04 - Matrix-Vector Products

Definition: Matrix-Vector Product (MVP)
Suppose that A is an $m \times n$ matrix, and let $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ be in \mathbb{R}^{n}. Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{n}$ be the columns of
A. Then we define the product $A \mathbf{x}$ by

$$
A \mathbf{x}=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}
$$

1. Compute the following.
(a) $\left[\begin{array}{rrr}1 & 2 & -1 \\ 0 & -5 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 3 \\ 7\end{array}\right]$
(b) $\left[\begin{array}{rrr}1 & 2 & -1 \\ 0 & -5 & 3\end{array}\right]\left[\begin{array}{l}4 \\ 3\end{array}\right]$
(c) $\left[\begin{array}{rr}7 & -3 \\ 2 & 1 \\ 9 & -6 \\ -3 & 2\end{array}\right]\left[\begin{array}{l}-2 \\ -5\end{array}\right]$

Theorem

Suppose that A is an $m \times n$ matrix, and let \mathbf{b} be in \mathbb{R}^{m}. Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ be the columns of A. Then each of the following have the same solution set.

- Linear system (as a matrix): $\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n} \mid \mathbf{b}\end{array}\right]$
- Matrix equation: $A \mathrm{x}=\mathrm{b}$
- Vector equation (using columns of A): $x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\cdots+x_{n} \mathbf{a}_{n}=\mathbf{b}$

Theorem

Suppose that A is an $m \times n$ matrix. Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ be the columns of A. Then the following are logically equivalent. (If one is true, they all are; if one is not true, none are.)
(a) A has a pivot position in every row.
(b) For every \mathbf{b} in \mathbb{R}^{m}, the linear system with matrix $[A \mid \mathbf{b}]$ has a solution.
(c) For every \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
(d) For every \mathbf{b} in $\mathbb{R}^{m}, \mathbf{b}$ is a linear combination of the columns of A.
(e) The columns of A span \mathbb{R}^{m} : every vector in \mathbb{R}^{m} is in $\operatorname{Span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$.
2. Let $\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -3 \\ 5\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-3 \\ 2 \\ -1\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}-4 \\ 6 \\ -8\end{array}\right]$. Determine if every vector in \mathbb{R}^{3} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$

