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Initial context and motivation
(and distractions)

Groups of finite Morley rank
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Groups of finite Morley rank: definition

Definition
A structureM is ranked if its universe of definable (and interpretable) sets
carries a well-behaved notion of dimension rk : UDEF(M)→ N, analogous to
Zariski dimension.

Two (of the four) axioms are:

(Monotonicity ) rk(A) ≥ n + 1 ⇐⇒ there exists {Ai}i<ω ⊂ UDEF(M)−{∅}

A

rk ≥ n rk ≥ n rk ≥ n

A1 A2 · · · Ai · · ·rk(A) ≥ n + 1 ⇐⇒

(Additivity ) If f : A � B is definable with fibers of constant rank n, then
rk(A) = rk(B) + n.

rk = n

rk = n
...

...

A

f

B

=⇒ rk(A) = rk(B) + n
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Zariski dimension. Two (of the four) axioms are:

(Monotonicity ) rk(A) ≥ n + 1 ⇐⇒ there exists {Ai}i<ω ⊂ UDEF(M)−{∅}

(Additivity ) If f : A � B is definable with fibers of constant rank n, then
rk(A) = rk(B) + n.

Theorem (Poizat)
A group is ranked ⇐⇒ it is a group of finite Morley rank.
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Groups of finite Morley rank: examples

Examples

1. Abelian groups of bounded exponent (e.g.
⊕

κ Fp)

2. Torsion-free divisible abelian groups (i.e.
⊕

κQ)

3. Divisible abelian groups with finitely many elements of each finite order

e.g.
⊕

N Cp∞ where Cp∞ = {a ∈ C | apk
= 1 for some k ∈ N}

4. (Cherlin-Macintyre) An infinite division ring has fMr ⇐⇒ it is an
algebraically closed field.

5. Groups definable from a structure of fMr

6. Algebraic groups over algebraically closed fields: GLn(K), PGLn(K), . . .
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Groups of finite Morley rank: landscape

All groups

Groups of
fMr

Algebraic
over ACF

GLn(C)

PGLn(C)

GLn(C)× GLn(Fp)

Cp∞

Baudisch
group

SO3(R)

F2

Z
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The broader context

All groups

o-minimal

NTP2

NIP

Simple

Stable

ω-stable

Free groups

SO3(R)

fMr
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An aside: the Algebraicity Conjecture

All groups

Groups of
fMr

Algebraic
over ACF

GLn(C)

PSLn(C)

GLn(C)× GLn(Fp)

Cp∞

Baudisch
group

Simple groups of fMr

?

Algebraicity Conjecture:
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Groups of
fMr

Algebraic
over ACF

GLn(C)

PSLn(C)

GLn(C)× GLn(Fp)

Cp∞

Baudisch
group

Simple groups of fMr

?

Algebraicity Conjecture: the gap, , does not exist.
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An aside: the Algebraicity Conjecture

All groups

Groups of
fMr

Algebraic
over ACF

GLn(C)

PSLn(C)

GLn(C)× GLn(Fp)

Cp∞

Baudisch
group

Simple groups of fMr

?

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.
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Initial context and motivation
(and distractions)

Permutation groups and generic transitivity
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Generic n-transitivity

Definition
Let G y X be a permutation group of fMr. The action is generically
n-transitive if there is an orbit O ⊂ X n with rk(X n −O) < rk(X n).

i.e. G has a single orbit on X n modulo a set of smaller rank.

Example: GLn(K ) y K n

generically n-transitive

O is the set of bases of K n: orbit of (e1, . . . ,en)

Example: PGLn(K ) y Pn−1(K )

generically (n + 1)-transitive

O is the set bases of Pn−1(K ): orbit of (〈e1〉, . . . , 〈en〉, 〈
∑

ei〉)
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Generic n-transitivity

Definition
Let G y X be a permutation group of fMr. The action is generically
n-transitive if there is an orbit O ⊂ X n with rk(X n −O) < rk(X n).

i.e. G has a single orbit on X n modulo a set of smaller rank.

