The minimal faithful $\operatorname{Sym}(n)$ - and $\operatorname{Alt}(n)$-modules

Joshua Wiscons

California State University, Sacramento

Logic Seminar
 Imperial College and Queen Mary University

March 17, 2020

Joint work with Luis Jaime Corredor (Bogotá) and Adrien Deloro (Paris)
Based upon work supported by NSF grant No. DMS-1954127

Freedom (and passport) for Tuna Altınel

twitter: @SoutienTuna \#PassportForTuna

Outline

Outline

Initial context and motivation

- Groups of finite Morley rank
- Connections to high degrees of generic transitivity

Outline

Initial context and motivation

- Groups of finite Morley rank
- Connections to high degrees of generic transitivity

New context and results

- Modules with an additive dimension
- The faithful $\operatorname{Sym}(n)$ - and $\operatorname{Alt}(n)$-modules of minimal dimension

Outline

Initial context and motivation

- Groups of finite Morley rank
- Connections to high degrees of generic transitivity

New context and results

- Modules with an additive dimension
- The faithful $\operatorname{Sym}(n)$ - and $\operatorname{Alt}(n)$-modules of minimal dimension

Reflections and lingering questions

Initial context and motivation (and distractions)

Groups of finite Morley rank

Groups of finite Morley rank: definition

Definition

A structure \mathcal{M} is ranked if its universe of definable (and interpretable) sets carries a well-behaved notion of dimension rk : $\mathcal{U}_{\text {DEF }}(\mathcal{M}) \rightarrow \mathbb{N}$, analogous to Zariski dimension.

Groups of finite Morley rank: definition

Definition

A structure \mathcal{M} is ranked if its universe of definable (and interpretable) sets carries a well-behaved notion of dimension rk : $\mathcal{U}_{\text {DEF }}(\mathcal{M}) \rightarrow \mathbb{N}$, analogous to Zariski dimension. Two (of the four) axioms are:

Groups of finite Morley rank: definition

Definition

A structure \mathcal{M} is ranked if its universe of definable (and interpretable) sets carries a well-behaved notion of dimension rk: $\mathcal{U}_{\text {DEF }}(\mathcal{M}) \rightarrow \mathbb{N}$, analogous to Zariski dimension. Two (of the four) axioms are:

- (Monotonicity) $\operatorname{rk}(A) \geq n+1 \Longleftrightarrow$ there exists $\left\{A_{i}\right\}_{i<\omega} \subset \mathcal{U}_{\mathrm{DEF}}(\mathcal{M})-\{\emptyset\}$

Groups of finite Morley rank: definition

Definition

A structure \mathcal{M} is ranked if its universe of definable (and interpretable) sets carries a well-behaved notion of dimension rk: $\mathcal{U}_{\text {DEF }}(\mathcal{M}) \rightarrow \mathbb{N}$, analogous to Zariski dimension. Two (of the four) axioms are:

- (Monotonicity) $\mathrm{rk}(A) \geq n+1 \Longleftrightarrow$ there exists $\left\{A_{i}\right\}_{i<\omega} \subset \mathcal{U}_{\mathrm{DEF}}(\mathcal{M})-\{\emptyset\}$

$$
\operatorname{rk}(A) \geq n+1 \Longleftrightarrow \begin{array}{lll:l:l}
A^{\prime} & \\
\hline
\end{array}
$$

Groups of finite Morley rank: definition

Definition

A structure \mathcal{M} is ranked if its universe of definable (and interpretable) sets carries a well-behaved notion of dimension rk: $\mathcal{U}_{\text {DEF }}(\mathcal{M}) \rightarrow \mathbb{N}$, analogous to Zariski dimension. Two (of the four) axioms are:

- (Monotonicity) $\mathrm{rk}(A) \geq n+1 \Longleftrightarrow$ there exists $\left\{A_{i}\right\}_{i<\omega} \subset \mathcal{U}_{\mathrm{DEF}}(\mathcal{M})-\{\emptyset\}$

$$
\begin{aligned}
& \operatorname{rk}(A) \geq n+1 \Longleftrightarrow \\
&
\end{aligned}
$$

- (Additivity) If $f: A \rightarrow B$ is definable with fibers of constant rank n, then $\operatorname{rk}(A)=\operatorname{rk}(B)+n$.

Groups of finite Morley rank: definition

Definition

A structure \mathcal{M} is ranked if its universe of definable (and interpretable) sets carries a well-behaved notion of dimension rk: $\mathcal{U}_{\mathrm{DEF}}(\mathcal{M}) \rightarrow \mathbb{N}$, analogous to Zariski dimension. Two (of the four) axioms are:

- (Monotonicity) $\operatorname{rk}(A) \geq n+1 \Longleftrightarrow$ there exists $\left\{A_{i}\right\}_{i<\omega} \subset \mathcal{U}_{\mathrm{DEF}}(\mathcal{M})-\{\emptyset\}$

$$
\operatorname{rk}(A) \geq n+1 \Longleftrightarrow \begin{array}{lll:l:l}
A^{2} & \begin{array}{ll:l}
& \\
A_{1} & A_{2} & \cdots
\end{array} & A_{i} & \cdots \\
& \mathrm{rk} \geq n & \mathrm{rk} \geq n & \mathrm{rk} \geq n
\end{array}
$$

- (Additivity) If $f: A \rightarrow B$ is definable with fibers of constant rank n, then $\operatorname{rk}(A)=\operatorname{rk}(B)+n$.

$$
\Longrightarrow \quad \operatorname{rk}(A)=\operatorname{rk}(B)+n
$$

Groups of finite Morley rank: definition

Definition

A structure \mathcal{M} is ranked if its universe of definable (and interpretable) sets carries a well-behaved notion of dimension rk: $\mathcal{U}_{\mathrm{DEF}}(\mathcal{M}) \rightarrow \mathbb{N}$, analogous to Zariski dimension. Two (of the four) axioms are:

- (Monotonicity) $\mathrm{rk}(A) \geq n+1 \Longleftrightarrow$ there exists $\left\{A_{i}\right\}_{i<\omega} \subset \mathcal{U}_{\text {DEF }}(\mathcal{M})-\{\emptyset\}$
- (Additivity) If $f: A \rightarrow B$ is definable with fibers of constant rank n, then $\operatorname{rk}(A)=\operatorname{rk}(B)+n$.

Groups of finite Morley rank: definition

Definition

A structure \mathcal{M} is ranked if its universe of definable (and interpretable) sets carries a well-behaved notion of dimension rk: $\mathcal{U}_{\mathrm{DEF}}(\mathcal{M}) \rightarrow \mathbb{N}$, analogous to Zariski dimension. Two (of the four) axioms are:

- (Monotonicity) $\mathrm{rk}(A) \geq n+1 \Longleftrightarrow$ there exists $\left\{A_{i}\right\}_{i<\omega} \subset \mathcal{U}_{\mathrm{DEF}}(\mathcal{M})-\{\emptyset\}$
- (Additivity) If $f: A \rightarrow B$ is definable with fibers of constant rank n, then $\operatorname{rk}(A)=\operatorname{rk}(B)+n$.

Theorem (Poizat)

A group is ranked \Longleftrightarrow it is a group of finite Morley rank.

Groups of finite Morley rank: examples

Examples

Groups of finite Morley rank: examples

Examples

1. Abelian groups of bounded exponent (e.g. $\bigoplus_{\kappa} \mathbb{F}_{p}$)

Groups of finite Morley rank: examples

Examples

1. Abelian groups of bounded exponent (e.g. $\bigoplus_{\kappa} \mathbb{F}_{p}$)
2. Torsion-free divisible abelian groups (i.e. $\bigoplus_{\kappa} \mathbb{Q}$)

Groups of finite Morley rank: examples

Examples

1. Abelian groups of bounded exponent (e.g. $\bigoplus_{\kappa} \mathbb{F}_{p}$)
2. Torsion-free divisible abelian groups (i.e. $\bigoplus_{\kappa} \mathbb{Q}$)
3. Divisible abelian groups with finitely many elements of each finite order

Groups of finite Morley rank: examples

Examples

1. Abelian groups of bounded exponent (e.g. $\bigoplus_{\kappa} \mathbb{F}_{p}$)
2. Torsion-free divisible abelian groups (i.e. $\bigoplus_{\kappa} \mathbb{Q}$)
3. Divisible abelian groups with finitely many elements of each finite order

- e.g. $\bigoplus_{N} C_{p \infty}$ where $C_{p^{\infty}}=\left\{a \in \mathbb{C} \mid a^{p^{k}}=1\right.$ for some $\left.k \in \mathbb{N}\right\}$

Groups of finite Morley rank: examples

Examples

1. Abelian groups of bounded exponent (e.g. $\bigoplus_{\kappa} \mathbb{F}_{p}$)
2. Torsion-free divisible abelian groups (i.e. $\bigoplus_{\kappa} \mathbb{Q}$)
3. Divisible abelian groups with finitely many elements of each finite order

- e.g. $\bigoplus_{N} C_{p^{\infty}}$ where $C_{p^{\infty}}=\left\{a \in \mathbb{C} \mid a^{p^{k}}=1\right.$ for some $\left.k \in \mathbb{N}\right\}$

4. (Cherlin-Macintyre) An infinite division ring has $\mathrm{fMr} \Longleftrightarrow$ it is an algebraically closed field.

Groups of finite Morley rank: examples

Examples

1. Abelian groups of bounded exponent (e.g. $\bigoplus_{\kappa} \mathbb{F}_{p}$)
2. Torsion-free divisible abelian groups (i.e. $\bigoplus_{\kappa} \mathbb{Q}$)
3. Divisible abelian groups with finitely many elements of each finite order

- e.g. $\bigoplus_{N} C_{p^{\infty}}$ where $C_{p^{\infty}}=\left\{a \in \mathbb{C} \mid a^{p^{k}}=1\right.$ for some $\left.k \in \mathbb{N}\right\}$

4. (Cherlin-Macintyre) An infinite division ring has $\mathrm{fMr} \Longleftrightarrow$ it is an algebraically closed field.
5. Groups definable from a structure of f Mr

Groups of finite Morley rank: examples

Examples

1. Abelian groups of bounded exponent (e.g. $\bigoplus_{\kappa} \mathbb{F}_{p}$)
2. Torsion-free divisible abelian groups (i.e. $\bigoplus_{\kappa} \mathbb{Q}$)
3. Divisible abelian groups with finitely many elements of each finite order

- e.g. $\bigoplus_{N} C_{p^{\infty}}$ where $C_{p^{\infty}}=\left\{a \in \mathbb{C} \mid a^{p^{k}}=1\right.$ for some $\left.k \in \mathbb{N}\right\}$

4. (Cherlin-Macintyre) An infinite division ring has $\mathrm{fMr} \Longleftrightarrow$ it is an algebraically closed field.
5. Groups definable from a structure of fMr
6. Algebraic groups over algebraically closed fields: $\mathrm{GL}_{n}(\mathbb{K}), \mathrm{PGL}_{n}(\mathbb{K}), \ldots$

Groups of finite Morley rank: landscape

Groups of finite Morley rank: landscape

Groups of finite Morley rank: landscape

The broader context

All groups

The broader context

The broader context

The broader context

The broader context

An aside: the Algebraicity Conjecture

All groups

An aside: the Algebraicity Conjecture

All groups

An aside: the Algebraicity Conjecture

Algebraicity Conjecture:

An aside: the Algebraicity Conjecture

Algebraicity Conjecture: the gap, \downarrow, does not exist.

An aside: the Algebraicity Conjecture

Algebraicity Conjecture: every simple group of fMr is algebraic over an ACF.

Initial context and motivation (and distractions)

Permutation groups and generic transitivity

Generic n-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr . The action is generically n-transitive if there is an orbit $\mathcal{O} \subset X^{n}$ with $\operatorname{rk}\left(X^{n}-\mathcal{O}\right)<\operatorname{rk}\left(X^{n}\right)$.

Generic n-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr . The action is generically n-transitive if there is an orbit $\mathcal{O} \subset X^{n}$ with $\operatorname{rk}\left(X^{n}-\mathcal{O}\right)<\operatorname{rk}\left(X^{n}\right)$.

- i.e. G has a single orbit on X^{n} modulo a set of smaller rank.

Generic n-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr . The action is generically n-transitive if there is an orbit $\mathcal{O} \subset X^{n}$ with $\operatorname{rk}\left(X^{n}-\mathcal{O}\right)<\operatorname{rk}\left(X^{n}\right)$.

- i.e. G has a single orbit on X^{n} modulo a set of smaller rank.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

Generic n-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr . The action is generically n-transitive if there is an orbit $\mathcal{O} \subset X^{n}$ with $\operatorname{rk}\left(X^{n}-\mathcal{O}\right)<\operatorname{rk}\left(X^{n}\right)$.

- i.e. G has a single orbit on X^{n} modulo a set of smaller rank.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically n-transitive

Generic n-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr . The action is generically n-transitive if there is an orbit $\mathcal{O} \subset X^{n}$ with $\operatorname{rk}\left(X^{n}-\mathcal{O}\right)<\operatorname{rk}\left(X^{n}\right)$.

