2 = (12345) \cdot (e_2 - e_5) = \cdots = f_3 - f_1$$

$$(12345) \cdot f_3 = (12345) \cdot (e_3 - e_5) = \cdots = f_4 - f_1 \equiv$$

$$(12) \cdot \bar{f}_{1} = \bar{f}_{2}$$

$$(12) \cdot \bar{f}_{2} = \bar{f}_{1}$$

$$(12) \cdot \bar{f}_{3} = \bar{f}_{3}$$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

•
$$f_4 \equiv -f_1 - f_2 - f_3$$

$$\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$$

$$(12345) \cdot f_1 = (12345) \cdot (e_1 - e_5) = e_2 - e_1 = e_2 - e_5 + e_5 - e_1 = f_2 - f_1$$

$$(12345) \cdot f_2 = (12345) \cdot (e_2 - e_5) = \dots = f_3 - f_1$$

$$(12345) \cdot f_3 = (12345) \cdot (e_3 - e_5) = \dots = f_4 - f_1 \equiv -2f_1 - f_2 - f_3$$

$$\begin{array}{l} (12) \cdot \bar{f}_1 = \bar{f}_2 \\ (12) \cdot \bar{f}_2 = \bar{f}_1 \\ (12) \cdot \bar{f}_3 = \bar{f}_3 \end{array}$$

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\operatorname{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \cdots + e_5 \rangle$.

•
$$f_1 + f_2 + f_3 + f_4 = e_1 + e_2 + e_3 + e_4 + e_5 \equiv 0$$

•
$$f_4 \equiv -f_1 - f_2 - f_3$$

$$\bullet \ \overline{\operatorname{std}}_F^5 = \langle \bar{\mathit{f}}_1, \bar{\mathit{f}}_2, \bar{\mathit{f}}_3 \rangle$$

$$(12345) \cdot f_{1} = (12345) \cdot (e_{1} - e_{5}) = e_{2} - e_{1} = e_{2} - e_{5} + e_{5} - e_{1} = f_{2} - f_{1}$$

$$(12345) \cdot f_{2} = (12345) \cdot (e_{2} - e_{5}) = \cdots = f_{3} - f_{1}$$

$$(12345) \cdot f_{3} = (12345) \cdot (e_{3} - e_{5}) = \cdots = f_{4} - f_{1} \equiv -2f_{1} - f_{2} - f_{3}$$

$$\begin{array}{ll} (12) \cdot \bar{f_1} = \bar{f_2} & (12345) \cdot \bar{f_1} = -\bar{f_1} + \bar{f_2} \\ (12) \cdot \bar{f_2} = \bar{f_1} & (12345) \cdot \bar{f_2} = -\bar{f_1} + \bar{f_3} \\ (12) \cdot \bar{f_3} = \bar{f_3} & (12345) \cdot \bar{f_3} = -2\bar{f_1} - \bar{f_2} - \bar{f_3} \end{array}$$

The reduced standard module for Sym(5)

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\text{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \dots + e_5 \rangle$. The module structure is given by

$$\begin{array}{ll} (12) \cdot \bar{f_1} = \bar{f_2} & (12345) \cdot \bar{f_1} = -\bar{f_1} + \bar{f_2} \\ (12) \cdot \bar{f_2} = \bar{f_1} & (12345) \cdot \bar{f_2} = -\bar{f_1} + \bar{f_3} \\ (12) \cdot \bar{f_3} = \bar{f_3} & (12345) \cdot \bar{f_3} = -2\bar{f_1} - \bar{f_2} - \bar{f_3} \end{array}$$

The corresponding representation is

The reduced standard module for Sym(5)

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\text{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \dots + e_5 \rangle$. The module structure is given by

$$\begin{array}{ll} (12) \cdot \bar{f_1} = \bar{f_2} & (12345) \cdot \bar{f_1} = -\bar{f_1} + \bar{f_2} \\ (12) \cdot \bar{f_2} = \bar{f_1} & (12345) \cdot \bar{f_2} = -\bar{f_1} + \bar{f_3} \\ (12) \cdot \bar{f_3} = \bar{f_3} & (12345) \cdot \bar{f_3} = -2\bar{f_1} - \bar{f_2} - \bar{f_3} \end{array}$$

The corresponding representation is

$$(12) \mapsto \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The reduced standard module for Sym(5)

