18 – Inner Product

Definition: Inner Product

Let $\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ be vectors in \mathbb{R}^n . The **inner product** (or **dot product**) of \mathbf{u} and \mathbf{v} is $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + \dots + u_n v_n$.

1. Let
$$\mathbf{u} = \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 0 \\ 7 \\ -2 \end{bmatrix}$. Compute $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{u} \cdot \mathbf{u}$.

Theorem

Let $\mathbf{u}, \mathbf{v}, \mathbf{w}$ be vectors in \mathbb{R}^n , and let c be a scalar. Then

- 1. $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$
- 2. $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$

3.
$$(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$$

4. $\mathbf{u} \cdot \mathbf{u} \ge 0$ and $\mathbf{u} \cdot \mathbf{u} = 0 \iff \mathbf{u} = 0$

Definition: Length & Distance

- The length (or norm) of a vector \mathbf{v} is $||\mathbf{v}|| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$. We say \mathbf{v} is unit vector if $||\mathbf{v}|| = 1$.
- The distance between vectors \mathbf{u} and \mathbf{v} is

dist
$$(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \sqrt{(u_1 - v_1)^2 + \dots + (u_n - v_n)^2}$$

2. Let
$$\mathbf{v} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}, \mathbf{w} = \begin{bmatrix} 0 \\ 2 \\ 5 \end{bmatrix}$$
.

(a) Compute $dist(\mathbf{v}, \mathbf{w})$.

(b) Find a unit vector **u** in the same direction as **v**. Graph **u**, **v**, and **w**.

Theorem

If θ is the angle between **u** and **v**, then $\mathbf{u} \cdot \mathbf{v} = ||\mathbf{u}|| \cdot ||\mathbf{v}|| \cos \theta$.

Definition: Orthogonality

We say vectors \mathbf{u} and \mathbf{v} are **orthogonal** if $\mathbf{u} \cdot \mathbf{v} = 0$. Equivalently, \mathbf{u} and \mathbf{v} are orthogonal if the angle between them is 90°.

3. Let
$$\mathbf{v} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}$$
.

(a) Show that $\mathbf{w} = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}$ is not orthogonal to \mathbf{v} . What is the angle between \mathbf{v} and \mathbf{w} ?

(b) Find three different vectors in \mathbb{R} that are orthogonal to \mathbf{v} . How many other vectors are orthogonal to \mathbf{v} ?