- i.e. G has a single orbit on X^{n} modulo a set of smaller rank.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Generic n-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr . The action is generically n-transitive if there is an orbit $\mathcal{O} \subset X^{n}$ with $\operatorname{rk}\left(X^{n}-\mathcal{O}\right)<\operatorname{rk}\left(X^{n}\right)$.

- i.e. G has a single orbit on X^{n} modulo a set of smaller rank.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Example: $\mathrm{PGL}_{n}(K) \curvearrowright \mathrm{P}^{n-1}(K)$

Generic n-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr . The action is generically n-transitive if there is an orbit $\mathcal{O} \subset X^{n}$ with $\operatorname{rk}\left(X^{n}-\mathcal{O}\right)<\operatorname{rk}\left(X^{n}\right)$.

- i.e. G has a single orbit on X^{n} modulo a set of smaller rank.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Example: $\mathrm{PGL}_{n}(K) \curvearrowright \mathrm{P}^{n-1}(K)$

- generically $(n+1)$-transitive

Generic n-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr . The action is generically n-transitive if there is an orbit $\mathcal{O} \subset X^{n}$ with $\operatorname{rk}\left(X^{n}-\mathcal{O}\right)<\operatorname{rk}\left(X^{n}\right)$.

- i.e. G has a single orbit on X^{n} modulo a set of smaller rank.

Example: $\mathrm{GL}_{n}(K) \curvearrowright K^{n}$

- generically n-transitive
- \mathcal{O} is the set of bases of K^{n} : orbit of $\left(e_{1}, \ldots, e_{n}\right)$

Example: $\mathrm{PGL}_{n}(K) \curvearrowright \mathrm{P}^{n-1}(K)$

- generically $(n+1)$-transitive
- \mathcal{O} is the set bases of $\mathrm{P}^{n-1}(K)$: orbit of $\left(\left\langle e_{1}\right\rangle, \ldots,\left\langle e_{n}\right\rangle,\left\langle\sum e_{i}\right\rangle\right)$

Generic n-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr . The action is generically n-transitive if there is an orbit $\mathcal{O} \subset X^{n}$ with $\operatorname{rk}\left(X^{n}-\mathcal{O}\right)<\operatorname{rk}\left(X^{n}\right)$.

- i.e. G has a single orbit on X^{n} modulo a set of smaller rank.

Generic n-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr . The action is generically n-transitive if there is an orbit $\mathcal{O} \subset X^{n}$ with $\operatorname{rk}\left(X^{n}-\mathcal{O}\right)<\operatorname{rk}\left(X^{n}\right)$.

- i.e. G has a single orbit on X^{n} modulo a set of smaller rank.

Example

Assume that $G_{1} \curvearrowright X_{1}$ and $G_{2} \curvearrowright X_{2}$ are both generically n-transitive.

Generic n-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr . The action is generically n-transitive if there is an orbit $\mathcal{O} \subset X^{n}$ with $\operatorname{rk}\left(X^{n}-\mathcal{O}\right)<\operatorname{rk}\left(X^{n}\right)$.

- i.e. G has a single orbit on X^{n} modulo a set of smaller rank.

Example

Assume that $G_{1} \curvearrowright X_{1}$ and $G_{2} \curvearrowright X_{2}$ are both generically n-transitive.

- $G_{1} \times G_{2} \curvearrowright X_{1} \times X_{2}$ is generically n-transitive

Generic n-transitivity

Definition

Let $G \curvearrowright X$ be a permutation group of fMr . The action is generically n-transitive if there is an orbit $\mathcal{O} \subset X^{n}$ with $\operatorname{rk}\left(X^{n}-\mathcal{O}\right)<\operatorname{rk}\left(X^{n}\right)$.

- i.e. G has a single orbit on X^{n} modulo a set of smaller rank.

Example

Assume that $G_{1} \curvearrowright X_{1}$ and $G_{2} \curvearrowright X_{2}$ are both generically n-transitive.

- $G_{1} \times G_{2} \curvearrowright X_{1} \times X_{2}$ is generically n-transitive
- $\mathcal{O}=\mathcal{O}_{1} \times \mathcal{O}_{2}$

Limits to generic n-transitivity

Limits to generic n-transitivity

Limits to generic n-transitivity

Limits to generic n-transitivity

Limits to generic n-transitivity

Limits to generic n-transitivity

Limits to generic n-transitivity

Limits to generic n-transitivity

Limits to generic n-transitivity

Limits to generic n-transitivity

n	-	\square	\square	Assume: $G \curvearrowright X$ is transitive and generically n-transitive
6	\square	\square	\square	
5	\square	\square	\square	
4	\square	\square	\square	$\begin{aligned} & \text { - } \mathrm{PGL}_{d+1}(K) \curvearrowright \mathrm{P}^{d}(K) \\ & \text { - } \mathrm{AGL}_{d}(K) \curvearrowright K^{d} \\ & \text { - } \mathrm{GL}_{d}(K) \curvearrowright K^{d}-\{0\} \end{aligned}$
3	\square	\square	\bullet	
2	\square	-		
1	\bullet			
	1	2	$3 \quad d:=r k(X)$	

Limits to generic n-transitivity

n	-	\square	\square	Assume: $G \curvearrowright X$ is transitive
6	\square	\square	\square	
5	\square	\square	\square	
4	\square	\square	\square	
3	\square	\square	\bullet	- $\mathrm{PGL}_{d+1}(K) \curvearrowright \mathrm{P}^{d}(K)$
2	-	-		- $\mathrm{AGL}_{d}(K) \curvearrowright K^{d} \mathrm{CL}_{d}(K) \curvearrowright K^{d}-\{0\}$
1	-			,
	1	2	3	rk(X)

Limits to generic n-transitivity

Limits to generic n-transitivity

n	व	ロ	\square	Assume: $G \curvearrowright X$ is transitive
6	\square	\square	\square	
5	\square	\square	\square	
4	\square	\square	\square	
3	\square	\square	\bullet	- $\mathrm{PGL}_{d+1}(K) \curvearrowright \mathrm{P}^{d}(K)$
2	\square	-		- $\mathrm{AGL}_{d}(K) \curvearrowright K^{d} \mathrm{GL}_{d}(K) \curvearrowright K^{d}-\{0\}$
1	-			,
	1	2	3	$=\mathrm{rk}(X)$

Borovik-Cherlin Problem (2008)

Limits to generic n-transitivity

Borovik-Cherlin Problem (2008)

Show that $n \geq d+2 \Longrightarrow$

Limits to generic n-transitivity

Borovik-Cherlin Problem (2008)

Show that $n \geq d+2 \Longrightarrow G \curvearrowright X \cong \mathrm{PGL}_{d+1}(K) \curvearrowright \mathrm{P}^{d}(K)$

The Borovik-Cherlin Problem: towards the bound

Suppose $G \curvearrowright X$ is generically n-transitive. Let $(1, \ldots, n) \in \mathcal{O}$.

The Borovik-Cherlin Problem: towards the bound

Suppose $G \curvearrowright X$ is generically n-transitive. Let $(1, \ldots, n) \in \mathcal{O}$.

- Any permutation of $(1, \ldots, n)$ is again in \mathcal{O}.

The Borovik-Cherlin Problem: towards the bound

Suppose $G \curvearrowright X$ is generically n-transitive. Let $(1, \ldots, n) \in \mathcal{O}$.

- Any permutation of $(1, \ldots, n)$ is again in \mathcal{O}.
- $G_{\{1, \ldots, n\}} / G_{1, \ldots, n} \cong \operatorname{Sym}(n)$.

The Borovik-Cherlin Problem: towards the bound

Suppose $G \curvearrowright X$ is generically n-transitive. Let $(1, \ldots, n) \in \mathcal{O}$.

- Any permutation of $(1, \ldots, n)$ is again in \mathcal{O}.
- $G_{\{1, \ldots, n\}} / G_{1, \ldots, n} \cong \operatorname{Sym}(n)$.

Further assume generic sharp n-transitivity: $G_{1, \ldots, n}=1$.

The Borovik-Cherlin Problem: towards the bound

Suppose $G \curvearrowright X$ is generically n-transitive. Let $(1, \ldots, n) \in \mathcal{O}$.

- Any permutation of $(1, \ldots, n)$ is again in \mathcal{O}.
- $G_{\{1, \ldots, n\}} / G_{1, \ldots, n} \cong \operatorname{Sym}(n)$.

Further assume generic sharp n-transitivity: $G_{1, \ldots, n}=1$. Consider:

$$
G_{\{1, \ldots, n\}} \cap G_{n} \cong \operatorname{Sym}(n-1) .
$$

The Borovik-Cherlin Problem: towards the bound

Suppose $G \curvearrowright X$ is generically n-transitive. Let $(1, \ldots, n) \in \mathcal{O}$.

- Any permutation of $(1, \ldots, n)$ is again in \mathcal{O}.
- $G_{\{1, \ldots, n\}} / G_{1, \ldots, n} \cong \operatorname{Sym}(n)$.

Further assume generic sharp n-transitivity: $G_{1, \ldots, n}=1$. Consider:

Then,

$$
G_{\{1, \ldots, n\}} \cap G_{n} \cong \operatorname{Sym}(n-1) .
$$

The Borovik-Cherlin Problem: towards the bound

Suppose $G \curvearrowright X$ is generically n-transitive. Let $(1, \ldots, n) \in \mathcal{O}$.

- Any permutation of $(1, \ldots, n)$ is again in \mathcal{O}.
- $G_{\{1, \ldots, n\}} / G_{1, \ldots, n} \cong \operatorname{Sym}(n)$.

Further assume generic sharp n-transitivity: $G_{1, \ldots, n}=1$. Consider:

Then,

$$
G_{\{1, \ldots, n\}} \cap G_{n} \cong \operatorname{Sym}(n-1) .
$$

- $\operatorname{Sym}(n-1)$ acts faithfully on $G_{1, \ldots, n-1}$.

The Borovik-Cherlin Problem: towards the bound

Suppose $G \curvearrowright X$ is generically n-transitive. Let $(1, \ldots, n) \in \mathcal{O}$.

- Any permutation of $(1, \ldots, n)$ is again in \mathcal{O}.
- $G_{\{1, \ldots, n\}} / G_{1, \ldots, n} \cong \operatorname{Sym}(n)$.

Further assume generic sharp n-transitivity: $G_{1, \ldots, n}=1$. Consider:

Then,

$$
G_{\{1, \ldots, n\}} \cap G_{n} \cong \operatorname{Sym}(n-1) .
$$

- $\operatorname{Sym}(n-1)$ acts faithfully on $G_{1, \ldots, n-1}$.
- This is because $G_{1, \ldots, n-1}$ has a generic orbit containing n.

The Borovik-Cherlin Problem: towards the bound

Suppose $G \curvearrowright X$ is generically n-transitive. Let $(1, \ldots, n) \in \mathcal{O}$.

- Any permutation of $(1, \ldots, n)$ is again in \mathcal{O}.
- $G_{\{1, \ldots, n\}} / G_{1, \ldots, n} \cong \operatorname{Sym}(n)$.

Further assume generic sharp n-transitivity: $G_{1, \ldots, n}=1$. Consider:

Then,

$$
G_{\{1, \ldots, n\}} \cap G_{n} \cong \operatorname{Sym}(n-1) .
$$

- $\operatorname{Sym}(n-1)$ acts faithfully on $G_{1, \ldots, n-1}$.
- This is because $G_{1, \ldots, n-1}$ has a generic orbit containing n.

Observation

If $G \curvearrowright X$ is generically sharply n-transitive with $\operatorname{rk}(X)=d$. Then there is a faithful, definable action of $\operatorname{Sym}(n-1)$ on a (connected) group H of rank d.

The Borovik-Cherlin Problem: towards the bound

Suppose $G \curvearrowright X$ is generically n-transitive. Let $(1, \ldots, n) \in \mathcal{O}$.

- Any permutation of $(1, \ldots, n)$ is again in \mathcal{O}.
- $G_{\{1, \ldots, n\}} / G_{1, \ldots, n} \cong \operatorname{Sym}(n)$.

Further assume generic sharp n-transitivity: $G_{1, \ldots, n}=1$. Consider:

Then,

$$
G_{\{1, \ldots, n\}} \cap G_{n} \cong \operatorname{Sym}(n-1) .
$$

- $\operatorname{Sym}(n-1)$ acts faithfully on $G_{1, \ldots, n-1}$.
- This is because $G_{1, \ldots, n-1}$ has a generic orbit containing n.

Observation

If $G \curvearrowright X$ is generically sharply n-transitive with $\operatorname{rk}(X)=d$. Then there is a faithful, definable action of $\operatorname{Sym}(n-1)$ on a (connected) group H of rank d. Real life indicates that n can not be much larger than d (leading towards the desired bound),

The Borovik-Cherlin Problem: towards the bound

Suppose $G \curvearrowright X$ is generically n-transitive. Let $(1, \ldots, n) \in \mathcal{O}$.

- Any permutation of $(1, \ldots, n)$ is again in \mathcal{O}.
- $G_{\{1, \ldots, n\}} / G_{1, \ldots, n} \cong \operatorname{Sym}(n)$.

