09 - One-to-one \& Onto Transformations

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let A be the standard matrix for T.

1. The following are logically equivalent:

- T maps onto \mathbb{R}^{m}
- for every \mathbf{b} in $\mathbb{R}^{m}, A \mathbf{x}=\mathbf{b}$ has a solution
- the columns of A span \mathbb{R}^{m}
- A has a pivot position in every row

2. The following are logically equivalent:

- T is one-to-one
- for every \mathbf{b} in $\mathbb{R}^{m}, A \mathbf{x}=\mathbf{b}$ has at most one solution
- the columns of A are linearly independent
- A has a pivot position in every column

1. Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
3 x_{1}-2 x_{3} \\
4 x_{1} \\
x_{1}-x_{2}+x_{3}
\end{array}\right] .
$$

The standard matrix for T is $\left[\begin{array}{rrr}3 & 0 & -2 \\ 4 & 0 & 0 \\ 1 & -1 & 1\end{array}\right]$. Show that T is both one-to-one and onto \mathbb{R}^{3}.
2. Define $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ by

$$
T\left(\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}-x_{2}-x_{4} \\
3 x_{1}-3 x_{2}+4 x_{3}+8 x_{4} \\
2 x_{1}-2 x_{2}+2 x_{3}+5 x_{4}
\end{array}\right] .
$$

(a) Find the standard matrix for T.
(b) Show that T maps onto \mathbb{R}^{3} but is not one-to-one.
(c) Find two different vectors whose image under T is $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
3. Explain why a linear transformation from \mathbb{R}^{7} to \mathbb{R}^{3} can not be one-to-one.
4. Explain why a linear transformation from \mathbb{R}^{3} to \mathbb{R}^{7} can not map onto \mathbb{R}^{3}.

