04 – Matrix-Vector Products

Definition: Matrix-Vector Product (MVP)

Suppose that A is an $m \times n$ matrix, and let $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ be in \mathbb{R}^n . Let $\mathbf{a}_1, \mathbf{a}_2, \dots \mathbf{a}_n$ be the columns of

A. Then we define the product $A\mathbf{x}$ by

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n.$$

1. Compute the following.

(a)
$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 7 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 7 & -3 \\ 2 & 1 \\ 9 & -6 \\ -3 & 2 \end{bmatrix} \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

Theorem

Suppose that A is an $m \times n$ matrix, and let **b** be in \mathbb{R}^m . Let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ be the columns of A. Then each of the following have the same solution set.

- Linear system (as a matrix): $\begin{bmatrix} a_1 & a_2 & \cdots & a_n \mid b \end{bmatrix}$
- Matrix equation: Ax = b
- Vector equation (using columns of A): $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n = \mathbf{b}$

Theorem

Suppose that A is an $m \times n$ matrix. Let $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ be the columns of A. Then the following are logically equivalent. (If one is true, they all are; if one is not true, none are.)

- (a) A has a pivot position in every row.
- (b) For every **b** in \mathbb{R}^m , the linear system with matrix $[A \mid \mathbf{b}]$ has a solution.
- (c) For every **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- (d) For every **b** in \mathbb{R}^m , **b** is a linear combination of the columns of A.
- (e) The columns of A span \mathbb{R}^m : every vector in \mathbb{R}^m is in Span $\{\mathbf{a}_1, \dots, \mathbf{a}_n\}$.
- 2. Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -3 \\ 2 \\ -1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -4 \\ 6 \\ -8 \end{bmatrix}$. Determine if every vector in \mathbb{R}^3 is in Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$