Example

Let $F = \mathbb{Z}/5\mathbb{Z}$. Let's look at $\overline{\text{std}}_F^5 = \langle f_1, f_2, f_3, f_4 \rangle / \langle e_1 + \dots + e_5 \rangle$. The module structure is given by

$$\begin{array}{ll} (12) \cdot \bar{f_1} = \bar{f_2} & (12345) \cdot \bar{f_1} = -\bar{f_1} + \bar{f_2} \\ (12) \cdot \bar{f_2} = \bar{f_1} & (12345) \cdot \bar{f_2} = -\bar{f_1} + \bar{f_3} \\ (12) \cdot \bar{f_3} = \bar{f_3} & (12345) \cdot \bar{f_3} = -2\bar{f_1} - \bar{f_2} - \bar{f_3} \end{array}$$

The corresponding representation is

$$(12) \mapsto \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (12345) \mapsto \begin{bmatrix} -1 & -1 & -2 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$

Question

Is there a faithful Sym(5)-module of even smaller dimension?

Question

Is there a faithful Sym(5)-module of even smaller dimension?

Definition

A G-module V is irreducible if the only submodules are 0 and V.

Question

Is there a faithful Sym(5)-module of even smaller dimension?

Definition

A G-module V is irreducible if the only submodules are 0 and V.

Fact

Assume $n \ge 5$.

Question

Is there a faithful Sym(5)-module of even smaller dimension?

Definition

A G-module V is irreducible if the only submodules are 0 and V.

Fact

Assume $n \ge 5$.

• When char $F \mid n$, $\overline{\text{std}}_F^n$ is irreducible and faithful.

Question

Is there a faithful Sym(5)-module of even smaller dimension?

Definition

A G-module V is irreducible if the only submodules are 0 and V.

Fact

Assume $n \ge 5$.

- When char $F \mid n$, std_F^n is irreducible and faithful.
- When char $F \nmid n$, stdⁿ is irreducible and faithful.

Question

Is there a faithful Sym(5)-module of even smaller dimension?

Definition

A G-module V is irreducible if the only submodules are 0 and V.

Fact

Assume n > 5.

- When char $F \mid n$, $\overline{\text{std}}_F^n$ is irreducible and faithful.
- When char $F \nmid n$, stdⁿ_F is irreducible and faithful.

Remark

This only says $\overline{\operatorname{std}}_F^n$ (char $F \mid n$) and std_F^n (char $F \nmid n$) can't be "reduced" further. It doesn't say smaller modules can't be found other ways.

Questions

• Can we find other Sym(n)-modules?

- Can we find other Sym(n)-modules?
 - Yes, though it requires skill in organizing boxes into a corner.

- Can we find other Sym(n)-modules?
 - Yes, though it requires skill in organizing boxes into a corner.
 - E.g. consult G.D. James (1976) about boxes.

- Can we find other Sym(n)-modules?
 - Yes, though it requires skill in organizing boxes into a corner.
 - E.g. consult G.D. James (1976) about boxes.
 - W. Burnside (1911) addressed this to some degree without boxes.

- Can we find other Sym(n)-modules?
 - Yes, though it requires skill in organizing boxes into a corner.
 - E.g. consult G.D. James (1976) about boxes.
 - W. Burnside (1911) addressed this to some degree without boxes.
- Did we find the faithful Sym(n)-modules of smallest dimension?

- Can we find other Sym(n)-modules?
 - Yes, though it requires skill in organizing boxes into a corner.
 - E.g. consult G.D. James (1976) about boxes.
 - W. Burnside (1911) addressed this to some degree without boxes.
- Did we find the faithful Sym(n)-modules of smallest dimension?
 - Yes, they have smallest possible dimension (L. Dickson, 1907).

- Can we find other Sym(n)-modules?
 - Yes, though it requires skill in organizing boxes into a corner.
 - E.g. consult G.D. James (1976) about boxes.
 - W. Burnside (1911) addressed this to some degree without boxes.
- Did we find the faithful Sym(n)-modules of smallest dimension?
 - Yes, they have smallest possible dimension (L. Dickson, 1907).
 - Yes, we (essentially) found all (A. Wagner, 1976,77).

- Can we find other Sym(n)-modules?
 - Yes, though it requires skill in organizing boxes into a corner.
 - E.g. consult G.D. James (1976) about boxes.
 - W. Burnside (1911) addressed this to some degree without boxes.
- Did we find the faithful Sym(n)-modules of smallest dimension?
 - Yes, they have smallest possible dimension (L. Dickson, 1907).
 - Yes, we (essentially) found all (A. Wagner, 1976,77).
- What about Alt(n)-modules?

- Can we find other Sym(n)-modules?
 - Yes, though it requires skill in organizing boxes into a corner.
 - E.g. consult G.D. James (1976) about boxes.
 - W. Burnside (1911) addressed this to some degree without boxes.
- Did we find the faithful Sym(n)-modules of smallest dimension?
 - Yes, they have smallest possible dimension (L. Dickson, 1907).
 - Yes, we (essentially) found all (A. Wagner, 1976,77).
- What about Alt(n)-modules?
- What about modules in a more general context where we have a notion of dimension but (a priori) no field?

