10 - Matrix Inverses

Definition: Inverse Matrix

Let A be an $n \times n$ matrix. If there exists a matrix B such that $A B=I_{n}$ and $B A=I_{n}$, then we say A is invertible, and the matrix B is called the inverse of A, denoted by A^{-1}.

Theorem

If a matrix is invertible, then there is only one possible inverse of A.

1. Let $A=\left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right]$.
(a) Verify that $A^{-1}=\left[\begin{array}{cc}-3 & 2 \\ \frac{5}{2} & \frac{-3}{2}\end{array}\right]$ by showing $A A^{-1}=I_{2}=A^{-1} A$.
(b) Use the fact that $A^{-1} A=I_{2}$ to solve $\left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}3 \\ 7\end{array}\right]$.
2. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, and assume that $a d-b c \neq 0$. Verify that $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.

Theorem: Formula for A^{-1} when A is 2×2

Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Define $\operatorname{det} A=a d-b c$, which is called the determinant of A.

1. If $\operatorname{det} A \neq 0$, then $A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.
2. If $\operatorname{det} A=0$, then A is not invertible, i.e. A^{-1} does not exist.

Let A be an $n \times n$ matrix. Then A is invertible if and only if its RREF is I_{n}. Further, when A is invertible, any sequence of row operations that transforms A to I_{n} will also transform I_{n} to A^{-1}.

Theorem: Algorithm for finding A^{-1} when A is $n \times n$
Let A be an $n \times n$ matrix. Row reduce the augmented matrix $\left[A \mid I_{n}\right]$ to RREF.

- If the RREF of $\left[A \mid I_{n}\right]$ is $\left[I_{n} \mid B\right]$, then A is invertible, and $B=A^{-1}$.
- If the RREF of $\left[A \mid I_{n}\right]$ is $\left[\operatorname{not} I_{n} \mid B\right]$, then A is not invertible.

3. Find the inverse of A, if it exists.
(a) $\left[\begin{array}{lll}0 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{rrr}0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8\end{array}\right]$
(c) $\left[\begin{array}{rrr}0 & 1 & -1 \\ 1 & 0 & 1 \\ 4 & -3 & 7\end{array}\right]$
