07 - Matrix Transformations

Definition: Matrix Transformation

A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called a matrix transformation if it can be written as $T(\mathbf{x})=A \mathbf{x}$ for some $m \times n$ matrix A.

1. Let $A=\left[\begin{array}{rr}1 & -3 \\ 3 & 5 \\ -1 & 7\end{array}\right]$, and define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ by $T(\mathbf{x})=A \mathbf{x}$.
(a) Compute the image of $\mathbf{u}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ under T.
(b) Determine if $\mathbf{b}=\left[\begin{array}{r}3 \\ 2 \\ -5\end{array}\right]$ is in the range of T.
(c) Find a vector \mathbf{w} that is not in the range of T.
2. For each transformation below, find the images of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$, find the image of an arbitrary vector $\left[\begin{array}{l}x \\ y\end{array}\right]$, and try to describe the transformation geometrically.
(a) $T_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T_{1}(\mathbf{x})=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right] \mathbf{x}$
(b) $T_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T_{2}(\mathbf{x})=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right] \mathbf{x}$
(c) $T_{3}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T_{3}(\mathbf{x})=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right] \mathbf{x}$

Theorem

The matrix transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
T(\mathbf{x})=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \mathbf{x}
$$

performs a counter-clockwise rotation of \mathbb{R}^{2} by an angle of θ.