- Can we find other Sym(n)-modules?
 - Yes, though it requires skill in organizing boxes into a corner.
 - E.g. consult G.D. James (1976) about boxes.
 - W. Burnside (1911) addressed this to some degree without boxes.
- Did we find the faithful Sym(n)-modules of smallest dimension?
 - Yes, they have smallest possible dimension (L. Dickson, 1907).
 - Yes, we (essentially) found all (A. Wagner, 1976,77).
- What about Alt(n)-modules?
- What about modules in a more general context where we have a notion of dimension but (a priori) no field?
 - E.g. Morley rank, o-minimal dimension, Prüfer p-rank

A new context: *G*-modules with an additive dimension

Definition

We redefine a G-module to be a vector space V together with a multiplication $g \cdot v$ satisfying the axioms from before.

Definition

We redefine a G-module to be a abelian group V together with a multiplication $g \cdot v$ satisfying the axioms from before. Additionally,

Definition

We redefine a G-module to be a abelian group V together with a multiplication $g \cdot v$ satisfying the axioms from before. Additionally,

 there is an "additive dimension" dim on certain groups definable from V;

Definition

We redefine a G-module to be a abelian group V together with a multiplication $g \cdot v$ satisfying the axioms from before. Additionally,

 there is an "additive dimension" dim on certain groups definable from V;

Remarks

Definition

We redefine a G-module to be a abelian group V together with a multiplication $g \cdot v$ satisfying the axioms from before. Additionally,

 there is an "additive dimension" dim on certain groups definable from V;

Remarks

• Definability is a (natural) notion from logic. E.g., the following are definable: $\Omega_p(V) = \{v \mid pv = 0\},\$

Definition

We redefine a G-module to be a abelian group V together with a multiplication $g \cdot v$ satisfying the axioms from before. Additionally,

- there is an "additive dimension" dim on certain groups definable from V;
- multiplication by g is definable for all $g \in G$;

Remarks

• Definability is a (natural) notion from logic. E.g., the following are definable: $\Omega_p(V) = \{v \mid pv = 0\},\$

Definition

We redefine a G-module to be a abelian group V together with a multiplication $g \cdot v$ satisfying the axioms from before. Additionally,

- there is an "additive dimension" dim on certain groups definable from V;
- multiplication by g is definable for all $g \in G$;

Remarks

• Definability is a (natural) notion from logic. E.g., the following are definable: $\Omega_p(V) = \{v \mid pv = 0\}, C_V(g) = \{v \mid g \cdot v = v\},$

Definition

We redefine a G-module to be a abelian group V together with a multiplication $g \cdot v$ satisfying the axioms from before. Additionally,

- there is an "additive dimension" dim on certain groups definable from V;
- multiplication by g is definable for all $g \in G$;

Remarks

• Definability is a (natural) notion from logic. E.g., the following are definable: $\Omega_p(V) = \{v \mid pv = 0\}, \ C_V(g) = \{v \mid g \cdot v = v\}, \ B_V(g) = \{v - g \cdot v\}$ (assuming *g*-multiplication is definable).

Definition

We redefine a G-module to be a abelian group V together with a multiplication $g \cdot v$ satisfying the axioms from before. Additionally,

- there is an "additive dimension" dim on certain groups definable from V;
- multiplication by g is definable for all $g \in G$;
- ullet proper definable subgroups of V have smaller dimension than V.

Remarks

• Definability is a (natural) notion from logic. E.g., the following are definable: $\Omega_p(V) = \{v \mid pv = 0\}, \ C_V(g) = \{v \mid g \cdot v = v\}, \ B_V(g) = \{v - g \cdot v\}$ (assuming *g*-multiplication is definable).

Definition

We redefine a G-module to be a abelian group V together with a multiplication $g \cdot v$ satisfying the axioms from before. Additionally,

- there is an "additive dimension" dim on certain groups definable from V;
- multiplication by g is definable for all $g \in G$;
- ullet proper definable subgroups of V have smaller dimension than V.

Remarks

- Definability is a (natural) notion from logic. E.g., the following are definable: $\Omega_p(V) = \{v \mid pv = 0\}, \ C_V(g) = \{v \mid g \cdot v = v\}, \ B_V(g) = \{v g \cdot v\}$ (assuming *g*-multiplication is definable).
- The final axiom is referred to as dim-connectedness of V.

