08 - Linear Transformations

Definition: Linear Transformation

A transformation T is called a linear transformation if
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$, and
(ii) $T(c \mathbf{u})=c T(\mathbf{u})$
for all \mathbf{u} and \mathbf{v} in the domain of T and all scalars c.

1. Let A be an arbitrary 4×3 matrix, and let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ be defined by $T(\mathbf{x})=A \mathbf{x}$. Write $A=\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3}\end{array}\right]$ (where $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ are the columns of A) and use the definition of a matrix-vector product to show that T is a linear transformation.

Theorem

Every matrix transformation is a linear transformation.
2. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is a linear transformation. Assume you know that

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{r}
3 \\
-2 \\
1
\end{array}\right] \quad T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
7 \\
5
\end{array}\right] .
$$

(a) Find a formula for $T\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)$.
(b) Show that T is a matrix transformation.

Definition: Standard Basis for \mathbb{R}^{n}

We use \mathbf{e}_{k} to denote the vector with 1 in the $k^{\text {th }}$-entry and 0 in every other entry.
When working in $\mathbb{R}^{3}, \mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \mathbf{e}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. In $\mathbb{R}^{4}, \mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right], \ldots$.

Theorem

Every linear transformation is a matrix transformation. Specifically, if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then $T(\mathbf{x})=A \mathbf{x}$ where A is the matrix whose $j^{\text {th }}$ column is $T\left(\mathbf{e}_{j}\right)$, i.e.

$$
A=\left[\begin{array}{lllll}
T\left(\mathbf{e}_{1}\right) & \cdots & T\left(\mathbf{e}_{j}\right) & \cdots & T\left(\mathbf{e}_{n}\right)
\end{array}\right]
$$

The matrix A is called the standard matrix of T.
3. Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by the rule that T rotates each point counter-clockwise by 60° and then reflects the result over the x-axis. It is a fact that T is a linear transformation; find its standard matrix.