Example
Assume that G1 y X1 and G2 y X2 are both generically n-transitive.

G1 ×G2 y X1 × X2 is generically n-transitive

O = O1 ×O2
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1 2 3 d := rk(X)

n

PGL2(K )

PGL3(K )

PGL4(K )

AGL1(K )

AGL2(K )

AGL3(K )

GL1(K )

GL2(K )

GL3(K )

PGL2(K )× PGL2(L) y P1(K )× P1(L)

PGLd+1(K ) y Pd (K )

AGLd (K ) y K d

GLd (K ) y K d − {0}

Assume: G y X is transitive
and generically n-transitive

Borovik-Cherlin Problem (2008)
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The Borovik-Cherlin Problem: towards the bound

Suppose G y X is generically n-transitive. Let (1, . . . ,n) ∈ O.

Any permutation of (1, . . . ,n) is again in O.

G{1,...,n}/G1,...,n ∼= Sym(n).

Further assume generic sharp n-transitivity: G1,...,n = 1. Consider:

G{1,...,n} ∩Gn ∼= Sym(n − 1).
Then,

Sym(n − 1) acts faithfully on G1,...,n−1.

This is because G1,...,n−1 has a generic orbit containing n.

Observation
If G y X is generically sharply n-transitive with rk(X ) = d . Then there is a
faithful, definable action of Sym(n − 1) on a (connected) group H of rank d .

Real life indicates that n can not be much larger than d (leading towards the
desired bound), and the critical case should be when H is abelian.

So we turn to the study of Sym(n)-modules (in a general context).
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New context and results

Modules with an additive dimension
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The context: choosing a universe

We seek a notion of dimension for certain abelian groups that covers:

the classical case of (finite dimensional) vector spaces;

groups of finite Morley rank;

other familiar dimensioned/ranked settings.

We take a “local” approach.

Definition
Let V be an abelian group (possibly in an enriched language).

UALG(V ) := HSPfin(V ) is obtained by closing under homomorphic
images, substructures, and finite products.

UDEF(V ) is the collection of all sets definable/interpretable from V .

Set U(V ) := UALG(V ) ∩ UDEF(V ).
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UDEF(V ) is the collection of all sets definable/interpretable from V .

Set U(V ) := UALG(V ) ∩ UDEF(V ).

Remarks

1. If V has additional specified algebraic structure (e.g. being a vector
space over some F ), UALG(V ) is computed accordingly.

2. U(V ) could reasonably be called the “definable pseudo-variety
generated by V .”

3. One could axiomatize the appropriate universe for our context, but U(V )
is ultimately what we focus on.
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The context: additive dimension

Definition
An additive dimension on U(V ) is a function dim : U(V )→ N such that if
f : A→ B is a morphism with A,B, f ∈ U(V ), then

dim A = dim ker f + dim im f .

We often simply say V (instead of U(V )) has an additive dimension.

Remark
That’s it.

We say nothing about the relationship between finiteness and
0-dimensionality.

We say nothing about chain conditions.

We also say nothing about elementary extensions.
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Examples of groups with an additive dimension

Examples (Algebraic)

1. A finite dimensional vector space equipped with linear dimension

2. A finitely generated abelian group equipped with torsion-free rank

3. A finite sum
⊕

N Cp∞ equipped with Prüfer p-rank

Prüfer p-rank is the max κ for which the group contains
⊕

κ Cp∞

In all cases, U(V ) has an additive dimension because all of UALG(V ) does.

Examples (Logical)

1. An abelian group of finite Morley rank equipped with Morley rank

2. An abelian group definable in an o-minimal structure equipped with
o-minimal dimension

In all cases, U(V ) has an additive dimension because all of UDEF(V ) does.
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Modules and Connectedness

Definition & Fact (Connectedness & Properties)
Suppose V has an additive dimension. We say V is dim-connected if

W < V =⇒ dim W < dim V

for all W ∈ U(V ). One finds that:

Dim-connectedness is preserved under images of definable morphisms;

Sums of dim-connected groups are dim-connected.

