01 – Row Echelon Form

Definition: Row Echelon Forms

A matrix A is in row echelon form (REF) if

- 1. all nonzero rows lie above any rows of all zeros;
- 2. the leading entry (from the left) of each nonzero row is strictly to the right of the leading entry of the row above it.

A matrix A is in reduced row echelon form (RREF) if, in addition to 1. and 2., it also satisfies

- 3. the leading entry (from the left) of each nonzero row is a 1 (called the leading one);
- 4. each leading one is the only nonzero entry in its column.
- 1. Determine if each of the following are in REF or RREF.

(a)
$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{pmatrix}
1 & 0 & 1 & 0 & 7 \\
0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

(e)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 7 & 6 \\ 2 & 3 & 4 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 5 \\ 0 & 6 & 7 \end{bmatrix}$$

$$(d) \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1

Definition: Elementary Row Operations

An elementary row operation on a matrix is any of the following.

Replacement: add to one row any multiple of another row $(cr_i + r_j \rightarrow r_j)$

Interchange: interchange two rows $(r_i \leftrightarrow r_j)$

Scale: multiply a row by a <u>nonzero</u> scalar $(cr_i \rightarrow r_i)$

- 2. Look back at the matrices in the previous example.
 - (a) For each matrix that was not in REF, find a sequence of elementary row operations that could be used to transform it into REF.

(b) For each matrix that was already in REF, find a sequence of elementary row operations that could be used to transform it into RREF.