14 - Eigenvectors \& Eigenvalues

Definition: Eigenvectors \& Eigenvalues for Linear Transformations

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation.

- A scalar λ is called an eigenvalue of T if $T(\mathbf{x})=\lambda \mathbf{x}$ has a nontrivial solution.
- Each nontrivial solution to $T(\mathbf{x})=\lambda \mathbf{x}$ is called an eigenvector associated to λ.
- The set of all solutions to $T(\mathbf{x})=\lambda \mathbf{x}$, denoted $E_{\lambda}(T)$, is the eigenspace of T associated to λ.

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote reflection over the y-axis.
(a) Show that $\lambda=1$ is an eigenvalue of T. Then describe $E_{1}(T)$.
(b) Show that $\lambda=-1$ is an eigenvalue of T. Then describe $E_{-1}(T)$.
(c) What other numbers could be eigenvalues of T ?

Definition: Eigenvectors \& Eigenvalues for Matrices

Let A be an $n \times n$ matrix.

- A scalar λ is called an eigenvalue of A if $A \mathbf{x}=\lambda \mathbf{x}$ has a nontrivial solution.
- Each nontrivial solution to $A \mathbf{x}=\lambda \mathbf{x}$ is called an eigenvector associated to λ.
- The set of all solutions to $A \mathbf{x}=\lambda \mathbf{x}$, denoted $E_{\lambda}(A)$, is the eigenspace of A associated to λ.

2. Let $A=\left[\begin{array}{ll}5 & 0 \\ 2 & 1\end{array}\right]$. Show that $\mathbf{v}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is not an eigenvector of A but $\mathbf{w}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ is.

Let A be an $n \times n$ matrix and λ any scalar.

1. λ is an eigenvalue of $A \Longleftrightarrow\left(A-\lambda I_{n}\right) \mathbf{x}=\mathbf{0}$ has a nontrivial solution.
2. \mathbf{v} is an eignvector associated to $\lambda \Longleftrightarrow \mathbf{v} \neq \mathbf{0}$ and $\left(A-\lambda I_{n}\right) \mathbf{v}=\mathbf{0}$.
3. $E_{\lambda}(A)=\operatorname{Nul}\left(A-\lambda I_{n}\right)$.
4. Let $A=\left[\begin{array}{llll}3 & 0 & 2 & 0 \\ 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 4\end{array}\right]$
(a) Show that $\lambda=4$ is an eigenvalue of A, and find a basis for $E_{4}(A)$.
(b) Show that $\lambda=3$ is not an eigenvalue of A.