Definition

Definition

Let *V* be a module. Define the characteristic of *V* as follows:

• char V = p if all nontrivial elements have order p

Definition

- char V = p if all nontrivial elements have order p
- char V = 0 if V is divisible

Definition

- char V = p if all nontrivial elements have order p
- char V = 0 if V is divisible
 - For all $v \in V$ and $n \in \mathbb{Z}_{>0}$, there exists $w \in V$ such that nw = v

Definition

- char V = p if all nontrivial elements have order p
- char V = 0 if V is divisible
 - For all $v \in V$ and $n \in \mathbb{Z}_{>0}$, there exists $w \in V$ such that nw = v
- char V is undefined otherwise

Definition

Let *V* be a module. Define the characteristic of *V* as follows:

- char V = p if all nontrivial elements have order p
- char V = 0 if V is divisible
 - For all $v \in V$ and $n \in \mathbb{Z}_{>0}$, there exists $w \in V$ such that nw = v
- char V is undefined otherwise

Fact (Sample lemma: an eigenspace decomposition)

Definition

Let *V* be a module. Define the characteristic of *V* as follows:

- char V = p if all nontrivial elements have order p
- char V = 0 if V is divisible
 - For all $v \in V$ and $n \in \mathbb{Z}_{>0}$, there exists $w \in V$ such that nw = v
- char V is undefined otherwise

Fact (Sample lemma: an eigenspace decomposition)

$$C = C_V(\alpha) = \{ v \mid \alpha \cdot v = v \}$$

Definition

Let *V* be a module. Define the characteristic of *V* as follows:

- char V = p if all nontrivial elements have order p
- char V = 0 if V is divisible
 - For all $v \in V$ and $n \in \mathbb{Z}_{>0}$, there exists $w \in V$ such that nw = v
- char V is undefined otherwise

Fact (Sample lemma: an eigenspace decomposition)

•
$$C = C_V(\alpha) = \{ v \mid \alpha \cdot v = v \} = E_1$$

Definition

Let *V* be a module. Define the characteristic of *V* as follows:

- char V = p if all nontrivial elements have order p
- char V = 0 if V is divisible
 - For all $v \in V$ and $n \in \mathbb{Z}_{>0}$, there exists $w \in V$ such that nw = v
- char V is undefined otherwise

Fact (Sample lemma: an eigenspace decomposition)

$$C = C_V(\alpha) = \{ v \mid \alpha \cdot v = v \} = E_1$$

$$\bullet B = B_V(\alpha) = \{ \mathbf{w} - \alpha \cdot \mathbf{w} \}$$

Definition

Let *V* be a module. Define the characteristic of *V* as follows:

- char V = p if all nontrivial elements have order p
- char V = 0 if V is divisible
 - For all $v \in V$ and $n \in \mathbb{Z}_{>0}$, there exists $w \in V$ such that nw = v
- char V is undefined otherwise

Fact (Sample lemma: an eigenspace decomposition)

•
$$C = C_V(\alpha) = \{ v \mid \alpha \cdot v = v \} = E_1$$

$$\bullet B = B_V(\alpha) = \{ \mathbf{w} - \alpha \cdot \mathbf{w} \} = \{ \mathbf{v} \mid \alpha \cdot \mathbf{v} = -\mathbf{v} \}$$

Definition

Let *V* be a module. Define the characteristic of *V* as follows:

- char V = p if all nontrivial elements have order p
- char V = 0 if V is divisible
 - For all $v \in V$ and $n \in \mathbb{Z}_{>0}$, there exists $w \in V$ such that nw = v
- char V is undefined otherwise

Fact (Sample lemma: an eigenspace decomposition)

•
$$C = C_V(\alpha) = \{ v \mid \alpha \cdot v = v \} = E_1$$

•
$$B = B_V(\alpha) = \{ w - \alpha \cdot w \} = \{ v \mid \alpha \cdot v = -v \} = E_{-1}$$

Definition

Let *V* be a module. Define the characteristic of *V* as follows:

- char V = p if all nontrivial elements have order p
- char V = 0 if V is divisible
 - For all $v \in V$ and $n \in \mathbb{Z}_{>0}$, there exists $w \in V$ such that nw = v
- char V is undefined otherwise

Fact (Sample lemma: an eigenspace decomposition)

Let V be a $\langle \alpha \rangle$ -module with $|\alpha| = 2$. Let

$$C = C_V(\alpha) = \{ v \mid \alpha \cdot v = v \} = E_1$$

$$\bullet B = B_V(\alpha) = \{ \mathbf{w} - \alpha \cdot \mathbf{w} \} = \{ \mathbf{v} \mid \alpha \cdot \mathbf{v} = -\mathbf{v} \} = \mathbf{E}_{-1}$$

If char V exists and char $V \neq 2$, then V = B + C and dim $B \cap C = 0$.

