17 - Markov Chains

Definition

- A vector \mathbf{v} is called a probability vector if the entries of \mathbf{v} are nonnegative and add up to 1 .
- A square matrix T is called a stochastic matrix if every column of A is a probability vector.
- If T is a stochastic matrix, then \mathbf{q} is called a steady-state vector for T if q is a probability vector and $T \mathbf{q}=\mathbf{q}$.

1. Assume T is a 3×3 stochastic matrix and $\left[\begin{array}{l}3 \\ 2 \\ 5\end{array}\right]$ is in $E_{1}(T)$. Find a steady-state vector for T.

Definition

A Markov chain is an infinite sequence $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots$ of probability vectors together with a stochastic matrix T such that $T \mathbf{x}_{k-1}=\mathbf{x}_{k}$ for all $k \geq 1$.

Theorem

Let T be a stochastic matrix such that some power of T contains only positive entries. Then T has a unique steady-state vector \mathbf{q}, and every Markov chain of the form $T \mathbf{x}_{k-1}=\mathbf{x}_{k}$ converges to \mathbf{q} as $k \rightarrow \infty$, i.e. $\mathbf{x}_{\infty}=\mathbf{q}$.

Algorithm: Page Rank Algorithm

We want to rank the pages in some network of webpages.

1. Create the transition matrix T. This will be a stochastic matrix.

- In our class, we will simply assume that some power of T contains only positive entries. In general, a matrix without this property can be slightly adjusted so that it does.

2. Find any eigenvector \mathbf{v} in $E_{1}(T)$.
3. Divide \mathbf{v} by the sum of its entries to get \mathbf{q}. This is the steady-state vector for T; it gives the probabilities of ending up at each page after infinitely-many random clicks.
4. The webpage corresponding to the largest value in \mathbf{q} is ranked first, the page corresponding to the second largest value in \mathbf{q} is ranked second, and so on.
5. Consider the following network of webpages below. Each node represents a webpage, and each arrow represents a link from one page to another.

(a) Find the transition matrix T.
(b) Find an eigenvector for T associated to the eigenvalue $\lambda=1$.

You can use a computing tool like WolframAlpha.
(c) Use your answer from the previous part to find the steady-state vector for T.
(d) Find the probabilities of ending up on each page after infinitely-many random clicks.

(e) Determine the page ranking. ($\# 1$ is the most important.)
$\# 1 _\quad \# 2 \ldots 3 \ldots \quad \# 5 \ldots \quad \# 6$

