03 – Linear Combinations and Span

Definition: Linear Combination

Let $\mathbf{v}_1, \dots, \mathbf{v}_k$ be vectors in \mathbb{R}^n . A vector \mathbf{w} is called a **linear combination** of $\mathbf{v}_1, \dots, \mathbf{v}_k$ if it can be written in the form

$$\mathbf{w} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k$$

where c_1, \ldots, c_k are scalars in \mathbb{R} .

1. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 5 \\ 5 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 2 \\ 0 \\ 8 \end{bmatrix}$

- (a) Write down three different linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.
- **(b)** Is $\begin{bmatrix} -3 \\ 6 \\ -6 \end{bmatrix}$ a linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$?

(c) Is $\begin{bmatrix} -5 \\ 11 \\ -7 \end{bmatrix}$ a linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$?

2. Suppose you want to determine if a vector **b** is a linear combination of the vectors $\mathbf{v}_1, \dots, \mathbf{v}_k$. Describe how to solve this type of problem using a linear system.

Definition: Span

Let $\mathbf{v}_1, \dots, \mathbf{v}_k$ be vectors in \mathbb{R}^n . The set of *all* possible linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_k$ is denoted Span $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$. It is called the **subset spanned** by $\mathbf{v}_1, \dots, \mathbf{v}_k$ or simply the **span** of $\mathbf{v}_1, \dots, \mathbf{v}_k$.

3. Let $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ be as in Exercise 1. Is $\begin{bmatrix} -3 \\ 6 \\ -6 \end{bmatrix}$ in Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$? Is $\begin{bmatrix} -5 \\ 11 \\ -7 \end{bmatrix}$ in Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?

4. Let $\mathbf{a}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$, $\mathbf{a}_2 = \begin{bmatrix} 0 \\ 3 \\ 6 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} -4 \\ -2 \\ 3 \end{bmatrix}$. Determine if $\begin{bmatrix} 4 \\ 1 \\ -4 \end{bmatrix}$ is in Span $\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$.