Fact (Sample lemma: an eigenspace decomposition)

Let V be a $\langle \tau \rangle$ -module with $|\tau| = 2$. Let

•
$$C = C_V(\tau) = \{ v \mid \tau \cdot v = v \} = E_1(\tau)$$

•
$$B = B_V(\tau) = \{w - \tau \cdot w\} = \{v \mid \tau \cdot v = -v\} = E_{-1}(\tau)$$

If char V exists and char $V \neq 2$, then V = B + C and dim $B \cap C = 0$.

Fact (Sample lemma: an eigenspace decomposition)

Let V be a $\langle \tau \rangle$ -module with $|\tau| = 2$. Let

•
$$C = C_V(\tau) = \{ v \mid \tau \cdot v = v \} = E_1(\tau)$$

•
$$B = B_V(\tau) = \{w - \tau \cdot w\} = \{v \mid \tau \cdot v = -v\} = E_{-1}(\tau)$$

If char V exists and char $V \neq 2$, then V = B + C and dim $B \cap C = 0$.

Fact (Sample lemma: an eigenspace decomposition)

Let V be a $\langle \tau \rangle$ -module with $|\tau| = 2$. Let

•
$$C = C_V(\tau) = \{ v \mid \tau \cdot v = v \} = E_1(\tau)$$

•
$$B = B_V(\tau) = \{w - \tau \cdot w\} = \{v \mid \tau \cdot v = -v\} = E_{-1}(\tau)$$

If char V exists and char $V \neq 2$, then V = B + C and dim $B \cap C = 0$.

Proof.

• Nontrivial elements of $C \cap B$ have order 2, forcing dim $B \cap C = 0$

Fact (Sample lemma: an eigenspace decomposition)

Let V be a $\langle \tau \rangle$ -module with $|\tau| = 2$. Let

•
$$C = C_V(\tau) = \{ v \mid \tau \cdot v = v \} = E_1(\tau)$$

•
$$B = B_V(\tau) = \{w - \tau \cdot w\} = \{v \mid \tau \cdot v = -v\} = E_{-1}(\tau)$$

If char V exists and char $V \neq 2$, then V = B + C and dim $B \cap C = 0$.

- Nontrivial elements of $C \cap B$ have order 2, forcing dim $B \cap C = 0$
- *B* is the image of 1τ (by definition)

Fact (Sample lemma: an eigenspace decomposition)

Let V be a $\langle \tau \rangle$ -module with $|\tau| = 2$. Let

- $C = C_V(\tau) = \{ v \mid \tau \cdot v = v \} = E_1(\tau)$
- $B = B_V(\tau) = \{w \tau \cdot w\} = \{v \mid \tau \cdot v = -v\} = E_{-1}(\tau)$

If char V exists and char $V \neq 2$, then V = B + C and dim $B \cap C = 0$.

- Nontrivial elements of $C \cap B$ have order 2, forcing dim $B \cap C = 0$
- B is the image of 1τ (by definition)
- *C* is the kernel of 1τ (since $v \tau \cdot v = 0$ iff $\tau \cdot v = v$)

Fact (Sample lemma: an eigenspace decomposition)

Let V be a $\langle \tau \rangle$ -module with $|\tau| = 2$. Let

- $C = C_V(\tau) = \{ v \mid \tau \cdot v = v \} = E_1(\tau)$
- $B = B_V(\tau) = \{w \tau \cdot w\} = \{v \mid \tau \cdot v = -v\} = E_{-1}(\tau)$

If char V exists and char $V \neq 2$, then V = B + C and dim $B \cap C = 0$.

- Nontrivial elements of $C \cap B$ have order 2, forcing dim $B \cap C = 0$
- B is the image of 1τ (by definition)
- *C* is the kernel of 1τ (since $v \tau \cdot v = 0$ iff $\tau \cdot v = v$)
- By additivity, dim $V = \dim B + \dim C$

Fact (Sample lemma: an eigenspace decomposition)

Let V be a $\langle \tau \rangle$ -module with $|\tau| = 2$. Let

- $C = C_V(\tau) = \{ v \mid \tau \cdot v = v \} = E_1(\tau)$
- $B = B_V(\tau) = \{w \tau \cdot w\} = \{v \mid \tau \cdot v = -v\} = E_{-1}(\tau)$

If char V exists and char $V \neq 2$, then V = B + C and dim $B \cap C = 0$.