Definition (Module)
Let G be a group. We will call V a G-module if

V is a dim-connected abelian group with an additive dimension;

G acts on V with each g ∈ G a definable automorphism (i.e. g ∈ U(V )).

Further, if V has no proper nontrivial (dim-connected) G-modules, we say V
is dim-irreducible.
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A crucial parameter: the characteristic

Definition (Characteristic)
Let p be a prime and V be a module. Define the characteristic as follows:

char V = p if V has exponent p;

char V = 0 if V is divisible (∀v ∈ V ,∀n ∈ Z>0, nw = v has a solution);

char V is undefined otherwise.

Examples

1. charC+ = 0 = charC×.

2. If V =
⊕

N Cp∞ , then char V = 0 (and V is torsion).

3. If V = C+ ⊕ F+

2 , then char V is undefined.

Remark
Dim-irreducible modules always have a characteristic.
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A first principle

Fact (Coprimality: special case of p = 2)
Let V be a 〈g〉-module with |g| = 2. Assume char V exists and is not 2 (or
simply V is 2-divisible). Set

Bg := adg(V ) where adg = 1− g ∈ End(V );

Cg := trg(V ) where trg = 1 + g ∈ End(V ).

Then V = Bg (+) Cg (meaning V = Bg + Cg and dim(Bg ∩ Cg) = 0).

Proof: dim(Bg ∩ Cg) = 0.

trg ◦adg =

0

1− g2 = adg ◦ trg

Bg ≤ ker(trg) and Cg ≤ ker(adg)

Bg ∩ Cg ≤ ker(trg) ∩ ker(adg)

≤ Ω2(V )

Our hypotheses imply dim Ω2(V ) = 0
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New context and results

The faithful Sym(n)- and Alt(n)-modules of
minimal dimension
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The standard module for Sym(n)

Definition (Standard Module)
Let permn

Z = Ze1 ⊕ · · · ⊕ Zen be the Sym(n)-module where the ei are
permuted naturally.

There are two obvious submodules:

trivn
Z = {ce1 + · · ·+ cen}

stdn
Z = {c1e1 + · · ·+ cnen |

∑
ci = 0}

For any abelian group L (with trivial Sym(n)-action), we define:

permn
L = permn

Z⊗L = {e1 ⊗ c1 + · · ·+ en ⊗ cn}

trivn
L = trivn

Z⊗L = {e1 ⊗ c + · · ·+ en ⊗ c}

stdn
L = stdn

Z⊗L = {e1 ⊗ c1 + · · ·+ en ⊗ cn |
∑

ci = 0}

stdn
L = stdn

L /(stdn
L ∩ trivn

L)

Remark
Notice that stdn

L = stdn
L ⇐⇒ Ωn(L) = 0.
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The standard module for Sym(n)

Remarks

1. If L is a trivial Sym(n)-module (with an additive dimension), then each of
permn

L, stdn
L, and stdn

L are Sym(n)-modules (with an additive dimension).

2. Regarding irreducibility:

stdn
Q is faithful and irreducible.

If p - n, stdn
Fp

= stdn
Fp

is faithful and irreducible.
If p | n and n ≥ 5, stdn

Fp
is faithful and irreducible (p = 2,n = 4 fails)

Example
Consider T = Diagn(C) < GLn(C) viewed as a Sym(n)-module via the action
of the Weyl group.

Let T0 be a 1-dimensional subtorus inverted by some
transposition τ . Then, as Sym(n)-modules:

permn
T0
∼= T , stdn

T0
∼= T ∩ SLn(C), and stdn

T0
∼= T ∩ SLn(C) ≤ PSLn(C).
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The minimal faithful Sym(n)- and Alt(n)-modules

Theorem (Corredor-Deloro-W 2018–2021)
Suppose V is faithful and dim-irreducible Sym(n)-module with char V = q
and d := dim V < n.

