03 - Linear Combinations and Span

Definition: Linear Combination

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be vectors in \mathbb{R}^{n}. Every vector that can be written in the form

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}
$$

where c_{1}, \ldots, c_{k} are scalars in \mathbb{R}, is called a linear combination of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$.

1. Let $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -2 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 5 \\ 5\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}2 \\ 0 \\ 8\end{array}\right]$
(a) Write down three different linear combinations of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.
(b) Is $\left[\begin{array}{r}-3 \\ 6 \\ -6\end{array}\right]$ a linear combinations of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$?
(c) Is $\left[\begin{array}{r}-5 \\ 11 \\ -7\end{array}\right]$ a linear combinations of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$?
2. Suppose you want to determine if a vector \mathbf{b} is a linear combination of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$. Describe how to solve this type of problem using a linear system.

Definition: Span

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be vectors in \mathbb{R}^{n}. The set of all possible linear combinations of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is denoted $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$. It is called the subset spanned by $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ or simply the span of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$.
3. Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ be as in Exercise 1. Is $\left[\begin{array}{r}-3 \\ 6 \\ -6\end{array}\right]$ in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$? Is $\left[\begin{array}{r}-5 \\ 11 \\ -7\end{array}\right]$ in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?
4. Let $\mathbf{a}_{1}=\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{l}0 \\ 3 \\ 6\end{array}\right], \mathbf{a}_{3}=\left[\begin{array}{r}-4 \\ -2 \\ 3\end{array}\right]$. Determine if $\left[\begin{array}{r}4 \\ 1 \\ -4\end{array}\right]$ is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$.

