20 - Least Squares

Definition: Least Squares Solution

Let A be an $m \times n$ matrix, and let \mathbf{b} be in \mathbb{R}^{m}. A vector $\hat{\mathbf{x}}$ is called a least squares solution to $A \mathbf{x}=\mathbf{b}$ if $\operatorname{dist}(\mathbf{b}, A \hat{\mathbf{x}}) \leq \operatorname{dist}(\mathbf{b}, A \mathbf{x})$ for all \mathbf{x} in \mathbb{R}^{n}. The number $\operatorname{dist}(\mathbf{b}, A \hat{\mathbf{x}})$ is called the least squares error.

1. Show that $\hat{\mathbf{x}}$ is an actual solution to $A \mathbf{x}=\mathbf{b}$ precisely when $\operatorname{dist}(\mathbf{b}, A \hat{\mathbf{x}})=0$.

Theorem

Let A be an $m \times n$ matrix, and let \mathbf{b} be in \mathbb{R}^{m}. Then $\hat{\mathbf{x}}$ is a least squares solution to $A \mathbf{x}=\mathbf{b}$ if and only if $\hat{\mathbf{x}}$ is a solution to $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.
2. Consider the system $A \mathbf{x}=\mathbf{b}$ where $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 3 \\ 8 \\ 2\end{array}\right]$.
(a) Show that $A \mathbf{x}=\mathbf{b}$ has no solutions.
(b) Find a least squares solution to $A \mathbf{x}=\mathbf{b}$.
(c) What is the least squares error?
3. Suppose you have the data points: $(0,2),(-3,5),(2,3),(4,12)$, and you want to model the data using a quadratic function of the form $f(t)=c_{0}+c_{1} t+c_{2} t^{2}$. Use least squares to find a quadratic function that best fits the data. Then use a graphing tool to plot your answer together with the given data.