Further assume generic sharp n-transitivity: $G_{1, \ldots, n}=1$. Consider:

Then,

$$
G_{\{1, \ldots, n\}} \cap G_{n} \cong \operatorname{Sym}(n-1) .
$$

- $\operatorname{Sym}(n-1)$ acts faithfully on $G_{1, \ldots, n-1}$.
- This is because $G_{1, \ldots, n-1}$ has a generic orbit containing n.

Observation

If $G \curvearrowright X$ is generically sharply n-transitive with $\operatorname{rk}(X)=d$. Then there is a faithful, definable action of $\operatorname{Sym}(n-1)$ on a (connected) group H of rank d. Real life indicates that n can not be much larger than d (leading towards the desired bound), and the critical case should be when H is abelian.

The Borovik-Cherlin Problem: towards the bound

Suppose $G \curvearrowright X$ is generically n-transitive. Let $(1, \ldots, n) \in \mathcal{O}$.

- Any permutation of $(1, \ldots, n)$ is again in \mathcal{O}.
- $G_{\{1, \ldots, n\}} / G_{1, \ldots, n} \cong \operatorname{Sym}(n)$.

Further assume generic sharp n-transitivity: $G_{1, \ldots, n}=1$. Consider:

Then,

$$
G_{\{1, \ldots, n\}} \cap G_{n} \cong \operatorname{Sym}(n-1) .
$$

- $\operatorname{Sym}(n-1)$ acts faithfully on $G_{1, \ldots, n-1}$.
- This is because $G_{1, \ldots, n-1}$ has a generic orbit containing n.

Observation

If $G \curvearrowright X$ is generically sharply n-transitive with $\operatorname{rk}(X)=d$. Then there is a faithful, definable action of $\operatorname{Sym}(n-1)$ on a (connected) group H of rank d. Real life indicates that n can not be much larger than d (leading towards the desired bound), and the critical case should be when H is abelian.

So we turn to the study of Sym(n)-modules (in a general context).

New context and results

Modules with an additive dimension

The context: choosing a universe

We seek a notion of dimension for certain abelian groups that covers:

The context: choosing a universe

We seek a notion of dimension for certain abelian groups that covers:

- the classical case of (finite dimensional) vector spaces;

The context: choosing a universe

We seek a notion of dimension for certain abelian groups that covers:

- the classical case of (finite dimensional) vector spaces;
- groups of finite Morley rank;

The context: choosing a universe

We seek a notion of dimension for certain abelian groups that covers:

- the classical case of (finite dimensional) vector spaces;
- groups of finite Morley rank;
- other familiar dimensioned/ranked settings.

The context: choosing a universe

We seek a notion of dimension for certain abelian groups that covers:

- the classical case of (finite dimensional) vector spaces;
- groups of finite Morley rank;
- other familiar dimensioned/ranked settings.

We take a "local" approach.

The context: choosing a universe

We seek a notion of dimension for certain abelian groups that covers:

- the classical case of (finite dimensional) vector spaces;
- groups of finite Morley rank;
- other familiar dimensioned/ranked settings.

We take a "local" approach.

Definition

Let V be an abelian group (possibly in an enriched language).

The context: choosing a universe

We seek a notion of dimension for certain abelian groups that covers:

- the classical case of (finite dimensional) vector spaces;
- groups of finite Morley rank;
- other familiar dimensioned/ranked settings.

We take a "local" approach.

Definition

Let V be an abelian group (possibly in an enriched language).

- $\mathcal{U}_{\mathrm{ALG}}(V):=\operatorname{HSP}_{\text {fin }}(V)$ is obtained by closing under homomorphic images, substructures, and finite products.

The context: choosing a universe

We seek a notion of dimension for certain abelian groups that covers:

- the classical case of (finite dimensional) vector spaces;
- groups of finite Morley rank;
- other familiar dimensioned/ranked settings.

We take a "local" approach.

Definition

Let V be an abelian group (possibly in an enriched language).

- $\mathcal{U}_{\mathrm{ALG}}(V):=\operatorname{HSP}_{\text {fin }}(V)$ is obtained by closing under homomorphic images, substructures, and finite products.
- $\mathcal{U}_{\text {DEF }}(V)$ is the collection of all sets definable/interpretable from V.

The context: choosing a universe

We seek a notion of dimension for certain abelian groups that covers:

- the classical case of (finite dimensional) vector spaces;
- groups of finite Morley rank;
- other familiar dimensioned/ranked settings.

We take a "local" approach.

Definition

Let V be an abelian group (possibly in an enriched language).

- $\mathcal{U}_{\mathrm{ALG}}(V):=H S P_{\text {fin }}(V)$ is obtained by closing under homomorphic images, substructures, and finite products.
- $\mathcal{U}_{\text {DEF }}(V)$ is the collection of all sets definable/interpretable from V. Set $\mathcal{U}(V):=\mathcal{U}_{\text {ALG }}(V) \cap \mathcal{U}_{\text {DEF }}(V)$.

The context: choosing a universe

Definition

Let V be an abelian group (possibly in an enriched language).

- $\mathcal{U}_{\text {ALG }}(V):=H S P_{\text {fin }}(V)$ is obtained by closing under homomorphic images, substructures, and finite products.
- $\mathcal{U}_{\text {DEF }}(V)$ is the collection of all sets definable/interpretable from V.

Set $\mathcal{U}(V):=\mathcal{U}_{\text {ALG }}(V) \cap \mathcal{U}_{\text {DEF }}(V)$.

The context: choosing a universe

Definition

Let V be an abelian group (possibly in an enriched language).

- $\mathcal{U}_{\text {ALG }}(V):=H S P_{\text {fin }}(V)$ is obtained by closing under homomorphic images, substructures, and finite products.
- $\mathcal{U}_{\text {DEF }}(V)$ is the collection of all sets definable/interpretable from V.

Set $\mathcal{U}(V):=\mathcal{U}_{\text {ALG }}(V) \cap \mathcal{U}_{\text {DEF }}(V)$.

Remarks

The context: choosing a universe

Definition

Let V be an abelian group (possibly in an enriched language).

- $\mathcal{U}_{\text {ALG }}(V):=H S P_{\text {fin }}(V)$ is obtained by closing under homomorphic images, substructures, and finite products.
- $\mathcal{U}_{\text {DEF }}(V)$ is the collection of all sets definable/interpretable from V.

Set $\mathcal{U}(V):=\mathcal{U}_{\text {ALG }}(V) \cap \mathcal{U}_{\text {DEF }}(V)$.

Remarks

1. If V has additional specified algebraic structure (e.g. being a vector space over some F), $\mathcal{U}_{\text {ALG }}(V)$ is computed accordingly.

The context: choosing a universe

Definition

Let V be an abelian group (possibly in an enriched language).

- $\mathcal{U}_{\text {ALG }}(V):=H S P_{\text {fin }}(V)$ is obtained by closing under homomorphic images, substructures, and finite products.
- $\mathcal{U}_{\text {DEF }}(V)$ is the collection of all sets definable/interpretable from V.

Set $\mathcal{U}(V):=\mathcal{U}_{\text {ALG }}(V) \cap \mathcal{U}_{\text {DEF }}(V)$.

Remarks

1. If V has additional specified algebraic structure (e.g. being a vector space over some F), $\mathcal{U}_{\text {ALG }}(V)$ is computed accordingly.
2. $\mathcal{U}(V)$ could reasonably be called the "definable pseudo-variety generated by V."

The context: choosing a universe

Definition

Let V be an abelian group (possibly in an enriched language).

- $\mathcal{U}_{\mathrm{ALG}}(V):=\operatorname{HSP}_{\text {fin }}(V)$ is obtained by closing under homomorphic images, substructures, and finite products.
- $\mathcal{U}_{\text {DEF }}(V)$ is the collection of all sets definable/interpretable from V.

Set $\mathcal{U}(V):=\mathcal{U}_{\text {ALG }}(V) \cap \mathcal{U}_{\text {DEF }}(V)$.

Remarks

1. If V has additional specified algebraic structure (e.g. being a vector space over some F), $\mathcal{U}_{\text {ALG }}(V)$ is computed accordingly.
2. $\mathcal{U}(V)$ could reasonably be called the "definable pseudo-variety generated by V."
3. One could axiomatize the appropriate universe for our context, but $\mathcal{U}(V)$ is ultimately what we focus on.

The context: additive dimension

Definition

An additive dimension on $\mathcal{U}(V)$ is a function $\operatorname{dim}: \mathcal{U}(V) \rightarrow \mathbb{N}$ such that if $f: A \rightarrow B$ is a morphism with $A, B, f \in \mathcal{U}(V)$, then

The context: additive dimension

Definition

An additive dimension on $\mathcal{U}(V)$ is a function $\operatorname{dim}: \mathcal{U}(V) \rightarrow \mathbb{N}$ such that if $f: A \rightarrow B$ is a morphism with $A, B, f \in \mathcal{U}(V)$, then
$\operatorname{dim} A=\operatorname{dim} \operatorname{ker} f+\operatorname{dimim} f$.

The context: additive dimension

Definition

An additive dimension on $\mathcal{U}(V)$ is a function $\operatorname{dim}: \mathcal{U}(V) \rightarrow \mathbb{N}$ such that if $f: A \rightarrow B$ is a morphism with $A, B, f \in \mathcal{U}(V)$, then

$$
\operatorname{dim} A=\operatorname{dim} \operatorname{ker} f+\operatorname{dimim} f .
$$

We often simply say V (instead of $\mathcal{U}(V)$) has an additive dimension.

The context: additive dimension

Definition

An additive dimension on $\mathcal{U}(V)$ is a function $\operatorname{dim}: \mathcal{U}(V) \rightarrow \mathbb{N}$ such that if $f: A \rightarrow B$ is a morphism with $A, B, f \in \mathcal{U}(V)$, then

$$
\operatorname{dim} A=\operatorname{dim} \operatorname{ker} f+\operatorname{dimim} f .
$$

We often simply say V (instead of $\mathcal{U}(V)$) has an additive dimension.

Remark

That's it.

The context: additive dimension

Definition

An additive dimension on $\mathcal{U}(V)$ is a function $\operatorname{dim}: \mathcal{U}(V) \rightarrow \mathbb{N}$ such that if $f: A \rightarrow B$ is a morphism with $A, B, f \in \mathcal{U}(V)$, then

$$
\operatorname{dim} A=\operatorname{dim} \operatorname{ker} f+\operatorname{dimim} f .
$$

We often simply say V (instead of $\mathcal{U}(V)$) has an additive dimension.

Remark

That's it.

- We say nothing about the relationship between finiteness and 0 -dimensionality.

The context: additive dimension

Definition

An additive dimension on $\mathcal{U}(V)$ is a function $\operatorname{dim}: \mathcal{U}(V) \rightarrow \mathbb{N}$ such that if $f: A \rightarrow B$ is a morphism with $A, B, f \in \mathcal{U}(V)$, then

$$
\operatorname{dim} A=\operatorname{dim} \operatorname{ker} f+\operatorname{dimim} f .
$$

We often simply say V (instead of $\mathcal{U}(V)$) has an additive dimension.

Remark

That's it.

- We say nothing about the relationship between finiteness and 0-dimensionality.
- We say nothing about chain conditions.

The context: additive dimension

Definition

An additive dimension on $\mathcal{U}(V)$ is a function $\operatorname{dim}: \mathcal{U}(V) \rightarrow \mathbb{N}$ such that if $f: A \rightarrow B$ is a morphism with $A, B, f \in \mathcal{U}(V)$, then

$$
\operatorname{dim} A=\operatorname{dim} \operatorname{ker} f+\operatorname{dimim} f .
$$

We often simply say V (instead of $\mathcal{U}(V)$) has an additive dimension.

Remark

That's it.

- We say nothing about the relationship between finiteness and 0 -dimensionality.
- We say nothing about chain conditions.
- We also say nothing about elementary extensions.

Examples of groups with an additive dimension

Examples (Algebraic)

Examples of groups with an additive dimension

Examples (Algebraic)

1. A finite dimensional vector space equipped with linear dimension

Examples of groups with an additive dimension

Examples (Algebraic)

1. A finite dimensional vector space equipped with linear dimension
2. A finitely generated abelian group equipped with torsion-free rank

Examples of groups with an additive dimension

Examples (Algebraic)

1. A finite dimensional vector space equipped with linear dimension
2. A finitely generated abelian group equipped with torsion-free rank
3. A finite sum $\bigoplus_{N} C_{p^{\infty}}$ equipped with Prüfer p-rank

Examples of groups with an additive dimension

Examples (Algebraic)

1. A finite dimensional vector space equipped with linear dimension
2. A finitely generated abelian group equipped with torsion-free rank
3. A finite sum $\bigoplus_{N} C_{p^{\infty}}$ equipped with Prüfer p-rank

- Prüfer p-rank is the max κ for which the group contains $\bigoplus_{\kappa} C_{p \infty}$

Examples of groups with an additive dimension

Examples (Algebraic)

1. A finite dimensional vector space equipped with linear dimension
2. A finitely generated abelian group equipped with torsion-free rank
3. A finite sum $\bigoplus_{N} C_{p^{\infty}}$ equipped with Prüfer p-rank

- Prüfer p-rank is the max κ for which the group contains $\bigoplus_{\kappa} C_{p \infty}$ In all cases, $\mathcal{U}(V)$ has an additive dimension because all of $\mathcal{U}_{\text {ALG }}(V)$ does.

