09 – One-to-one & Onto Transformations

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T.

- 1. The following are logically equivalent:
 - T maps onto \mathbb{R}^m
 - for every **b** in \mathbb{R}^m , $A\mathbf{x} = \mathbf{b}$ has a solution
 - the columns of A span \mathbb{R}^m
 - A has a pivot position in every row
- 2. The following are logically equivalent:
 - T is one-to-one
 - for every **b** in \mathbb{R}^m , $A\mathbf{x} = \mathbf{b}$ has at most one solution
 - the columns of A are linearly independent
 - A has a pivot position in every column
- **1.** Define $T : \mathbb{R}^3 \to \mathbb{R}^3$ by

$$T\left(\begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix}3x_1 - 2x_3\\4x_1\\x_1 - x_2 + x_3\end{bmatrix}.$$

The standard matrix for T is $\begin{bmatrix} 3 & 0 & -2 \\ 4 & 0 & 0 \\ 1 & -1 & 1 \end{bmatrix}$. Show that T is both one-to-one and onto \mathbb{R}^3 .

2. Define $T : \mathbb{R}^4 \to \mathbb{R}^3$ by

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} x_1 - x_2 - x_4\\3x_1 - 3x_2 + 4x_3 + 8x_4\\2x_1 - 2x_2 + 2x_3 + 5x_4\end{bmatrix}.$$

(a) Find the standard matrix for T.

(b) Show that T maps onto \mathbb{R}^3 but is *not* one-to-one.

(c) Find two different vectors whose image under T is $\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$

3. Explain why a linear transformation from \mathbb{R}^7 to \mathbb{R}^3 can *not* be one-to-one.

4. Explain why a linear transformation from \mathbb{R}^3 to \mathbb{R}^7 can *not* map onto \mathbb{R}^3 .