08 – Linear Transformations

Definition: Linear Transformation

A transformation T is called a **linear transformation** if

(i)
$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
, and

(ii)
$$T(c\mathbf{u}) = cT(\mathbf{u})$$

for all \mathbf{u} and \mathbf{v} in the domain of T and all scalars c.

1. Let A be an arbitrary 4×3 matrix, and let $T : \mathbb{R}^3 \to \mathbb{R}^4$ be defined by $T(\mathbf{x}) = A\mathbf{x}$. Write $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \end{bmatrix}$ (where $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$ are the columns of A) and use the definition of a matrix-vector product to show that T is a linear transformation.

Theorem

Every matrix transformation is a linear transformation.

2. Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation. Assume you know that

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}3\\-2\\1\end{bmatrix} \quad T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}0\\7\\5\end{bmatrix}.$$

(a) Find a formula for $T\left(\begin{bmatrix} x \\ y \end{bmatrix}\right)$.

(b) Show that T is a matrix transformation.

Definition: Standard Basis for \mathbb{R}^n

We use \mathbf{e}_k to denote the vector with 1 in the k^{th} -entry and 0 in every other entry.	
When working in \mathbb{R}^3 , $\mathbf{e}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\mathbf{e}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$. In \mathbb{R}^4 , $\mathbf{e}_1 = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$,	

Theorem

Every linear transformation is a matrix transformation. Specifically, if $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then $T(\mathbf{x}) = A\mathbf{x}$ where A is the matrix whose j^{th} column is $T(\mathbf{e}_j)$, i.e.

$$A = \begin{bmatrix} T(\mathbf{e}_1) & \cdots & T(\mathbf{e}_j) & \cdots & T(\mathbf{e}_n) \end{bmatrix}$$

The matrix A is called the **standard matrix** of T.

3. Define $T : \mathbb{R}^3 \to \mathbb{R}^3$ by

$$T\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix}3x_1 - 2x_3\\4x_1\\x_1 - x_2 + x_3\end{bmatrix}.$$

It is a fact that T is a linear transformation. Find the standard matrix of T.