Examples of groups with an additive dimension

Examples (Algebraic)

1. A finite dimensional vector space equipped with linear dimension
2. A finitely generated abelian group equipped with torsion-free rank
3. A finite sum $\bigoplus_{N} C_{p \infty}$ equipped with Prüfer p-rank

- Prüfer p-rank is the max κ for which the group contains $\bigoplus_{\kappa} C_{p \infty}$ In all cases, $\mathcal{U}(V)$ has an additive dimension because all of $\mathcal{U}_{\text {ALG }}(V)$ does.

Examples (Logical)

Examples of groups with an additive dimension

Examples (Algebraic)

1. A finite dimensional vector space equipped with linear dimension
2. A finitely generated abelian group equipped with torsion-free rank
3. A finite sum $\bigoplus_{N} C_{p \infty}$ equipped with Prüfer p-rank

- Prüfer p-rank is the max κ for which the group contains $\bigoplus_{\kappa} C_{p \infty}$ In all cases, $\mathcal{U}(V)$ has an additive dimension because all of $\mathcal{U}_{\text {ALG }}(V)$ does.

Examples (Logical)

1. An abelian group of finite Morley rank equipped with Morley rank

Examples of groups with an additive dimension

Examples (Algebraic)

1. A finite dimensional vector space equipped with linear dimension
2. A finitely generated abelian group equipped with torsion-free rank
3. A finite sum $\bigoplus_{N} C_{p \infty}$ equipped with Prüfer p-rank

- Prüfer p-rank is the max κ for which the group contains $\bigoplus_{\kappa} C_{p \infty}$ In all cases, $\mathcal{U}(V)$ has an additive dimension because all of $\mathcal{U}_{\text {ALG }}(V)$ does.

Examples (Logical)

1. An abelian group of finite Morley rank equipped with Morley rank
2. An abelian group definable in an o-minimal structure equipped with o-minimal dimension

Examples of groups with an additive dimension

Examples (Algebraic)

1. A finite dimensional vector space equipped with linear dimension
2. A finitely generated abelian group equipped with torsion-free rank
3. A finite sum $\bigoplus_{N} C_{p \infty}$ equipped with Prüfer p-rank

- Prüfer p-rank is the max κ for which the group contains $\bigoplus_{\kappa} C_{p \infty}$ In all cases, $\mathcal{U}(V)$ has an additive dimension because all of $\mathcal{U}_{\text {ALG }}(V)$ does.

Examples (Logical)

1. An abelian group of finite Morley rank equipped with Morley rank
2. An abelian group definable in an o-minimal structure equipped with o-minimal dimension

In all cases, $\mathcal{U}(V)$ has an additive dimension because all of $\mathcal{U}_{\text {DEF }}(V)$ does.

Modules and Connectedness

Definition \& Fact (Connectedness \& Properties)

Suppose V has an additive dimension. We say V is dim-connected if

Modules and Connectedness

Definition \& Fact (Connectedness \& Properties)

Suppose V has an additive dimension. We say V is dim-connected if

$$
W<V \Longrightarrow \operatorname{dim} W<\operatorname{dim} V
$$

for all $W \in \mathcal{U}(V)$.

Modules and Connectedness

Definition \& Fact (Connectedness \& Properties)

Suppose V has an additive dimension. We say V is dim-connected if

$$
W<V \Longrightarrow \operatorname{dim} W<\operatorname{dim} V
$$

for all $W \in \mathcal{U}(V)$. One finds that:

Modules and Connectedness

Definition \& Fact (Connectedness \& Properties)

Suppose V has an additive dimension. We say V is dim-connected if

$$
W<V \Longrightarrow \operatorname{dim} W<\operatorname{dim} V
$$

for all $W \in \mathcal{U}(V)$. One finds that:

- Dim-connectedness is preserved under images of definable morphisms;

Modules and Connectedness

Definition \& Fact (Connectedness \& Properties)

Suppose V has an additive dimension. We say V is dim-connected if

$$
W<V \Longrightarrow \operatorname{dim} W<\operatorname{dim} V
$$

for all $W \in \mathcal{U}(V)$. One finds that:

- Dim-connectedness is preserved under images of definable morphisms;
- Sums of dim-connected groups are dim-connected.

Modules and Connectedness

Definition \& Fact (Connectedness \& Properties)

Suppose V has an additive dimension. We say V is dim-connected if

$$
W<V \Longrightarrow \operatorname{dim} W<\operatorname{dim} V
$$

for all $W \in \mathcal{U}(V)$. One finds that:

- Dim-connectedness is preserved under images of definable morphisms;
- Sums of dim-connected groups are dim-connected.

Definition (Module)

Let G be a group. We will call V a G-module if

Modules and Connectedness

Definition \& Fact (Connectedness \& Properties)

Suppose V has an additive dimension. We say V is dim-connected if

$$
W<V \Longrightarrow \operatorname{dim} W<\operatorname{dim} V
$$

for all $W \in \mathcal{U}(V)$. One finds that:

- Dim-connectedness is preserved under images of definable morphisms;
- Sums of dim-connected groups are dim-connected.

Definition (Module)

Let G be a group. We will call V a G-module if

- V is a dim-connected abelian group with an additive dimension;

Modules and Connectedness

Definition \& Fact (Connectedness \& Properties)

Suppose V has an additive dimension. We say V is dim-connected if

$$
W<V \Longrightarrow \operatorname{dim} W<\operatorname{dim} V
$$

for all $W \in \mathcal{U}(V)$. One finds that:

- Dim-connectedness is preserved under images of definable morphisms;
- Sums of dim-connected groups are dim-connected.

Definition (Module)

Let G be a group. We will call V a G-module if

- V is a dim-connected abelian group with an additive dimension;
- G acts on V with each $g \in G$ a definable automorphism (i.e. $g \in \mathcal{U}(V)$).

Modules and Connectedness

Definition \& Fact (Connectedness \& Properties)

Suppose V has an additive dimension. We say V is dim-connected if

$$
W<V \Longrightarrow \operatorname{dim} W<\operatorname{dim} V
$$

for all $W \in \mathcal{U}(V)$. One finds that:

- Dim-connectedness is preserved under images of definable morphisms;
- Sums of dim-connected groups are dim-connected.

Definition (Module)

Let G be a group. We will call V a G-module if

- V is a dim-connected abelian group with an additive dimension;
- G acts on V with each $g \in G$ a definable automorphism (i.e. $g \in \mathcal{U}(V)$).

Further, if V has no proper nontrivial (dim-connected) G-modules, we say V is dim-irreducible.

A crucial parameter: the characteristic

Definition (Characteristic)

Let p be a prime and V be a module. Define the characteristic as follows:

A crucial parameter: the characteristic

Definition (Characteristic)

Let p be a prime and V be a module. Define the characteristic as follows:

- char $V=p$ if V has exponent p;

A crucial parameter: the characteristic

Definition (Characteristic)

Let p be a prime and V be a module. Define the characteristic as follows:

- char $V=p$ if V has exponent p;
- char $V=0$ if V is divisible ($\forall v \in V, \forall n \in \mathbb{Z}_{>0}, n w=v$ has a solution);

A crucial parameter: the characteristic

Definition (Characteristic)

Let p be a prime and V be a module. Define the characteristic as follows:

- char $V=p$ if V has exponent p;
- char $V=0$ if V is divisible ($\forall v \in V, \forall n \in \mathbb{Z}_{>0}, n w=v$ has a solution);
- char V is undefined otherwise.

A crucial parameter: the characteristic

Definition (Characteristic)

Let p be a prime and V be a module. Define the characteristic as follows:

- char $V=p$ if V has exponent p;
- char $V=0$ if V is divisible ($\forall v \in V, \forall n \in \mathbb{Z}_{>0}, n w=v$ has a solution);
- char V is undefined otherwise.

Examples

A crucial parameter: the characteristic

Definition (Characteristic)

Let p be a prime and V be a module. Define the characteristic as follows:

- char $V=p$ if V has exponent p;
- char $V=0$ if V is divisible ($\forall v \in V, \forall n \in \mathbb{Z}_{>0}, n w=v$ has a solution);
- char V is undefined otherwise.

Examples

1. char $\mathbb{C}^{+}=0=$ char \mathbb{C}^{\times}.

A crucial parameter: the characteristic

Definition (Characteristic)

Let p be a prime and V be a module. Define the characteristic as follows:

- char $V=p$ if V has exponent p;
- char $V=0$ if V is divisible ($\forall v \in V, \forall n \in \mathbb{Z}_{>0}, n w=v$ has a solution);
- char V is undefined otherwise.

Examples

1. char $\mathbb{C}^{+}=0=$ char \mathbb{C}^{\times}.
2. If $V=\bigoplus_{N} C_{p \infty}$, then char $V=0$ (and V is torsion).

A crucial parameter: the characteristic

Definition (Characteristic)

Let p be a prime and V be a module. Define the characteristic as follows:

- char $V=p$ if V has exponent p;
- char $V=0$ if V is divisible ($\forall v \in V, \forall n \in \mathbb{Z}_{>0}, n w=v$ has a solution);
- char V is undefined otherwise.

Examples

1. char $\mathbb{C}^{+}=0=$ char \mathbb{C}^{\times}.
2. If $V=\bigoplus_{N} C_{p \infty}$, then char $V=0$ (and V is torsion).
3. If $V=\mathbb{C}^{+} \oplus \overline{\mathbb{F}}_{2}^{+}$, then char V is undefined.

A crucial parameter: the characteristic

Definition (Characteristic)

Let p be a prime and V be a module. Define the characteristic as follows:

- char $V=p$ if V has exponent p;
- char $V=0$ if V is divisible ($\forall v \in V, \forall n \in \mathbb{Z}_{>0}, n w=v$ has a solution);
- char V is undefined otherwise.

Examples

1. char $\mathbb{C}^{+}=0=\operatorname{char} \mathbb{C}^{\times}$.
2. If $V=\bigoplus_{N} C_{p^{\infty}}$, then char $V=0$ (and V is torsion).
3. If $V=\mathbb{C}^{+} \oplus \overline{\mathbb{F}}_{2}^{+}$, then char V is undefined.

Remark

Dim-irreducible modules always have a characteristic.

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2 -divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

Proof: $\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0$.

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

Proof: $\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0$.

- $\operatorname{tr}_{g} \circ \operatorname{ad}_{g}=1-g^{2}=\operatorname{ad}_{g} \circ \operatorname{tr}_{g}$

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

Proof: $\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0$.

- $\operatorname{tr}_{g} \circ \mathrm{ad}_{g}=1 \quad g^{2^{2}}=\frac{0}{=} \mathrm{ad}_{g} \circ \operatorname{tr}_{g}$

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

Proof: $\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0$.

- $\operatorname{tr}_{g} \circ \operatorname{ad}_{g}=1 \quad g^{2^{2}} \stackrel{0}{=} \operatorname{ad}_{g} \circ \operatorname{tr}_{g}$
- $B_{g} \leq \operatorname{ker}\left(\operatorname{tr}_{g}\right)$ and $C_{g} \leq \operatorname{ker}\left(\operatorname{ad}_{g}\right)$

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

Proof: $\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0$.

- $\operatorname{tr}_{g} \circ \operatorname{ad}_{g}=1 \quad g^{2^{2}} \stackrel{0}{=} \operatorname{ad}_{g} \circ \operatorname{tr}_{g}$
- $B_{g} \leq \operatorname{ker}\left(\operatorname{tr}_{g}\right)$ and $C_{g} \leq \operatorname{ker}\left(\operatorname{ad}_{g}\right)$
- $B_{g} \cap C_{g} \leq \operatorname{ker}\left(\operatorname{tr}_{g}\right) \cap \operatorname{ker}\left(\operatorname{ad}_{g}\right)$

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

Proof: $\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0$.

- $\operatorname{tr}_{g} \circ \operatorname{ad}_{g}=1 \quad g^{2^{2}} \stackrel{0}{=} \operatorname{ad}_{g} \circ \operatorname{tr}_{g}$
- $B_{g} \leq \operatorname{ker}\left(\operatorname{tr}_{g}\right)$ and $C_{g} \leq \operatorname{ker}\left(\operatorname{ad}_{g}\right)$
- $B_{g} \cap C_{g} \leq \operatorname{ker}\left(\operatorname{tr}_{g}\right) \cap \operatorname{ker}\left(\operatorname{ad}_{g}\right) \leq \Omega_{2}(V)$

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

Proof: $\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0$.

- $\operatorname{tr}_{g} \circ \mathrm{ad}_{g}=1 \quad g^{2^{2}} \stackrel{0}{=} \mathrm{ad}_{g} \circ \operatorname{tr}_{g}$
- $B_{g} \leq \operatorname{ker}\left(\operatorname{tr}_{g}\right)$ and $C_{g} \leq \operatorname{ker}\left(\operatorname{ad}_{g}\right)$
- $B_{g} \cap C_{g} \leq \operatorname{ker}\left(\operatorname{trg}_{g}\right) \cap \operatorname{ker}\left(\operatorname{ad}_{g}\right) \leq \Omega_{2}(V)$
- Our hypotheses imply $\operatorname{dim} \Omega_{2}(V)=0$

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

Proof: $V=B_{g}+C_{g}$.

