06 - Linear Independence

Definition: Linear Independence

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be vectors in \mathbb{R}^{n}. The vectors are called linearly independent if the equation

$$
x_{1} \mathbf{v}_{1}+\cdots+x_{k} \mathbf{v}_{k}=\mathbf{0}
$$

has only one solution (which is the trivial solution). If the equation has more than one solution, then the vectors are called linearly dependent.

1. Determine if each set of vectors is linearly independent or dependent.
(a) $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
(c) $\left[\begin{array}{r}3 \\ -5 \\ -6\end{array}\right],\left[\begin{array}{c}-6 \\ 10 \\ 4\end{array}\right]$
(b) $\left[\begin{array}{r}3 \\ 5 \\ -2\end{array}\right],\left[\begin{array}{r}-6 \\ -10 \\ 4\end{array}\right]$
(d) $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 5 \\ 2\end{array}\right],\left[\begin{array}{c}-7 \\ 3 \\ 4\end{array}\right]$
2. Let $\mathbf{v}_{1}=\left[\begin{array}{r}3 \\ -3 \\ 6\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}5 \\ -2 \\ 1\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}0 \\ 3 \\ -9\end{array}\right]$. Show these three vectors are linearly dependent, and write down a dependence relation.
3. Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ be arbitrary vectors in \mathbb{R}^{3}. Explain why the vectors are linearly dependent if and only if one of the vectors can be written as a scalar multiple of the other. Then use your ideas to explain why the next theorem is true.

Theorem

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be vectors in \mathbb{R}^{n}. Then the vectors are linearly dependent if and only if one of the vectors can be written as a linear combination of the others vectors.
4. Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{4}$ be arbitrary vectors in \mathbb{R}^{3}. Explain why the vectors must be linearly dependent. Then use your ideas to explain why the next theorem is true.

Theorem

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be vectors in \mathbb{R}^{n}. If $k>n$, then the vectors are linearly dependent. If $k \leq n$, the vectors might be linearly dependent or independent.