- Nontrivial elements of $C \cap B$ have order 2, forcing dim $B \cap C = 0$
- *B* is the image of 1τ (by definition)
- *C* is the kernel of 1τ (since $v \tau \cdot v = 0$ iff $\tau \cdot v = v$)
- By additivity, dim $V = \dim B + \dim C = \dim(B + C)$

Fact (Sample lemma: an eigenspace decomposition)

Let V be a $\langle \tau \rangle$ -module with $|\tau| = 2$. Let

- $C = C_V(\tau) = \{ v \mid \tau \cdot v = v \} = E_1(\tau)$
- $B = B_V(\tau) = \{w \tau \cdot w\} = \{v \mid \tau \cdot v = -v\} = E_{-1}(\tau)$

If char V exists and char $V \neq 2$, then V = B + C and dim $B \cap C = 0$.

- Nontrivial elements of $C \cap B$ have order 2, forcing dim $B \cap C = 0$
- B is the image of 1τ (by definition)
- C is the kernel of 1τ (since $v \tau \cdot v = 0$ iff $\tau \cdot v = v$)
- By additivity, dim $V = \dim B + \dim C = \dim(B + C)$
- By dim-connectedness of V, V = B + C

Sym(n)-modules of minimal dimension

Definition (Standard Module)

Let $perm_{\mathbb{Z}}^n$ be defined analogously to before.

Definition (Standard Module)

Definition (Standard Module)

Let perm $_{\mathbb{Z}}^n$ be defined analogously to before. For any abelian group A, we then define

 $\bullet \ \operatorname{\mathsf{perm}}^n_{\mathcal{A}} = \operatorname{\mathsf{perm}}^n_{\mathbb{Z}} \otimes \mathcal{A} = \{ e_1 \otimes a_1 + \dots + e_n \otimes a_n \mid a_i \in \mathcal{A} \}$

Definition (Standard Module)

- $\bullet \ \mathsf{perm}^n_{A} = \mathsf{perm}^n_{\mathbb{Z}} \otimes A = \{ e_1 \otimes a_1 + \dots + e_n \otimes a_n \mid a_i \in A \}$
- $\operatorname{std}_A^n = \operatorname{std}_{\mathbb{Z}}^n \otimes A = \{e_1 \otimes a_1 + \cdots + e_n \otimes a_n \mid a_i \in A, \sum a_i = 0\}$

Definition (Standard Module)

- $\bullet \ \mathsf{perm}^n_{\mathcal{A}} = \mathsf{perm}^n_{\mathbb{Z}} \otimes \mathcal{A} = \{ e_1 \otimes a_1 + \dots + e_n \otimes a_n \mid a_i \in \mathcal{A} \}$
- $\mathsf{std}_A^n = \mathsf{std}_\mathbb{Z}^n \otimes A = \{e_1 \otimes a_1 + \dots + e_n \otimes a_n \mid a_i \in A, \sum a_i = 0\}$
- $\bullet \ \ Z = \{e_1 \otimes a + \cdots + e_n \otimes a \mid a \in A\}$

Definition (Standard Module)

$$\bullet \ \mathsf{perm}_{\mathcal{A}}^n = \mathsf{perm}_{\mathbb{Z}}^n \otimes \mathcal{A} = \{ e_1 \otimes a_1 + \dots + e_n \otimes a_n \mid a_i \in \mathcal{A} \}$$

•
$$\mathsf{std}_A^n = \mathsf{std}_\mathbb{Z}^n \otimes A = \{e_1 \otimes a_1 + \dots + e_n \otimes a_n \mid a_i \in A, \sum a_i = 0\}$$

$$\bullet \ \ Z = \{e_1 \otimes a + \cdots + e_n \otimes a \mid a \in A\}$$

$$\bullet \ \overline{\operatorname{std}}_{A}^{n} = \operatorname{std}_{A}^{n} / (Z \cap \operatorname{std}_{A}^{n})$$

Definition (Standard Module)

Let perm $_{\mathbb{Z}}^n$ be defined analogously to before. For any abelian group A, we then define

- $\bullet \ \mathsf{perm}^n_{\mathcal{A}} = \mathsf{perm}^n_{\mathbb{Z}} \otimes \mathcal{A} = \{ e_1 \otimes a_1 + \dots + e_n \otimes a_n \mid a_i \in \mathcal{A} \}$
- $\mathsf{std}_{\mathcal{A}}^n = \mathsf{std}_{\mathbb{Z}}^n \otimes \mathcal{A} = \{e_1 \otimes a_1 + \dots + e_n \otimes a_n \mid a_i \in \mathcal{A}, \sum a_i = 0\}$
- $\bullet \ \ Z = \{e_1 \otimes a + \cdots + e_n \otimes a \mid a \in A\}$
- $\bullet \ \overline{\operatorname{std}}_{\mathcal{A}}^n = \operatorname{std}_{\mathcal{A}}^n / (Z \cap \operatorname{std}_{\mathcal{A}}^n)$

Remark

These all carry a Sym(n)-multiplication as before.