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

Proof: $V=B_{g}+C_{g}$.

- $\operatorname{dim} V \geq \operatorname{dim} \operatorname{ker}\left(\operatorname{ad}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\operatorname{tr}_{g}\right)\left(\operatorname{since} \operatorname{dim}\left(\operatorname{ker}\left(\operatorname{ad}_{g}\right) \cap \operatorname{ker}\left(\operatorname{tr}_{g}\right)\right)=0\right)$

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

Proof: $V=B_{g}+C_{g}$.

- $\operatorname{dim} V \geq \operatorname{dim} \operatorname{ker}\left(\operatorname{ad}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\operatorname{tr}_{g}\right)\left(\right.$ since $\left.\operatorname{dim}\left(\operatorname{ker}\left(\operatorname{ad}_{g}\right) \cap \operatorname{ker}\left(\operatorname{tr}_{g}\right)\right)=0\right)$
- $\operatorname{dim} V=\operatorname{dimim}\left(\operatorname{tr}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\operatorname{tr}_{g}\right)$

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

Proof: $V=B_{g}+C_{g}$.

- $\operatorname{dim} V \geq \operatorname{dim} \operatorname{ker}\left(\operatorname{ad}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\operatorname{trg}_{g}\right)\left(\operatorname{since} \operatorname{dim}\left(\operatorname{ker}\left(\operatorname{ad}_{g}\right) \cap \operatorname{ker}\left(\operatorname{trg}_{g}\right)\right)=0\right)$
- $\operatorname{dim} V=\operatorname{dimim}\left(\operatorname{tr}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\operatorname{tr}_{g}\right) \Longrightarrow \operatorname{dimim}\left(\operatorname{tr}_{g}\right) \geq \operatorname{dim} \operatorname{ker} \operatorname{ad}_{g}$

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

Proof: $V=B_{g}+C_{g}$.

- $\operatorname{dim} V \geq \operatorname{dim} \operatorname{ker}\left(\operatorname{ad}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\operatorname{trg}_{g}\right)\left(\right.$ since $\left.\operatorname{dim}\left(\operatorname{ker}\left(\operatorname{ad}_{g}\right) \cap \operatorname{ker}\left(\operatorname{trg}_{g}\right)\right)=0\right)$
- $\operatorname{dim} V=\operatorname{dimim}\left(\operatorname{tr}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\operatorname{tr}_{g}\right) \Longrightarrow \operatorname{dimim}\left(\operatorname{tr}_{g}\right) \geq \operatorname{dim} k e r \operatorname{ad}_{g}$
- $\operatorname{dim}\left(B_{g}+C_{g}\right)=\operatorname{dimim}\left(\mathrm{ad}_{g}\right)+\operatorname{dimim}\left(\operatorname{tr}_{g}\right)$

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

Proof: $V=B_{g}+C_{g}$.

- $\operatorname{dim} V \geq \operatorname{dim} \operatorname{ker}\left(\operatorname{ad}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\operatorname{tr}_{g}\right)\left(\operatorname{since} \operatorname{dim}\left(\operatorname{ker}\left(\operatorname{ad}_{g}\right) \cap \operatorname{ker}\left(\operatorname{tr}_{g}\right)\right)=0\right)$
- $\operatorname{dim} V=\operatorname{dimim}\left(\operatorname{tr}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\operatorname{tr}_{g}\right) \Longrightarrow \operatorname{dimim}\left(\operatorname{tr}_{g}\right) \geq \operatorname{dim} k e r \operatorname{ad}_{g}$
- $\operatorname{dim}\left(B_{g}+C_{g}\right)=\operatorname{dimim}\left(\operatorname{ad}_{g}\right)+\operatorname{dimim}\left(\operatorname{tr}_{g}\right) \geq \operatorname{dimim}\left(\operatorname{ad}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\operatorname{ad}_{g}\right)$

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

Proof: $V=B_{g}+C_{g}$.

- $\operatorname{dim} V \geq \operatorname{dim} \operatorname{ker}\left(\operatorname{ad}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\operatorname{tr}_{g}\right)\left(\operatorname{since} \operatorname{dim}\left(\operatorname{ker}\left(\operatorname{ad}_{g}\right) \cap \operatorname{ker}\left(\operatorname{tr}_{g}\right)\right)=0\right)$
- $\operatorname{dim} V=\operatorname{dimim}\left(\operatorname{trg}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\operatorname{tr}_{g}\right) \Longrightarrow \operatorname{dimim}\left(\operatorname{tr}_{g}\right) \geq \operatorname{dim} \operatorname{ker} \operatorname{ad}_{g}$
- $\operatorname{dim}\left(B_{g}+C_{g}\right)=\operatorname{dimim}\left(\mathrm{ad}_{g}\right)+\operatorname{dimim}\left(\operatorname{tr}_{g}\right) \geq \operatorname{dimim}\left(\operatorname{ad}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\mathrm{ad}_{g}\right)=\operatorname{dim} V$

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

Proof: $V=B_{g}+C_{g}$.

- $\operatorname{dim} V \geq \operatorname{dim} \operatorname{ker}\left(\operatorname{ad}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\operatorname{tr}_{g}\right)\left(\operatorname{since} \operatorname{dim}\left(\operatorname{ker}\left(\operatorname{ad}_{g}\right) \cap \operatorname{ker}\left(\operatorname{tr}_{g}\right)\right)=0\right)$
- $\operatorname{dim} V=\operatorname{dimim}\left(\operatorname{tr}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\operatorname{tr}_{g}\right) \Longrightarrow \operatorname{dimim}\left(\operatorname{tr}_{g}\right) \geq \operatorname{dim} \operatorname{ker} \operatorname{ad}_{g}$
- $\operatorname{dim}\left(B_{g}+C_{g}\right)=\operatorname{dimim}\left(\mathrm{ad}_{g}\right)+\operatorname{dimim}\left(\operatorname{tr}_{g}\right) \geq \operatorname{dimim}\left(\operatorname{ad}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\mathrm{ad}_{g}\right)=\operatorname{dim} V$
- $\operatorname{dim}\left(B_{g}+C_{g}\right)=\operatorname{dim} V$

A first principle

Fact (Coprimality: special case of $p=2$)

Let V be a $\langle g\rangle$-module with $|g|=2$. Assume char V exists and is not 2 (or simply V is 2-divisible). Set

- $B_{g}:=\operatorname{ad}_{g}(V)$ where $\operatorname{ad}_{g}=1-g \in \operatorname{End}(V)$;
- $C_{g}:=\operatorname{tr}_{g}(V)$ where $\operatorname{tr}_{g}=1+g \in \operatorname{End}(V)$.

Then $V=B_{g}(+) C_{g}$ (meaning $V=B_{g}+C_{g}$ and $\left.\operatorname{dim}\left(B_{g} \cap C_{g}\right)=0\right)$.

Proof: $V=B_{g}+C_{g}$.

- $\operatorname{dim} V \geq \operatorname{dim} \operatorname{ker}\left(\operatorname{ad}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\operatorname{tr}_{g}\right)\left(\operatorname{since} \operatorname{dim}\left(\operatorname{ker}\left(\operatorname{ad}_{g}\right) \cap \operatorname{ker}\left(\operatorname{tr}_{g}\right)\right)=0\right)$
- $\operatorname{dim} V=\operatorname{dimim}\left(\operatorname{tr}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\operatorname{tr}_{g}\right) \Longrightarrow \operatorname{dimim}\left(\operatorname{tr}_{g}\right) \geq \operatorname{dim} \operatorname{ker} \operatorname{ad}_{g}$
- $\operatorname{dim}\left(B_{g}+C_{g}\right)=\operatorname{dimim}\left(\mathrm{ad}_{g}\right)+\operatorname{dimim}\left(\operatorname{tr}_{g}\right) \geq \operatorname{dimim}\left(\operatorname{ad}_{g}\right)+\operatorname{dim} \operatorname{ker}\left(\mathrm{ad}_{g}\right)=\operatorname{dim} V$
- $\operatorname{dim}\left(B_{g}+C_{g}\right)=\operatorname{dim} V \Longrightarrow B_{g}+C_{g}=V$ (by dim-connectedness)

New context and results

The faithful $\operatorname{Sym}(n)$ - and $\operatorname{Alt}(n)$-modules of minimal dimension

The standard module for Sym(n)

Definition (Standard Module)

Let perm $\mathbb{Z}^{n}=\mathbb{Z} e_{1} \oplus \cdots \oplus \mathbb{Z} e_{n}$ be the $\operatorname{Sym}(n)$-module where the e_{i} are permuted naturally.

The standard module for Sym(n)

Definition (Standard Module)

Let perm ${ }_{\mathbb{Z}}^{n}=\mathbb{Z} e_{1} \oplus \cdots \oplus \mathbb{Z} e_{n}$ be the $\operatorname{Sym}(n)$-module where the e_{i} are permuted naturally. There are two obvious submodules:

The standard module for Sym (n)

Definition (Standard Module)

Let perm $\mathbb{Z}^{n}=\mathbb{Z} e_{1} \oplus \cdots \oplus \mathbb{Z} e_{n}$ be the $\operatorname{Sym}(n)$-module where the e_{i} are permuted naturally. There are two obvious submodules:

- $\operatorname{triv}_{\mathbb{Z}}^{n}=\left\{c e_{1}+\cdots+c e_{n}\right\}$

The standard module for Sym(n)

Definition (Standard Module)

Let perm ${ }_{\mathbb{Z}}^{n}=\mathbb{Z} e_{1} \oplus \cdots \oplus \mathbb{Z} e_{n}$ be the $\operatorname{Sym}(n)$-module where the e_{i} are permuted naturally. There are two obvious submodules:

- $\operatorname{triv}_{\mathbb{Z}}^{n}=\left\{c e_{1}+\cdots+c e_{n}\right\}$
- $\operatorname{std}_{\mathbb{Z}}^{n}=\left\{c_{1} e_{1}+\cdots+c_{n} e_{n} \mid \sum c_{i}=0\right\}$

The standard module for Sym(n)

Definition (Standard Module)

Let perm $\mathbb{Z}^{n}=\mathbb{Z} e_{1} \oplus \cdots \oplus \mathbb{Z} e_{n}$ be the $\operatorname{Sym}(n)$-module where the e_{i} are permuted naturally. There are two obvious submodules:

- $\operatorname{triv}_{\mathbb{Z}}^{n}=\left\{c e_{1}+\cdots+c e_{n}\right\}$
- $\operatorname{std}_{\mathbb{Z}}^{n}=\left\{c_{1} e_{1}+\cdots+c_{n} e_{n} \mid \sum c_{i}=0\right\}$

For any abelian group L (with trivial $\operatorname{Sym}(n)$-action), we define:

The standard module for Sym(n)

Definition (Standard Module)

Let perm $\mathbb{Z}^{n}=\mathbb{Z} e_{1} \oplus \cdots \oplus \mathbb{Z} e_{n}$ be the $\operatorname{Sym}(n)$-module where the e_{i} are permuted naturally. There are two obvious submodules:

- $\operatorname{triv}_{\mathbb{Z}}^{n}=\left\{c e_{1}+\cdots+c e_{n}\right\}$
- $\operatorname{std}_{\mathbb{Z}}^{n}=\left\{c_{1} e_{1}+\cdots+c_{n} e_{n} \mid \sum c_{i}=0\right\}$

For any abelian group L (with trivial $\operatorname{Sym}(n)$-action), we define:

- $\operatorname{perm}_{L}^{n}=\operatorname{perm}_{\mathbb{Z}}^{n} \otimes L=\left\{e_{1} \otimes c_{1}+\cdots+e_{n} \otimes c_{n}\right\}$

The standard module for Sym (n)

Definition (Standard Module)

Let perm $\mathbb{Z}^{n}=\mathbb{Z} e_{1} \oplus \cdots \oplus \mathbb{Z} e_{n}$ be the $\operatorname{Sym}(n)$-module where the e_{i} are permuted naturally. There are two obvious submodules:

- $\operatorname{triv}_{\mathbb{Z}}^{n}=\left\{c e_{1}+\cdots+c e_{n}\right\}$
- $\operatorname{std}_{\mathbb{Z}}^{n}=\left\{c_{1} e_{1}+\cdots+c_{n} e_{n} \mid \sum c_{i}=0\right\}$

For any abelian group L (with trivial $\operatorname{Sym}(n)$-action), we define:

- $\operatorname{perm}_{L}^{n}=\operatorname{perm}_{\mathbb{Z}}^{n} \otimes L=\left\{e_{1} \otimes c_{1}+\cdots+e_{n} \otimes c_{n}\right\}$
- $\operatorname{triv}_{L}^{n}=\operatorname{triv}_{\mathbb{Z}}^{n} \otimes L=\left\{e_{1} \otimes c+\cdots+e_{n} \otimes c\right\}$

The standard module for Sym(n)

Definition (Standard Module)

Let perm $\mathbb{Z}^{n}=\mathbb{Z} e_{1} \oplus \cdots \oplus \mathbb{Z} e_{n}$ be the $\operatorname{Sym}(n)$-module where the e_{i} are permuted naturally. There are two obvious submodules:

