18 - Inner Product

Definition: Inner Product

Let $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right], \mathbf{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ be vectors in \mathbb{R}^{n}. The inner product (or dot product) of \mathbf{u} and \mathbf{v} is

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+\cdots+u_{n} v_{n}
$$

1. Let $\mathbf{u}=\left[\begin{array}{c}3 \\ -1 \\ 5\end{array}\right], \mathbf{v}=\left[\begin{array}{c}0 \\ 7 \\ -2\end{array}\right]$. Compute $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{u}$.

Theorem

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^{n}, and let c be a scalar. Then

1. $\mathbf{u} \cdot \mathrm{v}=\mathrm{v} \cdot \mathrm{u}$
2. $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$
3. $(c \mathbf{u}) \cdot \mathbf{v}=c(\mathbf{u} \cdot \mathbf{v})$
4. $\mathbf{u} \cdot \mathbf{u} \geq 0$ and $\mathbf{u} \cdot \mathbf{u}=0 \Longleftrightarrow \mathbf{u}=0$

Definition: Length \& Distance

- The length (or norm) of a vector \mathbf{v} is $\|\mathbf{v}\|=\sqrt{\mathbf{v} \cdot \mathbf{v}}$. We say \mathbf{v} is unit vector if $\|\mathbf{v}\|=1$.
- The distance between vectors \mathbf{u} and \mathbf{v} is

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\cdots+\left(u_{n}-v_{n}\right)^{2}} .
$$

2. Let $\mathbf{v}=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right], \mathbf{w}=\left[\begin{array}{l}0 \\ 2 \\ 5\end{array}\right]$.
(a) Compute $\operatorname{dist}(\mathbf{v}, \mathbf{w})$.
(b) Find a unit vector \mathbf{u} in the same direction as \mathbf{v}. Graph \mathbf{u}, \mathbf{v}, and \mathbf{w}.

Theorem

If θ is the angle between \mathbf{u} and \mathbf{v}, then $\mathbf{u} \cdot \mathbf{v}=\|\mathbf{u}\| \cdot\|\mathbf{v}\| \cos \theta$.

Definition: Orthogonality

We say vectors \mathbf{u} and \mathbf{v} are orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$. Equivalently, \mathbf{u} and \mathbf{v} are orthogonal if the angle between them is 90°.
3. Let $\mathbf{v}=\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]$.
(a) Show that $\mathbf{w}=\left[\begin{array}{r}1 \\ -1 \\ -1\end{array}\right]$ is not orthogonal to \mathbf{v}. What is the angle between \mathbf{v} and \mathbf{w} ?
(b) Find three different vectors in \mathbb{R} that are orthogonal to \mathbf{v}. How many other vectors are orthogonal to \mathbf{v} ?

