13 - Dimension

Theorem
If H is a nonzero subspace of \mathbb{R}^{n}, then every basis for H consists of the same number of vectors.

Definition: Dimension

If H is a nonzero subspace of \mathbb{R}^{n}, then the number of vectors in a basis for H is called the dimension, denoted $\operatorname{dim} H$. The dimension of the zero subspace $\{0\}$ is defined to be 0 .

1. Determine the dimension of each of the following.
(a) \mathbb{R}^{3}
(b) \mathbb{R}^{n}
(c) $\operatorname{Span}\left\{\left[\begin{array}{r}-1 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{r}2 \\ 4 \\ -2\end{array}\right],\left[\begin{array}{r}3 \\ 9 \\ -3\end{array}\right]\right\}$
(d) $\operatorname{Span}\left\{\left[\begin{array}{r}0 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{r}5 \\ -7 \\ 4\end{array}\right],\left[\begin{array}{l}6 \\ 3 \\ 5\end{array}\right]\right\}$

Let A be a matrix.

- The rank of A is the dimension of $\operatorname{Col}(A)$.
- The nullity of A is the dimension of $\operatorname{Nul}(A)$.

2. Let $A=\left[\begin{array}{rrrr}1 & -3 & 2 & -4 \\ -3 & 9 & -1 & 5 \\ 2 & -6 & 4 & -3 \\ 4 & -12 & 2 & 7\end{array}\right]$
(a) Determine the rank of A.
(b) Determine the nullity of A.

Theorem
Let A be an $m \times n$ matrix. Let p denote the number of pivot positions in A.

1. $\operatorname{rank} A=$ \qquad
2. nullity $A=$ \qquad
3. Rank-Nullity Theorem: $\operatorname{rank} A+\operatorname{nullity} A=$ \qquad