- $\operatorname{triv}_{\mathbb{Z}}^{n}=\left\{c e_{1}+\cdots+c e_{n}\right\}$
- $\operatorname{std}_{\mathbb{Z}}^{n}=\left\{c_{1} e_{1}+\cdots+c_{n} e_{n} \mid \sum c_{i}=0\right\}$

For any abelian group L (with trivial $\operatorname{Sym}(n)$-action), we define:

- $\operatorname{perm}_{L}^{n}=\operatorname{perm}_{\mathbb{Z}}^{n} \otimes L=\left\{e_{1} \otimes c_{1}+\cdots+e_{n} \otimes c_{n}\right\}$
- $\operatorname{triv}_{L}^{n}=\operatorname{triv}_{\mathbb{Z}}^{n} \otimes L=\left\{e_{1} \otimes c+\cdots+e_{n} \otimes c\right\}$
- $\operatorname{std}_{L}^{n}=\operatorname{std}_{\mathbb{Z}}^{n} \otimes L=\left\{e_{1} \otimes c_{1}+\cdots+e_{n} \otimes c_{n} \mid \sum c_{i}=0\right\}$

The standard module for Sym(n)

Definition (Standard Module)

Let perm $\mathbb{Z}^{n}=\mathbb{Z} e_{1} \oplus \cdots \oplus \mathbb{Z} e_{n}$ be the $\operatorname{Sym}(n)$-module where the e_{i} are permuted naturally. There are two obvious submodules:

- $\operatorname{triv}_{\mathbb{Z}}^{n}=\left\{c e_{1}+\cdots+c e_{n}\right\}$
- $\operatorname{std}_{\mathbb{Z}}^{n}=\left\{c_{1} e_{1}+\cdots+c_{n} e_{n} \mid \sum c_{i}=0\right\}$

For any abelian group L (with trivial $\operatorname{Sym}(n)$-action), we define:

- $\operatorname{perm}_{L}^{n}=\operatorname{perm}_{\mathbb{Z}}^{n} \otimes L=\left\{e_{1} \otimes c_{1}+\cdots+e_{n} \otimes c_{n}\right\}$
- $\operatorname{triv}_{L}^{n}=\operatorname{triv}_{\mathbb{Z}}^{n} \otimes L=\left\{e_{1} \otimes c+\cdots+e_{n} \otimes c\right\}$
- $\operatorname{std}_{L}^{n}=\operatorname{std}_{\mathbb{Z}}^{n} \otimes L=\left\{e_{1} \otimes c_{1}+\cdots+e_{n} \otimes c_{n} \mid \sum c_{i}=0\right\}$
- $\overline{\operatorname{std}}_{L}^{n}=\operatorname{std}_{L}^{n} /\left(\operatorname{std}_{L}^{n} \cap \operatorname{triv}_{L}^{n}\right)$

The standard module for Sym(n)

Definition (Standard Module)

Let perm $\mathbb{Z}^{n}=\mathbb{Z} e_{1} \oplus \cdots \oplus \mathbb{Z} e_{n}$ be the $\operatorname{Sym}(n)$-module where the e_{i} are permuted naturally. There are two obvious submodules:

- $\operatorname{triv}_{\mathbb{Z}}^{n}=\left\{c e_{1}+\cdots+c e_{n}\right\}$
- $\operatorname{std}_{\mathbb{Z}}^{n}=\left\{c_{1} e_{1}+\cdots+c_{n} e_{n} \mid \sum c_{i}=0\right\}$

For any abelian group L (with trivial $\operatorname{Sym}(n)$-action), we define:

- $\operatorname{perm}_{L}^{n}=\operatorname{perm}_{\mathbb{Z}}^{n} \otimes L=\left\{e_{1} \otimes c_{1}+\cdots+e_{n} \otimes c_{n}\right\}$
- $\operatorname{triv}_{L}^{n}=\operatorname{triv}_{\mathbb{Z}}^{n} \otimes L=\left\{e_{1} \otimes c+\cdots+e_{n} \otimes c\right\}$
- $\operatorname{std}_{L}^{n}=\operatorname{std}_{\mathbb{Z}}^{n} \otimes L=\left\{e_{1} \otimes c_{1}+\cdots+e_{n} \otimes c_{n} \mid \sum c_{i}=0\right\}$
- $\overline{\operatorname{std}}_{L}^{n}=\operatorname{std}_{L}^{n} /\left(\operatorname{std}_{L}^{n} \cap \operatorname{triv}_{L}^{n}\right)$

Remark

Notice that $\operatorname{std}_{L}^{n}=\overline{\operatorname{std}}_{L}^{n} \Longleftrightarrow \Omega_{n}(L)=0$.

The standard module for Sym(n)

Remarks

The standard module for Sym(n)

Remarks

1. If L is a trivial $\operatorname{Sym}(n)$-module (with an additive dimension), then each of $\operatorname{perm}_{L}^{n}, \operatorname{std}_{L}^{n}$, and $\overline{\operatorname{std}_{L}^{n}}$ are $\operatorname{Sym}(n)$-modules (with an additive dimension).

The standard module for Sym(n)

Remarks

1. If L is a trivial $\operatorname{Sym}(n)$-module (with an additive dimension), then each of $\operatorname{perm}_{L}^{n}, \operatorname{std}_{L}^{n}$, and $\overline{\operatorname{std}_{L}^{n}}$ are $\operatorname{Sym}(n)$-modules (with an additive dimension).
2. Regarding irreducibility:

The standard module for Sym(n)

Remarks

1. If L is a trivial $\operatorname{Sym}(n)$-module (with an additive dimension), then each of $\operatorname{perm}_{L}^{n}, \operatorname{std}_{L}^{n}$, and $\overline{\operatorname{std}_{L}^{n}}$ are $\operatorname{Sym}(n)$-modules (with an additive dimension).
2. Regarding irreducibility:

- $\operatorname{std}_{\mathbb{Q}}^{n}$ is faithful and irreducible.

The standard module for Sym(n)

Remarks

1. If L is a trivial $\operatorname{Sym}(n)$-module (with an additive dimension), then each of $\operatorname{perm}_{L}^{n}, \operatorname{std}_{L}^{n}$, and $\overline{\operatorname{std}_{L}^{n}}$ are $\operatorname{Sym}(n)$-modules (with an additive dimension).
2. Regarding irreducibility:

- $\operatorname{std}_{\mathbb{Q}}^{n}$ is faithful and irreducible.
- If $p \nmid n, \operatorname{std}_{\mathbb{F}_{p}}^{n}=\overline{\operatorname{std}}_{\mathbb{F}_{p}}^{n}$ is faithful and irreducible.

The standard module for Sym (n)

Remarks

1. If L is a trivial $\operatorname{Sym}(n)$-module (with an additive dimension), then each of perm $n, \operatorname{std}_{L}^{n}$, and $\overline{\operatorname{std}_{L}^{n}}$ are $\operatorname{Sym}(n)$-modules (with an additive dimension).
2. Regarding irreducibility:

- $\operatorname{std}_{\mathbb{Q}}^{n}$ is faithful and irreducible.
- If $p \nmid n, \operatorname{std}_{\mathbb{F}_{p}}^{n}=\overline{\operatorname{std}_{\mathbb{F}_{p}}^{n}}$ is faithful and irreducible.
- If $p \mid n$ and $n \geq 5, \overline{\operatorname{std}}_{\mathbb{F}_{p}}^{n}$ is faithful and irreducible ($p=2, n=4$ fails)

The standard module for Sym(n)

Remarks

1. If L is a trivial $\operatorname{Sym}(n)$-module (with an additive dimension), then each of $\operatorname{perm}_{L}^{n}, \operatorname{std}_{L}^{n}$, and $\overline{\operatorname{std}_{L}^{n}}$ are $\operatorname{Sym}(n)$-modules (with an additive dimension).
2. Regarding irreducibility:

- $\operatorname{std}_{\mathbb{Q}}^{n}$ is faithful and irreducible.
- If $p \nmid n, \operatorname{std}_{\mathbb{F}_{p}}^{n}=\overline{\operatorname{std}_{\mathbb{F}_{p}}^{n}}$ is faithful and irreducible.
- If $p \mid n$ and $n \geq 5, \overline{\operatorname{std}}_{\mathbb{F}_{p}}^{n}$ is faithful and irreducible ($p=2, n=4$ fails)

Example

Consider $T=\operatorname{Diag}_{n}(\mathbb{C})<\mathrm{GL}_{n}(\mathbb{C})$ viewed as a Sym (n)-module via the action of the Weyl group.

The standard module for Sym(n)

Remarks

1. If L is a trivial $\operatorname{Sym}(n)$-module (with an additive dimension), then each of $\operatorname{perm}_{L}^{n}, \operatorname{std}_{L}^{n}$, and $\overline{\operatorname{std}_{L}^{n}}$ are $\operatorname{Sym}(n)$-modules (with an additive dimension).
2. Regarding irreducibility:

- $\operatorname{std}_{\mathbb{Q}}^{n}$ is faithful and irreducible.
- If $p \nmid n, \operatorname{std}_{\mathbb{F}_{p}}^{n}=\overline{\operatorname{std}_{\mathbb{F}_{p}}^{n}}$ is faithful and irreducible.
- If $p \mid n$ and $n \geq 5, \overline{\operatorname{std}}_{\mathbb{F}_{p}}^{n}$ is faithful and irreducible ($p=2, n=4$ fails)

Example

Consider $T=\operatorname{Diag}_{n}(\mathbb{C})<\mathrm{GL}_{n}(\mathbb{C})$ viewed as a $\operatorname{Sym}(n)$-module via the action of the Weyl group. Let T_{0} be a 1-dimensional subtorus inverted by some transposition τ.

The standard module for Sym(n)

Remarks

1. If L is a trivial $\operatorname{Sym}(n)$-module (with an additive dimension), then each of $\operatorname{perm}_{L}^{n}, \operatorname{std}_{L}^{n}$, and $\overline{\operatorname{std}_{L}^{n}}$ are $\operatorname{Sym}(n)$-modules (with an additive dimension).
2. Regarding irreducibility:

- $\operatorname{std}_{\mathbb{Q}}^{n}$ is faithful and irreducible.
- If $p \nmid n, \operatorname{std}_{\mathbb{F}_{p}}^{n}=\overline{\operatorname{std}_{\mathbb{F}_{p}}^{n}}$ is faithful and irreducible.
- If $p \mid n$ and $n \geq 5, \overline{\operatorname{std}}_{\mathbb{F}_{p}}^{n}$ is faithful and irreducible ($p=2, n=4$ fails)

Example

Consider $T=\operatorname{Diag}_{n}(\mathbb{C})<\mathrm{GL}_{n}(\mathbb{C})$ viewed as a $\operatorname{Sym}(n)$-module via the action of the Weyl group. Let T_{0} be a 1-dimensional subtorus inverted by some transposition τ. Then, as Sym(n)-modules:

The standard module for Sym(n)

Remarks

1. If L is a trivial $\operatorname{Sym}(n)$-module (with an additive dimension), then each of $\operatorname{perm}_{L}^{n}, \operatorname{std}_{L}^{n}$, and $\overline{\operatorname{std}_{L}^{n}}$ are $\operatorname{Sym}(n)$-modules (with an additive dimension).
2. Regarding irreducibility:

- $\operatorname{std}_{\mathbb{Q}}^{n}$ is faithful and irreducible.
- If $p \nmid n, \operatorname{std}_{\mathbb{F}_{p}}^{n}=\overline{\operatorname{std}_{\mathbb{F}_{p}}^{n}}$ is faithful and irreducible.
- If $p \mid n$ and $n \geq 5, \overline{\operatorname{std}}_{\mathbb{F}_{p}}^{n}$ is faithful and irreducible ($p=2, n=4$ fails)

Example

Consider $T=\operatorname{Diag}_{n}(\mathbb{C})<\mathrm{GL}_{n}(\mathbb{C})$ viewed as a $\operatorname{Sym}(n)$-module via the action of the Weyl group. Let T_{0} be a 1-dimensional subtorus inverted by some transposition τ. Then, as Sym (n)-modules:

$$
\operatorname{perm}_{T_{0}}^{n} \cong T
$$

The standard module for Sym(n)

Remarks

1. If L is a trivial $\operatorname{Sym}(n)$-module (with an additive dimension), then each of $\operatorname{perm}_{L}^{n}, \operatorname{std}_{L}^{n}$, and $\overline{\operatorname{std}_{L}^{n}}$ are $\operatorname{Sym}(n)$-modules (with an additive dimension).
2. Regarding irreducibility:

- $\operatorname{std}_{\mathbb{Q}}^{n}$ is faithful and irreducible.
- If $p \nmid n, \operatorname{std}_{\mathbb{F}_{p}}^{n}=\overline{\operatorname{std}_{\mathbb{F}_{p}}^{n}}$ is faithful and irreducible.
- If $p \mid n$ and $n \geq 5, \overline{\operatorname{std}}_{\mathbb{F}_{p}}^{n}$ is faithful and irreducible ($p=2, n=4$ fails)

