19 - Orthogonal Projections

Definition: Projection Onto a Line

Let $L=\operatorname{Span}\{\mathbf{u}\}$ for some nonzero \mathbf{u} in \mathbb{R}^{n}. For any \mathbf{y} in \mathbb{R}^{n}, define the orthogonal projection of \mathbf{y} onto L to be

$$
\operatorname{proj}_{L}(\mathbf{y})=\left(\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\right) \mathbf{u}
$$

Note: we sometimes write $\operatorname{proj}_{\mathbf{u}}(\mathbf{y})$ in place of $\operatorname{proj}_{L}(\mathbf{y})$

1. Let $\mathbf{y}=\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $L=\operatorname{Span}\left\{\left[\begin{array}{l}4 \\ 3\end{array}\right]\right\}$.
(a) Compute $^{\operatorname{proj}_{L}}(\mathbf{y})$.
(b) Let $\hat{\mathbf{y}}=\operatorname{proj}_{L}(\mathbf{y})$ and $\mathbf{b}=\mathbf{y}-\operatorname{proj}_{L}(\mathbf{y}) . \operatorname{Graph} L, \mathbf{y}, \hat{\mathbf{y}}$, and \mathbf{b}.

Definition

A set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is said to be orthogonal if each pair of vectors in the set is orthogonal. If the set is orthogonal and every vector is a unit vector, then the set is said to be orthonormal.
2. Let $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 / 3 \\ 1 / 3\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ 4 \\ 2\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}-1 \\ -4 \\ 7\end{array}\right]$. Verify that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is orthogonal but not orthonormal.
3. Give an example of an orthonormal set of three vectors in \mathbb{R}^{3}.

Theorem

If a set of nonzero vectors forms an orthogonal set, then the vectors are linearly independent.

Definition: Projection Onto a Subspace

Let W be a subspace of \mathbb{R}^{n}, and let $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be any orthogonal basis for W. For any \mathbf{y} in \mathbb{R}^{n}, define the orthogonal projection of \mathbf{y} onto W to be

$$
\operatorname{proj}_{W}(\mathbf{y})=\operatorname{proj}_{\mathbf{u}_{1}}(\mathbf{y})+\cdots+\operatorname{proj}_{\mathbf{u}_{k}}(\mathbf{y})=\left(\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}\right) \mathbf{u}_{1}+\cdots+\left(\frac{\mathbf{y} \cdot \mathbf{u}_{k}}{\mathbf{u}_{k} \cdot \mathbf{u}_{k}}\right) \mathbf{u}_{k} .
$$

Note: $\operatorname{proj}_{W}(\mathbf{y})$ gives the same answer no matter which orthogonal basis you use.
4. Let $W=\operatorname{Span}\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ for $\mathbf{w}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \mathbf{w}_{2}=\left[\begin{array}{r}-1 \\ 3 \\ -2\end{array}\right]$.
(a) Verify that $\mathbf{w}_{1}, \mathbf{w}_{2}$ is an orthogonal basis for W.
(b) Compute $_{\operatorname{proj}_{W}}(\mathbf{y})$ for $\mathbf{y}=\left[\begin{array}{r}-1 \\ 4 \\ 3\end{array}\right]$.
(c) Let $\hat{\mathbf{y}}=\operatorname{proj}_{W}(\mathbf{y})$ and $\mathbf{b}=\mathbf{y}-\operatorname{proj}_{W}(\mathbf{y})$. Use GeoGebra to graph $W, \mathbf{y}, \hat{\mathbf{y}}$, and \mathbf{b}.

Theorem: Best Approximation Theorem

Let W be a subspace of \mathbb{R}^{n}, and let $\hat{\mathbf{y}}=\operatorname{proj}_{W}(\mathbf{y})$. Then $\hat{\mathbf{y}}$ is the vector of W that is closest to \mathbf{y} in the sense that $\operatorname{dist}(\mathbf{y}, \hat{\mathbf{y}}) \leq \operatorname{dist}(\mathbf{y}, \mathbf{w})$ for all \mathbf{w} in W.

