20 – Least Squares

Definition: Least Squares Solution

Let A be an $m \times n$ matrix, and let **b** be in \mathbb{R}^m . A vector $\hat{\mathbf{x}}$ is called a **least squares solution** to $A\mathbf{x} = \mathbf{b}$ if $dist(\mathbf{b}, A\hat{\mathbf{x}}) \leq dist(\mathbf{b}, A\mathbf{x})$ for all \mathbf{x} in \mathbb{R}^n . The number $dist(\mathbf{b}, A\hat{\mathbf{x}})$ is called the **least squares error**.

1. Show that $\hat{\mathbf{x}}$ is an actual solution to $A\mathbf{x} = \mathbf{b}$ precisely when $dist(\mathbf{b}, A\hat{\mathbf{x}}) = 0$.

Theorem

Let A be an $m \times n$ matrix, and let **b** be in \mathbb{R}^m . Then $\hat{\mathbf{x}}$ is a least squares solution to $A\mathbf{x} = \mathbf{b}$ if and only if $\hat{\mathbf{x}}$ is a solution to $A^T A \mathbf{x} = A^T \mathbf{b}$.

- **2.** Consider the system $A\mathbf{x} = \mathbf{b}$ where $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 8 \\ 2 \end{bmatrix}$.
 - (a) Show that $A\mathbf{x} = \mathbf{b}$ has no solutions.

(b) Find a least squares solution to $A\mathbf{x} = \mathbf{b}$.

(c) What is the least squares error?

3. Suppose you have the data points: (0,2), (-3,5), (2,3), (4,12), and you want to model the data using a quadratic function of the form $f(t) = c_0 + c_1 t + c_2 t^2$. Use least squares to find a quadratic function that best fits the data. Then use a graphing tool to plot your answer together with the given data.