17 – Markov Chains

Definition

- A vector \mathbf{v} is called a **probability vector** if the entries of \mathbf{v} are nonnegative and add up to 1.
- A square matrix T is called a **stochastic matrix** if every column of A is a probability vector.
- If T is a stochastic matrix, then **q** is called a **steady-state vector** for T if q is a probability vector and $T\mathbf{q} = \mathbf{q}$.
- **1.** Assume T is a 3×3 stochastic matrix and $\begin{bmatrix} 3\\2\\5 \end{bmatrix}$ is in $E_1(T)$. Find a steady-state vector for T.

Definition

A Markov chain is an infinite sequence $\mathbf{x}_1, \mathbf{x}_2, \ldots$ of probability vectors together with a stochastic matrix T such that $T\mathbf{x}_{k-1} = \mathbf{x}_k$ for all $k \ge 1$.

Theorem

Let T be a stochastic matrix such that some power of T contains only positive entries. Then T has a unique steady-state vector \mathbf{q} , and every Markov chain of the form $T\mathbf{x}_{k-1} = \mathbf{x}_k$ converges to \mathbf{q} as $k \to \infty$, i.e. $\mathbf{x}_{\infty} = \mathbf{q}$.

Algorithm: Page Rank Algorithm

We want to rank the pages in some network of webpages.

- 1. Create the transition matrix T. This will be a stochastic matrix.
 - In our class, we will simply assume that some power of T contains only positive entries. In general, a matrix without this property can be slightly adjusted so that it does.
- **2.** Find any eigenvector \mathbf{v} in $E_1(T)$.
- **3.** Divide \mathbf{v} by the sum of its entries to get \mathbf{q} . This is the steady-state vector for T; it gives the probabilities of ending up at each page after infinitely-many random clicks.
- 4. The webpage corresponding to the largest value in \mathbf{q} is ranked first, the page corresponding to the second largest value in \mathbf{q} is ranked second, and so on.

2. Consider the following network of webpages below. Each node represents a webpage, and each arrow represents a link from one page to another.

(a) Find the transition matrix T.

(b) Find an eigenvector for T associated to the eigenvalue $\lambda = 1$. You can use a computing tool like WolframAlpha.

(c) Use your answer from the previous part to find the steady-state vector for T.

(d) I had the probabilities of chang up on each page after mininery many random creeks.							
	A	B	C	D	<i>E</i>	F	
(e) Determine the page ranking. (#1 is the most important.)							
	#1	#2	#3	#4	<u> </u> #5 <u> </u>	#6	

(d) Find the probabilities of ending up on each page after infinitely-many random clicks.