Example

Consider $T=\operatorname{Diag}_{n}(\mathbb{C})<\mathrm{GL}_{n}(\mathbb{C})$ viewed as a $\operatorname{Sym}(n)$-module via the action of the Weyl group. Let T_{0} be a 1-dimensional subtorus inverted by some transposition τ. Then, as Sym (n)-modules:

$$
\operatorname{perm}_{T_{0}}^{n} \cong T, \operatorname{std}_{T_{0}}^{n} \cong T \cap \operatorname{SL}_{n}(\mathbb{C}) \text {, and }
$$

The standard module for Sym(n)

Remarks

1. If L is a trivial $\operatorname{Sym}(n)$-module (with an additive dimension), then each of $\operatorname{perm}_{L}^{n}, \operatorname{std}_{L}^{n}$, and $\overline{\operatorname{std}_{L}^{n}}$ are $\operatorname{Sym}(n)$-modules (with an additive dimension).
2. Regarding irreducibility:

- $\operatorname{std}_{\mathbb{Q}}^{n}$ is faithful and irreducible.
- If $p \nmid n, \operatorname{std}_{\mathbb{F}_{p}}^{n}=\overline{\operatorname{std}}_{\mathbb{F}_{p}}^{n}$ is faithful and irreducible.
- If $p \mid n$ and $n \geq 5, \widehat{\operatorname{std}}_{\mathbb{F}_{p}}^{n}$ is faithful and irreducible ($p=2, n=4$ fails)

Example

Consider $T=\operatorname{Diag}_{n}(\mathbb{C})<\mathrm{GL}_{n}(\mathbb{C})$ viewed as a $\operatorname{Sym}(n)$-module via the action of the Weyl group. Let T_{0} be a 1-dimensional subtorus inverted by some transposition τ. Then, as Sym(n)-modules:

$$
\operatorname{perm}_{T_{0}}^{n} \cong T, \operatorname{std}_{T_{0}}^{n} \cong T \cap \mathrm{SL}_{n}(\mathbb{C}), \text { and } \overline{\operatorname{std}}_{T_{0}}^{n} \cong \overline{T \cap \mathrm{SL}_{n}(\mathbb{C})} \leq \mathrm{PSL}_{n}(\mathbb{C})
$$

The minimal faithful $\operatorname{Sym}(n)$ - and $\operatorname{Alt}(n)$-modules

Theorem (Corredor-Deloro-W 2018-2021)

Suppose V is faithful and dim-irreducible Sym(n)-module with char $V=q$ and $d:=\operatorname{dim} V<n$.

The minimal faithful $\operatorname{Sym}(n)$ - and $\operatorname{Alt}(n)$-modules

Theorem (Corredor-Deloro-W 2018-2021)

Suppose V is faithful and dim-irreducible $\operatorname{Sym}(n)$-module with char $V=q$ and $d:=\operatorname{dim} V<n$. If $n \geq 7$, then

q	d	Structure of V
$q>0$ and $q \mid n$		
$q>0$ and $q \nmid n$		
$q=0$		

The minimal faithful $\operatorname{Sym}(n)$ - and $\operatorname{Alt}(n)$-modules

Theorem (Corredor-Deloro-W 2018-2021)

Suppose V is faithful and dim-irreducible $\operatorname{Sym}(n)$-module with char $V=q$ and $d:=\operatorname{dim} V<n$. If $n \geq 7$, then

q	d	Structure of V
$q>0$ and $q \mid n$	$n-2$	isomorphic to $\overline{\operatorname{std}_{L}^{n} \text { or } \operatorname{sgn} \otimes \overline{\operatorname{std}}_{L}^{n}}$
$q>0$ and $q \nmid n$		
$q=0$		

for some definable, dim-connected 1-dimensional $L \leq V$.

The minimal faithful $\operatorname{Sym}(n)$ - and $\operatorname{Alt}(n)$-modules

Theorem (Corredor-Deloro-W 2018-2021)

Suppose V is faithful and dim-irreducible $\operatorname{Sym}(n)$-module with char $V=q$ and $d:=\operatorname{dim} V<n$. If $n \geq 7$, then

q	d	Structure of V
$q>0$ and $q \mid n$	$n-2$	isomorphic to $\overline{\operatorname{std}_{L}^{n} \text { or } \operatorname{sgn} \otimes \overline{\operatorname{std}}_{L}^{n}}$
$q>0$ and $q \nmid n$	$n-1$	isomorphic to $\operatorname{std}_{L}^{n}$ or $\operatorname{sgn} \otimes \operatorname{std}_{L}^{n}$
$q=0$		

for some definable, dim-connected 1-dimensional $L \leq V$.

The minimal faithful $\operatorname{Sym}(n)$ - and $\operatorname{Alt}(n)$-modules

Theorem (Corredor-Deloro-W 2018-2021)

Suppose V is faithful and dim-irreducible $\operatorname{Sym}(n)$-module with char $V=q$ and $d:=\operatorname{dim} V<n$. If $n \geq 7$, then

q	d	Structure of V
$q>0$ and $q \mid n$	$n-2$	isomorphic to $\overline{\operatorname{std}_{L}^{n} \text { or } \operatorname{sgn} \otimes \overline{\operatorname{std}}_{L}^{n}}$
$q>0$ and $q \nmid n$	$n-1$	isomorphic to $\operatorname{std}_{L}^{n}$ or $\operatorname{sgn} \otimes \operatorname{std}_{L}^{n}$
$q=0$	$n-1$	covered by $\operatorname{std}_{L}^{n}$ or $\operatorname{sgn} \otimes \operatorname{std}_{L}^{n}$

for some definable, dim-connected 1-dimensional $L \leq V$.

The minimal faithful $\operatorname{Sym}(n)$ - and $\operatorname{Alt}(n)$-modules

Theorem (Corredor-Deloro-W 2018-2021)

Suppose V is faithful and dim-irreducible Sym(n)-module with char $V=q$ and $d:=\operatorname{dim} V<n$. If $n \geq 7$, then

q	d	Structure of V
$q>0$ and $q \mid n$	$n-2$	isomorphic to $\overline{\operatorname{std}_{L}^{n} \text { or } \operatorname{sgn} \otimes \overline{\operatorname{std}}_{L}^{n}}$
$q>0$ and $q \nmid n$	$n-1$	isomorphic to $\operatorname{std}_{L}^{n}$ or $\operatorname{sgn} \otimes \operatorname{std}_{L}^{n}$
$q=0$	$n-1$	covered by $\operatorname{std}_{L}^{n}$ or $\operatorname{sgn} \otimes \operatorname{std}_{L}^{n}$

for some definable, dim-connected 1-dimensional $L \leq V$.

Theorem (Corredor-Deloro-W 2018-2021)

The same is true for $\operatorname{Alt}(n)$-modules provided $n \geq 10$ when $q=2$.

Step 1 - Recognition

Recognition Lemma

Let V be a faithful and dim-irreducible $\operatorname{Sym}(n)$-module.

Step 1 - Recognition

Recognition Lemma

Let V be a faithful and dim-irreducible Sym(n)-module. Further suppose that $\operatorname{Alt}\left(\{1,2\}^{\perp}\right)$ centralizes $B_{(12)}$

Step 1 - Recognition

Recognition Lemma

Let V be a faithful and dim-irreducible Sym(n)-module. Further suppose that

$$
\operatorname{Alt}(n-2) \cong \operatorname{Alt}\left(\{1,2\}^{\perp}\right) \text { centralizes } B_{(12)}
$$

Step 1 - Recognition

Recognition Lemma

Let V be a faithful and dim-irreducible Sym(n)-module. Further suppose that

$$
\operatorname{Alt}(n-2) \cong \operatorname{Alt}\left(\{1,2\}^{\perp}\right) \text { centralizes } B_{(12)}=\operatorname{ad}_{(12)}(V)
$$

Step 1 - Recognition

Recognition Lemma

Let V be a faithful and dim-irreducible Sym(n)-module. Further suppose that

$$
\operatorname{Alt}(n-2) \cong \operatorname{Alt}\left(\{1,2\}^{\perp}\right) \text { centralizes } B_{(12)}=\operatorname{ad}_{(12)}(V)
$$

Then for some abelian group L, there is a surjective morphism $\varphi: \operatorname{std}_{L}^{n} \rightarrow V$ of S-modules.

Step 1 - Recognition

Recognition Lemma

Let V be a faithful and dim-irreducible $\operatorname{Sym}(n)$-module. Further suppose that

$$
\operatorname{Alt}(n-2) \cong \operatorname{Alt}\left(\{1,2\}^{\perp}\right) \text { centralizes } B_{(12)}=\operatorname{ad}_{(12)}(V)
$$

Then for some abelian group L, there is a surjective morphism $\varphi: \operatorname{std}_{L}^{n} \rightarrow V$ of S-modules. Moreover, for $q:=$ char V, the kernel is described as follows:

Step 1 - Recognition

Recognition Lemma

Let V be a faithful and dim-irreducible Sym(n)-module. Further suppose that

$$
\operatorname{Alt}(n-2) \cong \operatorname{Alt}\left(\{1,2\}^{\perp}\right) \text { centralizes } B_{(12)}=\operatorname{ad}_{(12)}(V)
$$

Then for some abelian group L, there is a surjective morphism $\varphi: \operatorname{std}_{L}^{n} \rightarrow V$ of S-modules. Moreover, for $q:=$ char V, the kernel is described as follows:

- if $q \mid n$, then $\operatorname{ker} \varphi=\operatorname{std}_{L}^{n} \cap \operatorname{triv}_{L}^{n}$ and $V \simeq \overline{\operatorname{std}}_{L}^{n}$;

Step 1 - Recognition

Recognition Lemma

Let V be a faithful and dim-irreducible $\operatorname{Sym}(n)$-module. Further suppose that

$$
\operatorname{Alt}(n-2) \cong \operatorname{Alt}\left(\{1,2\}^{\perp}\right) \text { centralizes } B_{(12)}=\operatorname{ad}_{(12)}(V)
$$

Then for some abelian group L, there is a surjective morphism $\varphi: \operatorname{std}_{L}^{n} \rightarrow V$ of S-modules. Moreover, for $q:=$ char V, the kernel is described as follows:

- if $q \mid n$, then $\operatorname{ker} \varphi=\operatorname{std}_{L}^{n} \cap \operatorname{triv}_{L}^{n}$ and $V \simeq \overline{\operatorname{std}}_{L}^{n}$;
- if $0 \neq q \nmid n$, then $\operatorname{ker} \varphi=0$ and $V \simeq \operatorname{std}_{L}^{n}$;

Step 1 - Recognition

Recognition Lemma

Let V be a faithful and dim-irreducible $\operatorname{Sym}(n)$-module. Further suppose that

$$
\operatorname{Alt}(n-2) \cong \operatorname{Alt}\left(\{1,2\}^{\perp}\right) \text { centralizes } B_{(12)}=\operatorname{ad}_{(12)}(V)
$$

Then for some abelian group L, there is a surjective morphism $\varphi: \operatorname{std}_{L}^{n} \rightarrow V$ of S-modules. Moreover, for $q:=$ char V, the kernel is described as follows:

- if $q \mid n$, then $\operatorname{ker} \varphi=\operatorname{std}_{L}^{n} \cap \operatorname{triv}_{L}^{n}$ and $V \simeq \overline{\operatorname{std}}_{L}^{n}$;
- if $0 \neq q \nmid n$, then $\operatorname{ker} \varphi=0$ and $V \simeq \operatorname{std}_{L}^{n}$;
- if $q=0$, then $\operatorname{ker} \varphi=\operatorname{std}_{L}^{n} \cap \operatorname{triv}_{K}^{n}$ for some 0 -dimensional $K \leq \Omega_{n}(L)$.

Step 1 - Recognition

Recognition Lemma

Let V be a faithful and dim-irreducible $\operatorname{Sym}(n)$-module. Further suppose that

$$
\operatorname{Alt}(n-2) \cong \operatorname{Alt}\left(\{1,2\}^{\perp}\right) \text { centralizes } B_{(12)}=\operatorname{ad}_{(12)}(V)
$$

Then for some abelian group L, there is a surjective morphism $\varphi: \operatorname{std}_{L}^{n} \rightarrow V$ of S-modules. Moreover, for $q:=$ char V, the kernel is described as follows:

- if $q \mid n$, then $\operatorname{ker} \varphi=\operatorname{std}_{L}^{n} \cap \operatorname{triv}_{L}^{n}$ and $V \simeq \overline{\operatorname{std}}_{L}^{n}$;
- if $0 \neq q \nmid n$, then $\operatorname{ker} \varphi=0$ and $V \simeq \operatorname{std}_{L}^{n}$;
- if $q=0$, then $\operatorname{ker} \varphi=\operatorname{std}_{L}^{n} \cap \operatorname{triv}_{K}^{n}$ for some 0 -dimensional $K \leq \Omega_{n}(L)$.

