16 - Diagonalization Theorem

Definition

A matrix A is diagonalizable if $A=P D P^{-1}$ (or equivalently $D=P^{-1} A P$) for some diagonal matrix D and some invertible matrix P.

Theorem: Diagonalization Theorem

Let A be an $n \times n$ matrix.

1. A is diagonalizable if and only if A has n linearly independent eigenvectors.
2. If A is diagonalizable and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ are linearly independent eigenvectors for A with corresponding eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then $A=P D P^{-1}$ for

$$
P=\left[\begin{array}{lll}
\mathbf{v}_{1} & \cdots & \mathbf{v}_{n}
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{lll}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{n}
\end{array}\right]
$$

1. Diagonalize the following, if possible.
(a) $B=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$
(b) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$

Theorem

Let A be an $n \times n$ matrix. If A has n different eigenvalues, then A is diagonalizable.
2. Explain why each of the following are diagonalizable.
(a) $A=\left[\begin{array}{lll}5 & 0 & 0 \\ 2 & 0 & 0 \\ 7 & 8 & \pi\end{array}\right]$
(b) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$