If n ≥ 7, then

q d Structure of V

q > 0 and q | n

n − 2 isomorphic to stdn
L or sgn⊗ stdn

L

q > 0 and q - n

n − 1 isomorphic to stdn
L or sgn⊗ stdn

L

q = 0

n − 1 covered by stdn
L or sgn⊗ stdn

L

for some definable, dim-connected 1-dimensional L ≤ V.

Theorem (Corredor-Deloro-W 2018–2021)
The same is true for Alt(n)-modules provided n ≥ 10 when q = 2.
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Step 1 - Recognition

Recognition Lemma
Let V be a faithful and dim-irreducible Sym(n)-module.

Further suppose that

Alt(n − 2) ∼=

Alt({1,2}⊥) centralizes B(12)

= ad(12)(V ).

Then for some abelian group L, there is a surjective morphism ϕ : stdn
L � V

of S-modules. Moreover, for q := char V, the kernel is described as follows:

if q | n, then kerϕ = stdn
L ∩ trivn

L and V ' stdn
L;

if 0 6= q - n, then kerϕ = 0 and V ' stdn
L;

if q = 0, then kerϕ = stdn
L ∩ trivn

K for some 0-dimensional K ≤ Ωn(L).

Remarks

One may take L to be B(12), making all relevant objects, including ϕ,
definable.

We say nothing about the dimension of V .
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Step 1 - Recognition

Proof Idea.
We want to build the covering map ϕ : stdn

L � V .

1. Let L = B(1n) as a trivial Sym(n)-module.

2. Consider the usual basis for stdn
Z: {fi := ei − en}. Define ϕ as follows:

ϕ(fi ⊗ `) = (1i) · `

∈ B(in) ⊆ V .

3. The main assumption yields a (local) description of Sym(n) on each B(ij),
which is used to show ϕ is a morphism of Sym(n)-modules.

4. Finally, we control the kernel.
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Step 2 - Extension

Extension Lemma
Let n ≥ 7 and V be a faithful and dim-irreducible Alt(n)-module.

Further
suppose that

Alt({1,2,3,4}⊥) centralizes B(12)(34).

Then for q := char V,

if q = 2 there is a unique definable action of Sym(n) extending the
Alt(n)-structure;

if q 6= 2 there are exactly two such, obtained from each other by
tensoring with the signature.

Moreover, up to tensoring with the signature, the extension satisfies the
assumption of the Recognition Lemma.

Remark
We again say nothing about the dimension of V .
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Step 3 - Geometrization

Geometrization Lemma
Let V be a faithful Alt(n)-module.

Further suppose d ≤ n − 1 and that either:

q = 2 and n ≥ 10; or

q 6= 2 and n ≥ 7.

Then V satisfies the assumption of the Extension Lemma.

Remark
The proof of the main theorem is readily assembled from

Geometrization→ Extension→ Recognition

with only one fairly minor remaining point to sort out.
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Reflections and lingering
questions
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Final Thoughts

Remark
Though our setting is rather general, the “minimal” modules have (thus far)
fallen into the familiar linear-algebraic setting. This observation is further
amplified by recent work of Alexandre Borovik (arXived in December 2020).

Questions

1. Can one deal with the remaining small values of n? There are other
(interesting, natural) modules that will come into the picture.

Operating under “minimal = algebraic”, we know what to expect.
Some folks are working on this. . .

2. The Theorem assumes d < n; can this be relaxed? One expects to not
encounter the “second smallest” modules until d ≈

(n
2

)
.

3. What about G-modules for other G (in this new context)?

4. What about G-modules where the “module” is nonabelian? There would
be immediate applications for this to the Borovik-Cherlin Problem.
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Thank You
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