Remarks

Step 1 - Recognition

Recognition Lemma

Let V be a faithful and dim-irreducible $\operatorname{Sym}(n)$-module. Further suppose that

$$
\operatorname{Alt}(n-2) \cong \operatorname{Alt}\left(\{1,2\}^{\perp}\right) \text { centralizes } B_{(12)}=\operatorname{ad}_{(12)}(V)
$$

Then for some abelian group L, there is a surjective morphism $\varphi: \operatorname{std}_{L}^{n} \rightarrow V$ of S-modules. Moreover, for $q:=$ char V, the kernel is described as follows:

- if $q \mid n$, then $\operatorname{ker} \varphi=\operatorname{std}_{L}^{n} \cap \operatorname{triv}_{L}^{n}$ and $V \simeq \overline{\operatorname{std}}_{L}^{n}$;
- if $0 \neq q \nmid n$, then $\operatorname{ker} \varphi=0$ and $V \simeq \operatorname{std}_{L}^{n}$;
- if $q=0$, then $\operatorname{ker} \varphi=\operatorname{std}_{L}^{n} \cap \operatorname{triv}_{K}^{n}$ for some 0 -dimensional $K \leq \Omega_{n}(L)$.

Remarks

- One may take L to be $B_{(12)}$, making all relevant objects, including φ, definable.

Step 1 - Recognition

Recognition Lemma

Let V be a faithful and dim-irreducible $\operatorname{Sym}(n)$-module. Further suppose that

$$
\operatorname{Alt}(n-2) \cong \operatorname{Alt}\left(\{1,2\}^{\perp}\right) \text { centralizes } B_{(12)}=\operatorname{ad}_{(12)}(V)
$$

Then for some abelian group L, there is a surjective morphism $\varphi: \operatorname{std}_{L}^{n} \rightarrow V$ of S-modules. Moreover, for $q:=$ char V, the kernel is described as follows:

- if $q \mid n$, then $\operatorname{ker} \varphi=\operatorname{std}_{L}^{n} \cap \operatorname{triv}_{L}^{n}$ and $V \simeq \overline{\operatorname{std}}_{L}^{n}$;
- if $0 \neq q \nmid n$, then $\operatorname{ker} \varphi=0$ and $V \simeq \operatorname{std}_{L}^{n}$;
- if $q=0$, then $\operatorname{ker} \varphi=\operatorname{std}_{L}^{n} \cap \operatorname{triv}_{K}^{n}$ for some 0 -dimensional $K \leq \Omega_{n}(L)$.

Remarks

- One may take L to be $B_{(12)}$, making all relevant objects, including φ, definable.
- We say nothing about the dimension of V.

Step 1 - Recognition

Proof Idea.

We want to build the covering map $\varphi: \operatorname{std}_{L}^{n} \rightarrow V$.

Step 1 - Recognition

Proof Idea.

We want to build the covering map $\varphi: \operatorname{std}_{L}^{n} \rightarrow V$.

1. Let $L=B_{(1 n)}$ as a trivial $\operatorname{Sym}(n)$-module.

Step 1 - Recognition

Proof Idea.

We want to build the covering map $\varphi: \operatorname{std}_{L}^{n} \rightarrow V$.

1. Let $L=B_{(1 n)}$ as a trivial $\operatorname{Sym}(n)$-module.
2. Consider the usual basis for $\operatorname{std}_{\mathbb{Z}}^{n}:\left\{f_{i}:=e_{i}-e_{n}\right\}$. Define φ as follows:

Step 1 - Recognition

Proof Idea.

We want to build the covering map $\varphi: \operatorname{std}_{L}^{n} \rightarrow V$.

1. Let $L=B_{(1 n)}$ as a trivial $\operatorname{Sym}(n)$-module.
2. Consider the usual basis for $\operatorname{std}_{\mathbb{Z}}^{n}:\left\{f_{i}:=e_{i}-e_{n}\right\}$. Define φ as follows:

$$
\varphi\left(f_{i} \otimes \ell\right)=(1 i) \cdot \ell
$$

Step 1 - Recognition

Proof Idea.

We want to build the covering map $\varphi: \operatorname{std}_{L}^{n} \rightarrow V$.

1. Let $L=B_{(1 n)}$ as a trivial $\operatorname{Sym}(n)$-module.
2. Consider the usual basis for $\operatorname{std}_{\mathbb{Z}}^{n}:\left\{f_{i}:=e_{i}-e_{n}\right\}$. Define φ as follows:

$$
\varphi\left(f_{i} \otimes \ell\right)=(1 i) \cdot \ell \in B_{(i n)} \subseteq V .
$$

Step 1 - Recognition

Proof Idea.

We want to build the covering map $\varphi: \operatorname{std}_{L}^{n} \rightarrow V$.

1. Let $L=B_{(1 n)}$ as a trivial $\operatorname{Sym}(n)$-module.
2. Consider the usual basis for $\operatorname{std}_{\mathbb{Z}}^{n}:\left\{f_{i}:=e_{i}-e_{n}\right\}$. Define φ as follows:

$$
\varphi\left(f_{i} \otimes \ell\right)=(1 i) \cdot \ell \in B_{(i n)} \subseteq V .
$$

3. The main assumption yields a (local) description of $\operatorname{Sym}(n)$ on each $B_{(i j)}$, which is used to show φ is a morphism of $\operatorname{Sym}(n)$-modules.

Step 1 - Recognition

Proof Idea.

We want to build the covering map $\varphi: \operatorname{std}_{L}^{n} \rightarrow V$.

1. Let $L=B_{(1 n)}$ as a trivial $\operatorname{Sym}(n)$-module.
2. Consider the usual basis for $\operatorname{std}_{\mathbb{Z}}^{n}:\left\{f_{i}:=e_{i}-e_{n}\right\}$. Define φ as follows:

$$
\varphi\left(f_{i} \otimes \ell\right)=(1 i) \cdot \ell \in B_{(i n)} \subseteq V .
$$

3. The main assumption yields a (local) description of $\operatorname{Sym}(n)$ on each $B_{(i j)}$, which is used to show φ is a morphism of Sym(n)-modules.
4. Finally, we control the kernel.

Step 2 - Extension

Extension Lemma

Let $n \geq 7$ and V be a faithful and dim-irreducible Alt(n)-module.

Step 2 - Extension

Extension Lemma

Let $n \geq 7$ and V be a faithful and dim-irreducible Alt(n)-module. Further suppose that
$\operatorname{Alt}\left(\{1,2,3,4\}^{\perp}\right)$ centralizes $B_{(12)(34)}$.

Step 2 - Extension

Extension Lemma

Let $n \geq 7$ and V be a faithful and dim-irreducible Alt(n)-module. Further suppose that
$\operatorname{Alt}\left(\{1,2,3,4\}^{\perp}\right)$ centralizes $B_{(12)(34)}$.
Then for $q:=$ char V,

Step 2 - Extension

Extension Lemma

Let $n \geq 7$ and V be a faithful and dim-irreducible Alt(n)-module. Further suppose that

$$
\operatorname{Alt}\left(\{1,2,3,4\}^{\perp}\right) \text { centralizes } B_{(12)(34)} .
$$

Then for $q:=$ char V,

- if $q=2$ there is a unique definable action of $\operatorname{Sym}(n)$ extending the Alt(n)-structure;

Step 2 - Extension

Extension Lemma

Let $n \geq 7$ and V be a faithful and dim-irreducible Alt(n)-module. Further suppose that

$$
\operatorname{Alt}\left(\{1,2,3,4\}^{\perp}\right) \text { centralizes } B_{(12)(34)} .
$$

Then for $q:=$ char V,

- if $q=2$ there is a unique definable action of $\operatorname{Sym}(n)$ extending the Alt (n)-structure;
- if $q \neq 2$ there are exactly two such, obtained from each other by tensoring with the signature.

Step 2 - Extension

Extension Lemma

Let $n \geq 7$ and V be a faithful and dim-irreducible Alt(n)-module. Further suppose that

$$
\operatorname{Alt}\left(\{1,2,3,4\}^{\perp}\right) \text { centralizes } B_{(12)(34)} .
$$

Then for $q:=$ char V,

- if $q=2$ there is a unique definable action of $\operatorname{Sym}(n)$ extending the Alt(n)-structure;
- if $q \neq 2$ there are exactly two such, obtained from each other by tensoring with the signature.

Moreover, up to tensoring with the signature, the extension satisfies the assumption of the Recognition Lemma.

Step 2 - Extension

Extension Lemma

Let $n \geq 7$ and V be a faithful and dim-irreducible Alt(n)-module. Further suppose that

$$
\operatorname{Alt}\left(\{1,2,3,4\}^{\perp}\right) \text { centralizes } B_{(12)(34)} .
$$

Then for $q:=$ char V,

- if $q=2$ there is a unique definable action of $\operatorname{Sym}(n)$ extending the Alt(n)-structure;
- if $q \neq 2$ there are exactly two such, obtained from each other by tensoring with the signature.
Moreover, up to tensoring with the signature, the extension satisfies the assumption of the Recognition Lemma.

Remark

We again say nothing about the dimension of V.

Step 3 - Geometrization

Geometrization Lemma

Let V be a faithful $\operatorname{Alt}(n)$-module.

Step 3 - Geometrization

Geometrization Lemma

Let V be a faithful $\operatorname{Alt}(n)$-module. Further suppose $d \leq n-1$ and that either:

Step 3 - Geometrization

Geometrization Lemma

Let V be a faithful Alt(n)-module. Further suppose $d \leq n-1$ and that either:

- $q=2$ and $n \geq 10$; or

Step 3 - Geometrization

Geometrization Lemma

Let V be a faithful Alt(n)-module. Further suppose $d \leq n-1$ and that either:

- $q=2$ and $n \geq 10$; or
- $q \neq 2$ and $n \geq 7$.

Step 3 - Geometrization

Geometrization Lemma

Let V be a faithful $\operatorname{Alt}(n)$-module. Further suppose $d \leq n-1$ and that either:

- $q=2$ and $n \geq 10$; or
- $q \neq 2$ and $n \geq 7$.

Then V satisfies the assumption of the Extension Lemma.

Step 3 - Geometrization

Geometrization Lemma

Let V be a faithful $\operatorname{Alt}(n)$-module. Further suppose $d \leq n-1$ and that either:

- $q=2$ and $n \geq 10$; or
- $q \neq 2$ and $n \geq 7$.

Then V satisfies the assumption of the Extension Lemma.

Remark

The proof of the main theorem is readily assembled from
Geometrization \rightarrow Extension \rightarrow Recognition
with only one fairly minor remaining point to sort out.

Reflections and lingering questions

Final Thoughts

Final Thoughts

Remark

Though our setting is rather general, the "minimal" modules have (thus far) fallen into the familiar linear-algebraic setting. This observation is further amplified by recent work of Alexandre Borovik (arXived in December 2020).

Final Thoughts

Remark

Though our setting is rather general, the "minimal" modules have (thus far) fallen into the familiar linear-algebraic setting. This observation is further amplified by recent work of Alexandre Borovik (arXived in December 2020).

Questions

Final Thoughts

Remark

Though our setting is rather general, the "minimal" modules have (thus far) fallen into the familiar linear-algebraic setting. This observation is further amplified by recent work of Alexandre Borovik (arXived in December 2020).

Questions

1. Can one deal with the remaining small values of n ? There are other (interesting, natural) modules that will come into the picture.

Final Thoughts

Remark

Though our setting is rather general, the "minimal" modules have (thus far) fallen into the familiar linear-algebraic setting. This observation is further amplified by recent work of Alexandre Borovik (arXived in December 2020).

Questions

1. Can one deal with the remaining small values of n ? There are other (interesting, natural) modules that will come into the picture.

- Operating under "minimal = algebraic", we know what to expect. Some folks are working on this...

Final Thoughts

Remark

Though our setting is rather general, the "minimal" modules have (thus far) fallen into the familiar linear-algebraic setting. This observation is further amplified by recent work of Alexandre Borovik (arXived in December 2020).

Questions

1. Can one deal with the remaining small values of n ? There are other (interesting, natural) modules that will come into the picture.

- Operating under "minimal = algebraic", we know what to expect. Some folks are working on this...

2. The Theorem assumes $d<n$; can this be relaxed? One expects to not encounter the "second smallest" modules until $d \approx\binom{n}{2}$.

Final Thoughts

Remark

Though our setting is rather general, the "minimal" modules have (thus far) fallen into the familiar linear-algebraic setting. This observation is further amplified by recent work of Alexandre Borovik (arXived in December 2020).

Questions

1. Can one deal with the remaining small values of n ? There are other (interesting, natural) modules that will come into the picture.

- Operating under "minimal = algebraic", we know what to expect. Some folks are working on this...

2. The Theorem assumes $d<n$; can this be relaxed? One expects to not encounter the "second smallest" modules until $d \approx\binom{n}{2}$.
3. What about G-modules for other G (in this new context)?

Final Thoughts

Remark

Though our setting is rather general, the "minimal" modules have (thus far) fallen into the familiar linear-algebraic setting. This observation is further amplified by recent work of Alexandre Borovik (arXived in December 2020).

Questions

1. Can one deal with the remaining small values of n ? There are other (interesting, natural) modules that will come into the picture.

- Operating under "minimal = algebraic", we know what to expect. Some folks are working on this...

2. The Theorem assumes $d<n$; can this be relaxed? One expects to not encounter the "second smallest" modules until $d \approx\binom{n}{2}$.
3. What about G-modules for other G (in this new context)?
4. What about G-modules where the "module" is nonabelian? There would be immediate applications for this to the Borovik-Cherlin Problem.

Thank You

