11 – Subspaces & Bases

Definition: Subspace

A subset H of \mathbb{R}^n is called a **subspace** if the following hold:

- 1. the zero vector $\mathbf{0}$ is in H;
- **2.** if vectors \mathbf{u}_1 and \mathbf{u}_2 are both in H, then $\mathbf{u}_1 + \mathbf{u}_2$ is also in H;
- **3.** if a vector \mathbf{u} is in H and c is a scalar, then $c\mathbf{u}$ is also in H.
- **1.** Let A be an $m \times n$ matrix, and let H be the set of all solutions to $A\mathbf{x} = \mathbf{0}$. Show that H is a subspace of \mathbb{R}^n .

2. Let \mathbf{v}_1 and \mathbf{v}_2 be arbitrary vectors in \mathbb{R}^n . Show that $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2\}$ is a subspace of \mathbb{R}^n .

Theorem

Let $\mathbf{v}_1, \dots, \mathbf{v}_k$ be vectors in \mathbb{R}^n . Then $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a subspace of \mathbb{R}^n .

Definition

Let H be subspace of \mathbb{R}^n . Vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$ form a **basis** for H if

- Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_k\}=H$, and
- $\mathbf{v}_1, \dots, \mathbf{v}_k$ are linearly independent.
- **3.** Determine which of the following are bases for \mathbb{R}^3 .

$$\begin{pmatrix} \mathbf{a} \end{pmatrix} \begin{bmatrix} -1 \\ -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 9 \\ -6 \end{bmatrix}$$

(b)
$$\begin{bmatrix} -1 \\ -2 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \\ -4 \end{bmatrix}, \begin{bmatrix} 3 \\ 9 \\ -6 \end{bmatrix}$$

$$(\mathbf{c}) \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} 5 \\ -7 \\ 4 \end{bmatrix}, \begin{bmatrix} 6 \\ 3 \\ 5 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}$$
, $\begin{bmatrix} 5 \\ -7 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 6 \\ 3 \\ 5 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$