11 - Subspaces \& Bases

Definition: Subspace

A subset H of \mathbb{R}^{n} is called a subspace if the following hold:

1. the zero vector $\mathbf{0}$ is in H;
2. if vectors \mathbf{u}_{1} and \mathbf{u}_{2} are both in H, then $\mathbf{u}_{1}+\mathbf{u}_{2}$ is also in H;
3. if a vector \mathbf{u} is in H and c is a scalar, then $c \mathbf{u}$ is also in H.
4. Let A be an $m \times n$ matrix, and let H be the set of all solutions to $A \mathbf{x}=\mathbf{0}$. Show that H is a subspace of \mathbb{R}^{n}.
5. Let \mathbf{v}_{1} and \mathbf{v}_{2} be arbitrary vectors in \mathbb{R}^{n}. Show that $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a subspace of \mathbb{R}^{n}.

Theorem

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ be vectors in \mathbb{R}^{n}. Then $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is a subspace of \mathbb{R}^{n}.

Let H be subspace of \mathbb{R}^{n}. Vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ form a basis for H if

- $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}=H$, and
- $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly independent.

3. Determine which of the following are bases for \mathbb{R}^{3}.
(a) $\left[\begin{array}{r}-1 \\ -2 \\ 2\end{array}\right],\left[\begin{array}{r}3 \\ 9 \\ -6\end{array}\right]$
(b) $\left[\begin{array}{r}-1 \\ -2 \\ 2\end{array}\right],\left[\begin{array}{r}2 \\ 4 \\ -4\end{array}\right],\left[\begin{array}{r}3 \\ 9 \\ -6\end{array}\right]$
(c) $\left[\begin{array}{r}0 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{r}5 \\ -7 \\ 4\end{array}\right],\left[\begin{array}{l}6 \\ 3 \\ 5\end{array}\right]$
(d) $\left[\begin{array}{r}0 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{r}5 \\ -7 \\ 4\end{array}\right],\left[\begin{array}{l}6 \\ 3 \\ 5\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