Theorem (Corredor-Deloro-W 2018–2020)

Suppose V is faithful and dim-irreducible $\operatorname{Sym}(n)$ -module with char V = q and dim V = d < n.

Theorem (Corredor-Deloro-W 2018–2020)

Suppose V is faithful and dim-irreducible $\operatorname{Sym}(n)$ -module with char V = q and dim V = d < n. If $n \ge 7$, then

Theorem (Corredor-Deloro-W 2018–2020)

Suppose V is faithful and dim-irreducible $\operatorname{Sym}(n)$ -module with char V = q and dim V = d < n. If $n \ge 7$, then

q	d	Structure of V
$q > 0$ and $q \mid n$	n – 2	isomorphic to $\overline{\operatorname{std}}_L^n$ or $\operatorname{sgn} \otimes \overline{\operatorname{std}}_L^n$
$q > 0$ and $q \nmid n$	<i>n</i> – 1	isomorphic to std_L^n or $\operatorname{sgn} \otimes \operatorname{std}_L^n$
q = 0	n – 1	covered by std_L^n or $\operatorname{sgn} \otimes \operatorname{std}_L^n$

for some 1-dimensional $L \leq V$.

Theorem (Corredor-Deloro-W 2018–2020)

Suppose V is faithful and dim-irreducible $\operatorname{Sym}(n)$ -module with char V = q and dim V = d < n. If $n \ge 7$, then

q	d	Structure of V
$q > 0$ and $q \mid n$	n – 2	isomorphic to $\overline{\operatorname{std}}_L^n$ or $\operatorname{sgn} \otimes \overline{\operatorname{std}}_L^n$
$q > 0$ and $q \nmid n$	n – 1	isomorphic to std_L^n or $\operatorname{sgn} \otimes \operatorname{std}_L^n$
q = 0	n – 1	covered by std_L^n or $\operatorname{sgn} \otimes \operatorname{std}_L^n$

for some 1-dimensional $L \leq V$.

Theorem (Corredor-Deloro-W 2018–2020)

The same is true for Alt(n)-modules provided $n \ge 10$ when q = 2.

Remarks

 Some results are know for smaller n, but there are exceptional cases to disentangle.

- Some results are know for smaller n, but there are exceptional cases to disentangle.
- This began in 2018 with only a lower bound on the dimension (not identification), only for Sym(n), and only in a context of finite Morley rank.

- Some results are know for smaller n, but there are exceptional cases to disentangle.
- This began in 2018 with only a lower bound on the dimension (not identification), only for Sym(n), and only in a context of finite Morley rank.
- The proof...

- Some results are know for smaller n, but there are exceptional cases to disentangle.
- This began in 2018 with only a lower bound on the dimension (not identification), only for Sym(n), and only in a context of finite Morley rank.
- The proof...
 - d < n forces dim $B_V((12)(34)) = 2$

- Some results are know for smaller n, but there are exceptional cases to disentangle.
- This began in 2018 with only a lower bound on the dimension (not identification), only for Sym(n), and only in a context of finite Morley rank.
- The proof...
 - d < n forces dim $B_V((12)(34)) = 2$
 - dim $B_V((12)(34)) = 2$ forces a geometric condition on $B_V((12)(34))$

- Some results are know for smaller n, but there are exceptional cases to disentangle.
- This began in 2018 with only a lower bound on the dimension (not identification), only for Sym(n), and only in a context of finite Morley rank.
- The proof...
 - d < n forces dim $B_V((12)(34)) = 2$
 - $\dim B_V((12)(34)) = 2$ forces a geometric condition on $B_V((12)(34))$
 - this ensures V is a Sym(n)-module (if not already), and

- Some results are know for smaller n, but there are exceptional cases to disentangle.
- This began in 2018 with only a lower bound on the dimension (not identification), only for Sym(n), and only in a context of finite Morley rank.
- The proof...
 - d < n forces dim $B_V((12)(34)) = 2$
 - dim $B_V((12)(34)) = 2$ forces a geometric condition on $B_V((12)(34))$
 - this ensures V is a Sym(n)-module (if not already), and
 - $B_V((12))$ satisfies a similar geometric condition

- Some results are know for smaller n, but there are exceptional cases to disentangle.
- This began in 2018 with only a lower bound on the dimension (not identification), only for Sym(n), and only in a context of finite Morley rank.
- The proof...
 - d < n forces dim $B_V((12)(34)) = 2$
 - dim $B_V((12)(34)) = 2$ forces a geometric condition on $B_V((12)(34))$
 - this ensures V is a Sym(n)-module (if not already), and
 - $B_V((12))$ satisfies a similar geometric condition
 - The geometric condition on $B_V((12))$ leads to recognition of std_L^n or $\operatorname{\overline{std}}_I^n$ with $L = B_V((12))$

Questions

1. Can one deal with the remaining small values of *n*? There are other (interesting, natural) modules that will come into the picture.

- 1. Can one deal with the remaining small values of *n*? There are other (interesting, natural) modules that will come into the picture.
- 2. The Theorem assumes d < n; can this be relaxed? One expects to not encounter the "second smallest" modules until $d \approx \binom{n}{2}$.

- 1. Can one deal with the remaining small values of *n*? There are other (interesting, natural) modules that will come into the picture.
- 2. The Theorem assumes d < n; can this be relaxed? One expects to not encounter the "second smallest" modules until $d \approx \binom{n}{2}$.
- 3. What about *G*-modules for other *G* (in this new context)?

- 1. Can one deal with the remaining small values of *n*? There are other (interesting, natural) modules that will come into the picture.
- 2. The Theorem assumes d < n; can this be relaxed? One expects to not encounter the "second smallest" modules until $d \approx \binom{n}{2}$.
- 3. What about *G*-modules for other *G* (in this new context)?
- 4. What about *G*-modules where the "module" is nonabelian? There are applications for this.

Questions

- 1. Can one deal with the remaining small values of *n*? There are other (interesting, natural) modules that will come into the picture.
- 2. The Theorem assumes d < n; can this be relaxed? One expects to not encounter the "second smallest" modules until $d \approx \binom{n}{2}$.
- 3. What about G-modules for other G (in this new context)?
- 4. What about *G*-modules where the "module" is nonabelian? There are applications for this.

Advertisement

Questions

- 1. Can one deal with the remaining small values of *n*? There are other (interesting, natural) modules that will come into the picture.
- 2. The Theorem assumes d < n; can this be relaxed? One expects to not encounter the "second smallest" modules until $d \approx \binom{n}{2}$.
- 3. What about G-modules for other G (in this new context)?
- 4. What about *G*-modules where the "module" is nonabelian? There are applications for this.

Advertisement

Love groups?

Questions

- 1. Can one deal with the remaining small values of *n*? There are other (interesting, natural) modules that will come into the picture.
- 2. The Theorem assumes d < n; can this be relaxed? One expects to not encounter the "second smallest" modules until $d \approx \binom{n}{2}$.
- 3. What about *G*-modules for other *G* (in this new context)?
- 4. What about *G*-modules where the "module" is nonabelian? There are applications for this.

Advertisement

Love groups? Want to learn more about representations/modules in the classical sense?

Questions

- 1. Can one deal with the remaining small values of *n*? There are other (interesting, natural) modules that will come into the picture.
- 2. The Theorem assumes d < n; can this be relaxed? One expects to not encounter the "second smallest" modules until $d \approx \binom{n}{2}$.
- 3. What about G-modules for other G (in this new context)?
- 4. What about *G*-modules where the "module" is nonabelian? There are applications for this.

Advertisement

Love groups? Want to learn more about representations/modules in the classical sense? In the new context?

Questions

- 1. Can one deal with the remaining small values of *n*? There are other (interesting, natural) modules that will come into the picture.
- 2. The Theorem assumes d < n; can this be relaxed? One expects to not encounter the "second smallest" modules until $d \approx \binom{n}{2}$.
- 3. What about *G*-modules for other *G* (in this new context)?
- 4. What about *G*-modules where the "module" is nonabelian? There are applications for this.

Advertisement

Love groups? Want to learn more about representations/modules in the classical sense? In the new context? Want to start exploring some of these questions?

Questions

- 1. Can one deal with the remaining small values of *n*? There are other (interesting, natural) modules that will come into the picture.
- 2. The Theorem assumes d < n; can this be relaxed? One expects to not encounter the "second smallest" modules until $d \approx \binom{n}{2}$.
- 3. What about *G*-modules for other *G* (in this new context)?
- 4. What about *G*-modules where the "module" is nonabelian? There are applications for this.

Advertisement

Love groups? Want to learn more about representations/modules in the classical sense? In the new context? Want to start exploring some of these questions? There will be a focused series of talks in Spring 2021 on this topic. Email joshua.wiscons@csus.edu for info.

Thank You